اختبار نسبة الامكان لاجل التساوي للمعلمات المحلية
لمجتمعات أسية بنيوية على نوع
لمراقبة العينات

أ. د. سليم الغرابي
جامعة بغداد- كلية الإدارة والاقتصاد
قسم الإحصاء

Summary

الخلاصة

هذا البحث يعطي اختبار نسبة الامكان لاجل المقارنة لاثنين أو أكثر معلمات لتوزيع أسى ذلك
أنها لها نفس المعادلات القياسية غير المعروفة وثبات أن اختبار نسبة الامكان تؤدي إلى اختبار مكافئ
القيمة الرئيسية لهذا الاختبار تقف نسباً بسهولة وسهولة مع
التي يمكن تطبيقها.

References:
1- Epstein, B., and sobel , M. (1954)."Some Thearems Relevant to life
Testing from an Exponential population" Annals of Mathematical
Statistics, 25, 373 – 381.

2- Epstein, B., and Tsao, C.K.(1953) "Some Tests Based on Order
Observation From Two Exponential Populations" Annals of

3- Hogg, R.V. and Tonis, E,A. (1963), "An Iterated procedure for Testing
the Equality of several Exponential Distributions" Journal of the

4- Kumar, S. , and patel , H. I. (1971) "ATest for the Comparision of two
Exponential Distributions" Technometrics , 13 , 183 – 189.

Academiae Scientiarum Hungaricae , 4 , 191-231.

6- Robert V. Hogg and Elliot A. Tanis "Probabilty and statistical
المقدمة:

حياة الاختبار والمعولية، للتوزيعات الإسية هي غالباً طلب لنموذج لحياة التوزيعات لأشياء مثل المركبات الإلكترونية ولمتلي متبعت. وهذا في المعلمات للتوزيع الإسية. المعلومة المحلية هي تفسر

كأنها وقتي صغير (أو مؤكد) مثل الذي يكون فشل وقوعها، والمعولمة القياسية مثل قياس معدل الحياة من المعلومة المحلية كنقطة بداية.

أعتبر الآن أن المسألة مقترنة

\(K \geq 2 \)

للمعلمات لتوزيعات أسية والتي لها نفس المعولمات

القياسية لكن مشابهة وأنها تختلف عن المعولمات المحلية. هذه المسألة تظهر عندما أخذ يرغب لمقارنـة عدة دورات موثقة.

(أفرض أن) دالة أحتكالية الكثافة للتوزيع الإسية (pdf) \(j = 1,2,3, \ldots, K \) (pdf) هي تعطى بالشكل

\[
P(x_j) = \frac{1}{\sigma} \exp\left[-\frac{1}{\sigma}(x_j - \beta_j)\right], \quad 0 < \sigma > 0
\]

حيث أن \(x_j \) هي معلومة محلية \(\sigma \) هي معلومة قياسية مشتركة الاختبار لاجل مساواة المعولمات لـ

أتمت متوزيعات أسية تتكون من هذه الفرضية

null hypotheses \((k \geq 2) \)

\[
H_0 : \beta_1 = \beta_2 = \ldots = \beta_k = \beta
\]

حيث أن غير مخصصة، ضد الفرضية البديلة

: at Least two \(H_1 \) \(\beta \)'s Are un equal \(\ldots \) (1-3)

كلاجل 2

Kumar and Patel (1971) Epstein and Tsao (1953)

\(K \geq 2 \)

يطلب اختبارات HA ضد Ho لبيانات مروية لاجل (1963)

\(H_A \) وصف تكرار الطريقة لاختبار Hogg and Tanis

Derivation of the Likely hood Ratio Statistic

افرض أن فضاء المعولمة هو لعرضة بالشكل

\[\Omega = \{\beta_1, \beta_2, \ldots, \beta_k, \sigma > 0\} \]

والفرض أن S هي فضاء جزئي لـ \(\Omega \) بحيث أن

\[S = \{\beta_1, \beta_2, \ldots, \beta_k, \sigma > 0\} \]
نفترض أن:

\[
\begin{bmatrix}
 x_{11}, \ldots, x_{ir1}, \ldots, x_{k1}, \ldots, x_{krk}
\end{bmatrix}
\]

