ESTIMATION OF COEFFICIENTS AND SCALE PARAMETER FOR LINEAR (TYPE 1) EXTREME VALUE REGRESSION MODEL FOR LARGEST VALUES WITH APPLICATIONS

ABSTRACT

In this paper we estimate the coefficients and scale parameter in linear regression model depending on the residuals are of type 1 of extreme value distribution for the largest values. This can be regard as an improvement for the studies with the smallest values. We study two estimation methods (OLS & MLE) where we resort to Newton – Raphson (NR) and Fisher Scoring methods to get MLE estimate because the difficulty of using the usual approach with MLE. The relative efficiency criterion is considered beside to the statistical inference procedures for the extreme value regression model of type 1 for largest values. Confidence interval, hypothesis testing for both scale parameter and regression coefficients, goodness of fit statistics based on the observed residuals are considered. As a conclusion and through the probability plot test we get no evidence against using the assumed residuals distribution.

Keywords: Extreme value regression, The regression coefficient, Scale parameter, Least squares, Maximum likelihood, Probability plot test, Leukemia, Maximum grades temperature.
تقدير معاملات ومعالجة الفيسبس لنموذج أنموذج انحدار القيمه المترتفعة الخطي

(النوع الأول) وتقييم الكبري مع جانب طبيعي

تعد الدراسات المتعلقة بنظرية القيمة المترتفعة (extreme value theory) في الاحصاء وادلة تطبيقات عملية كثيرة وتعتبر دراسة الخصائص الإحصائية للكثير أو أصغر المشاهدات التي يشار إليها في التوالي، وتعد حالة خاصة من النظرية العامة للإحصاءات المتغيرة (General theory of order statistic)، وقد ركزت غالبية الدراسات السابقة على التعرف على خواص التوزيع

\[\text{Flood flows} \quad \text{،} \quad \text{Survival times} \quad \text{،} \quad \text{Fracture problems} \quad \text{،} \quad \text{General meteorological data} \quad \text{،} \quad \text{Problems} \]

وفي الستينيات تمت تحليل المسائل المتعلقة بوجود الاحذار خطي مترتفع في حالة الكثافة الاحتمالية لتوزيع القيمة المترتفعة عندما تملك الاختلال وتوزيع القيمة المترتفعة (النوع الأول) وتقييم الصغير (9,12).

2- هدف البحث

ركزت أغلب الدراسات في مجال تحليل الاحذار حول افتراض كون الخطا العشوائي في الامبوذية يتعاون التوزيع الطبيعي في النماذج الخطي. فقد تقدر معاملات أنموذج الاحذار أن المعدلات المرتبة الصغرى ستكون متطرفة مع معدلات الأمكان الأعظم ولذا تعد مقدرات كلوية مهمة ولكنا ما يشيده لخواص مقدرات معاملات أنموذج الاحذار عندما تتوزع الاختلالات لتوزيع غير التوزيع الطبيعي هذا السؤال وغيره دفع الباحثين في فترة الستينيات إلى تركيز دراساتهم ونهجهم على أن الاختلالات في النماذج الخطي مترتفعات

لأجل التوزيع الطبيعي اشترط تلك البحوث أنك تلبية احتمالية أمنية للدالة الكثافة الاحتمالية لتوزيع القيمة المترتفعة على أنموذج الاحذار. يهدف هذا البحث إلى تقدير معاملات أنموذج الاحذار الخطي في حالة الإطالة التي تملك وفق توزيع القيمة المترتفعة (النوع الأول) وتقييم الكبري كتطبيق على الدراسات السابقة حول القيمة الصغرى.

3- الجانب النظرائي

Extreme value distributions

1.3 توزيعات القيمة المترتفعة

توزيعات القيمة المترتفعة تؤخذ لتندرس بصورة عامة للعوامل الثلاث الآتية: [12]

1- النوع الأول:

\[P_{x \leq x} = \exp[- \exp (- (x - \xi) / \theta)] , \quad - \infty < x < \infty \]

2- النوع الثاني:

\[P_{x \leq x} = \begin{cases} 0, & x < \xi \\ \exp [(- (x - \xi) / \theta) - k], & x \geq \xi \end{cases} \]

3- النوع الثالث:

\[P_{x \leq x} = \begin{cases} \exp [(- (x - \xi) / \theta)^k], & x \leq \xi \\ 1, & x > \xi \end{cases} \]
تقدير معاملات ومعالة البؤرة لأنموذج انحدار القيمة المتجه الحسابية

(النوع الأول) وللقيم الكبيرة مع جانب تطبيقي

حيث أن (n > 0, k, ξ, θ) وتمثل المعاملات، توزيع النوع الأول يشار إليه وتوزيع القيمة الممتدة (Type I.E.V. dist.for greatest values) النوع الأول للقيم الكبيرة (Normal dist.) الكبيرة عندما تكون العينة مسحوبة من التوزيع الطبيعي (Exponential dist.) والوزن النحراطي (Logarithmic normal dist.)، عند الداء المتغير +

وإضافة إلى ذلك، سوف نستخرج توزيع القيمة الممتدة النوع الأول لقيم الصغرى. D لدالة الكثافة الاحتمالية لتوزيع القيمة الممتدة النوع الأول لقيم الكبيرة هي:

\[f_x(x) = \frac{1}{\theta} \exp \left[\frac{-x - \xi}{\theta} \right] \exp \left[-\frac{x - \xi}{\theta} \right], \quad -\infty < x < \infty \]

حيث أن

- تمثل معلمة الموقع و
- معلمة القياس (n > 0)، و Когда n = 0 و n = 1 فيديع توزيع القيمة الممتدة النوع الأول القيمة الاحتمالية ودالة الكثافة الاحتمالية المتغيرة:

\[f_x(x) = \exp(-x - \exp(-x)) \]

وإضافة إلى ذلك، نحصل على الصيغة القياسية الاحتمالية:

\[y = (x - \xi) / \theta \]

وتمثل توزيع القيمة المتغيرة القياسية للقيم الكبيرة، فدالة الزيادة للمؤثر المتغير ي هي:

\[\mu_y(t) = \Gamma(1 - t), \quad (t < 1) \]

حيث دالة

- تمثل دالة كاما (Gamma function)
- ضمنية مساويا إلى

\[y = 0.57722 \]

ويمثل (Euler's constant)

- يتمثل

\[\Gamma \]

المؤثر للمؤثر المتغير

\[X = Y \theta + \xi \]

و تمثل دالة كاما ومن خلالها فإن:

\[E(x) = \xi + \theta = \xi + 0.57722 \theta \]

و تمثل توزيع ذو ممات

\[V(x) = \frac{1}{\pi^2} \theta^2 \]

(Non symmetrical skewness and kurtosis)

مع معاملات النموذج غير متتالية (Non symmetrical) و و 4.5 على التوالي. جداً إن توزيع القيمة الممتدة النوع الأول يشكل T حيث أن

\[T = \log \alpha, \quad \theta = \beta^{-1}, \quad x = \log \Gamma \]

على وفق توزيع وايبل.
تقدير معاملات ومعطية القياس لأنمود انح (القيمة المتطرفة الخطي) (النوع الأول) وللقيم الكبرى مع جنب تطبيقي

(An extreme value regression model)

نموذج انحدار العام الإيجاب:

\[Y_i = x'_i \beta + \varepsilon_i, \quad i = 1, 2, ..., n \]

حيث ان:

\[x'_i = (1, x_{i1}, x_{i2}, ..., x_{ik}), \quad \beta' = (\beta_0, \beta_1, ..., \beta_k) \]

أذ تشير القيم المتطرفة المترتبة لـ \(k \) من المتغيرات المستقلة \(x_{i1}, x_{i2}, ..., x_{ik} \) (المتغيرات التفسيرية غير العشوائية) للمفردة \(i \). أما القيم تتمثل موجهات الانحدار المجهولة \(\varepsilon_i \) تمثل الاختياء العشوائية على افتراض أنهم يشكلون وق توزيع القيمة المتطرفة (النوع الأول) ولقيمة الكبري

\[E(\varepsilon_i) = 0, \quad \text{Var}(\varepsilon_i) = \frac{1}{6} f(\varepsilon_i) = \frac{1}{6} \exp \left[-\frac{\varepsilon_i}{\theta} + \gamma - \exp \left(-\frac{\varepsilon_i}{\theta} + \gamma \right) \right] \]

حيث ان \(\gamma \) وضح سابقا وان و 0 > 0 (معطية القياس العامة التي لها علاقة في حساب التأكيد للتوبيع السابق). فإن دالة الكثافة الاحتمالية لـ \((y_i) \) ستكون

\[f_{y_i}(y_i) = \frac{1}{\theta} \exp \left[-\frac{(Y_i - x'_i \beta + \gamma)}{\theta} - \exp \left(-\frac{(Y_i - x'_i \beta + \gamma)}{\theta} \right) \right], \quad -\infty < y < \infty \]

حيث ان 0 > 0 و 0 = 0.5772216 و 0 = 0.5772216. و 0 > 0 و 0 = 0.5772216.\\

\[E(y_i) = x'_i \beta, \quad \text{Var}(y_i) = \frac{1}{6} \pi^2 \theta^2 \]

الإجابة غير متداخل مع معامل النتائج (1.29857) ومعطية تفاوت (2.4).