هي مجموعة ن من النوع \(L\) عينات مراقبة، فان دالة الامكان هي تعطي بالشكل: \\

\[
L(\beta_1, \ldots, \beta_k, \sigma | x_{11}, \ldots, x_{ir1}, \ldots, x_{k1}, \ldots, x_{krk})
\]

\[
\prod_{j=1}^{k} \frac{n_j!}{(N_j - r_j)!} x \exp \left[-\frac{1}{\sigma} \sum_{i=1}^{r_j} (x_{ji} - \beta_j) + (n_j - r_j)(x_{jj} - \beta_j) \right]
\]

في معلمها فضاء العينة \(\Omega\) مقدرات الامكان الأعظم لـ \(\sigma, \beta\) هي:

\[
\sigma = R^{-1} \sum_{j=1}^{k} \sum_{i=1}^{r_j} (x_{ji} - x_{j1}) + (n_j - r_j)(x_{jj} - x_{j1})
\]

\[
\beta_j = x_{j1}
\]

(2.1)

حيث

\[
\hat{\beta} = \min(x_{11}, x_{21}, \ldots, x_{k1}) = x_{11}
\]

بما أن فرضنا أن

\[
x_{j1} > x_{j-1}, 1, j = 2, \ldots, k
\]

وان

\[
\hat{\sigma} = R \sum_{j=1}^{k} \sum_{i=1}^{r_j} (x_{ji} - x_{j1}) + (n_j - r_j)(x_{jj} - x_{j1})
\]

(2.2)

\[
L = \left(\Omega \right) = c \sigma^{-R} \exp[-R]
\]

\[
L = \left(\hat{S} \right) = c \hat{\sigma}^{\hat{R}} \exp[-\hat{R}]
\]

218
حيث أن

\[C = \prod_{j=1}^{k} \frac{n_j!}{(n_j - r_j)!} \]

وعليه فإن

\[\lambda = \left(1 + \frac{U}{\sigma} \right)^{-R} \]

حيث أن \(U \) هي معرفة في المبحث (4) معادلة (5) التي هي

\[U = \frac{v}{2(k-1)s} \]

(Distribution of U) U - توزيع لا يتوقف. توزيع U هو مستقل ومطبق مثل توزيع X² (j=2;, k).

\(W_j \) \((j=2;, k) \) تحت فرضية عدم ثبوت أن

\(f(x_{11}, x_{21}, ..., x_{k1}) = \prod_{j=1}^{k} n_j X \exp \left[-\sum_{j=1}^{k} n_j (x_{1j} - \beta) / \sigma \right] / \sigma^k \)

\[\beta < x_{1j} < \infty \]

ضع:

\[W_j = 2 \left(\sum_{i=j}^{k} n_j \right) (x_{1j} - x_j - 1,1) / \sigma, j = 2, ..., k \]

\[W_1 = 2 \left(\sum_{j=1}^{k} n_j \right) (x_{11} - \beta) / \sigma, \]
فان

\[f(w_1, w_2, \ldots, w_k) = (x_{11}, x_{21}, \ldots, x_{k1}) \mid J \mid \]

\[= \prod_{j=1}^{k} n_j \exp \left[-\frac{1}{2} \sum_{j=1}^{k} w_j \right] / 2^k \prod_{i=j}^{k} \left(\sum_{i=j}^{k} n_i \right) \]

حيث أن \(|J| \) هو تحويل جاكوبين وأنه يساوي

\[\sigma^k / 2^k \prod_{j=1}^{k} \left(\sum_{i=j}^{k} n_i \right) \]

أي تكامل على \(W_1 \) ، نحصل على

\[f(w_2, \ldots, w_k) = \prod_{j} n_j \exp \left[-\sum_{j=2}^{k} w_j / 2 \right] / 2^{k-1} \prod_{i=j}^{k} \left(\sum_{i=j}^{k} n_i \right) \]

لاحظ أن:

\[P_r(W_2 > 0, \ldots, W_k > 0) = P_r(X_{21} > X_{11}, \ldots, X_{k1} > X_{k-1, 1}) \]

\[= \int_{\beta}^{\infty} \int_{x_{11}}^{\infty} \ldots \int_{x_{k-1, 1}}^{\infty} f(x_{11}, x_{21}, \ldots, x_{k1}) \prod_{j=k}^{1} dx_{j1} \]

\[= \prod_{j=1}^{k} n_j / \prod_{i=j}^{k} \left(\sum_{i=j}^{k} n_i \right) \]

وهكذا فإن دالة الكثافة الاحتمالية الشرطية لـ \(W_2, \ldots, W_k \) أعطت

هي معطاة بالشكل: \(W_2 > 0, \ldots, W_k > 0 \)

\[f(w_2, \ldots, w_k / w_2 > 0, \ldots, w_k > 0) = \exp \left[-\frac{1}{2} \sum_{j=1}^{k} w_j \right] / 2^{k-1} \]

\[\ldots \quad (3.1) \]
من (4.1) أنه ينتج أن

\[X_j^2 = \sum_{j=2}^{k} w_j = v / \sigma \]

المعرفة من (4.4) هي تتوزع مثل

\[\chi^2(2(k - 1)) \]

أنه من المعروف جداً أن التوزيع لـ \(S_j \) هو تتوزع مربع كاي (Epstein and Sobel 1954) أكثر من ذلك وحيث أن \(S_j \) هي مستقلة ومنافية، المتغير

\[2(R - K)S / \sigma = 2 \sum_{j=1}^{k} r_j s_j / \sigma \]

العربية في (4.2) هي تتوزع مثل

\[\chi^2(2(R - K)) \]

نلاحظ أن Rengi (1953) أن مصدر \(S,V \) لـ (4.5) هي تتوزع U من الاحصاء

4- اختبار نسبة الامكان

\[H_{jnj} = \left[X_{j1} \leq X_{j2} \leq \ldots \leq X_{jnj} \right] \]

هي عينة عشوائية مرتبة من (1) وأفرض أن

\[H_{jnj} \]

هي مجموعة لـ \(R_j \) أفل مشاهدات لـ \(H_{jnj} \) تقديرات الامكان العظم (ML) لـ \(\beta \) ، مبينة على \(\sigma \) من

\[\hat{\beta} = X_{j1} \]

\[S_j = r_j^{-1} \left[\sum_{i=1}^{r_j} (X_{ji} - X_{j1}) + (n_j - r_j)(X_{jnj} - X_{j1}) \right] \]

\[j = 1, 2, 3, \ldots, k \]

على التوالي

\[S = (R - k)^{-1} \sum_{j=1}^{k} r_j s_j \]

(4.1)

(4.2)
$$R = \sum_{j=1}^{k} r_j$$

حيث أن

أكثر من ذلك، افترض أن k من العينات هي مرتبة بحيث أن

$$X_{j1} > X_{j-1,1}, for j = 2, \ldots, k$$

عرف

$$W = \left(\frac{\sum_{i=j}^{k} n_i}{(X_{j1} - X_{j-1,1})/\sigma}, j = 2, \ldots, k, \ldots (4.3)\right)$$

$$\beta = X_{j1}$$

$$\sum_{j=2}^{k} w_j = v/\sigma$$

$$u = v/2(k-1)S$$

وإن (4.5) وان

فأله في لاج اختبار ضد H_0. اختبار نسبة الامكان للإحصاء وكما موضح في المبحث 2 وفقاً

بمعادلة رقم (4.2) والتي هي بالشكل:

$$\lambda = [1 + u]^{-R}$$

أثه يشاهد في (المبحث 3) أن الاختبار u هي تتوزع مع F من درجات الحرية

(2-R-k) و (2-k-1) 2 من درجات F وهو متوزع في المعادلة (2) $F\geq F\alpha$ عند مستوى α لثأ bab 100α

بما أنه لاج النوع ومراعية rjs هي ثابتة، الاختبار مبني على ما هو مكافئ الى الاختبار ذلك أنه

th $F\alpha$ في المعادلة (2) $H_0 \leq F\alpha$ عند مستوى α لثأ bab 100α

بالunanة من التوزيع F مع (R-K) ، (2-K-1) 2 من درجات الحرية.