3-3 تقدم معاملات ومعطية القياس لنموذج انحدار القيمة المتطرفة الخطي (النوع الأول) وللقيم الكبري باستخدام طريقة الإمكان الأعظم

إذا القيم المتطرفة بتحديد القيمة الإجمالية لـ (OLS) اتضح ما يمكن أن تكون التأقيم الجزيء (النقطة التي تمثل مقدار الإمكان الأعظم وتطلب طريقة (ML) تخصصي أو تحديد التأقيم الإخيري وذلك للحصول على دالة الإمكان الأعظم ولكن

الإجابة غير متداخلة.

أما الأساس الذي أتبع لطريقة الإمكان فهو استخدام طريقة نيوتن رافسون واسوب فشر (Newton - Raphson and Fisher's scoring approach) المتتالي (Iterative procedures) التي يتم اللجوء فيها في حالة الحصول على تقديرات يصعب حلها متغيرات عشوائية مستقلة حيث ان Y1, Y2, ..., Yn بالأسفل ان للإجابة على افتراض أن يشكل وفق توزيع القيمة المتطرفة النوع الأول ولقيمة الكبري ولقه p.d.f

\[Z_i = \frac{Y_i - x'_i \beta + \gamma}{\theta} + \gamma, \quad i = 1, 2, ..., n \]
قدالة الكثافة الاحتمالية ل Y_i ستكون:

$$ f (y_i, \beta, \theta) = \theta^{-1} \exp(-z_i - \exp(-z_i)) $$

(17)

وبذلك النواتج تجعل المعادلة (17) خطية لا مكانية اشتقاقها:

$$ \log f_{Y_i}(y_i) = -\log \theta + (-z_i - \exp(-z_i)) $$

(18)

$$ U_r^{(i)} = \frac{\partial \log f_{Y_i}(y_i)}{\partial \beta_r} , \quad U_0^{(i)} = \frac{\partial \log f_{Y_i}(y_i)}{\partial \theta} , \quad V_{rs}^{(i)} = \frac{\partial^2 \log f_{Y_i}(y_i)}{\partial \beta_r \partial \beta_s} $$

(19)

$$ V_{r0}^{(i)} = \frac{\partial^2 \log f_{Y_i}(y_i)}{\partial \beta_r \partial \theta} , \quad V_{00}^{(i)} = \frac{\partial^2 \log f_{Y_i}(y_i)}{\partial \theta^2} , \quad r, s = 0, 1, \ldots, k $$

$$ U_r^{(i)} \frac{\partial z_i}{\partial \beta_r} = - (1 - e^{-z_i}) = \frac{X_{ir}}{\theta} (1 - e^{-z_i}), \quad r = 0, 1, \ldots, k $$

(20)

$$ -U_0^{(i)} = - \frac{1}{\theta} \frac{\partial z_i}{\partial \theta} (1 - \frac{\partial z_i}{\partial \theta}) e^{-z_i} $$

$$ = \frac{1}{\theta} \left(- (z_i - \gamma) + e^{-z_i} (z_i - \gamma) \right) $$

$$ = 0 \cdot 1 (z_i - \gamma) (1 - e^{-z_i}) - 1 $$

$$ \frac{\partial z_i}{\partial \theta} = - \frac{X_{ir}}{\theta}, \quad \frac{\partial z_i}{\partial \beta_r} = - \frac{X_{ir}}{\theta} $$

$$ V_{rs}^{(i)} = \frac{\partial}{\partial \beta_s} \frac{\partial z_i}{\partial \beta_r} = \frac{X_{ir}}{\theta} e^{-z_i} $$

(21)

$$ \frac{\partial}{\partial \beta_s} \frac{X_{ir}}{\theta} = \text{zero} \quad \frac{\partial z_i}{\partial \beta_r} = \frac{X_{ir}}{\theta} $$

$$ V_{r0}^{(i)} = \frac{\partial}{\partial \theta} U_r^{(i)} = \frac{\partial}{\partial \theta} \frac{X_{ir}}{\theta} (1 - e^{-z_i}) $$

$$ = \frac{X_{ir}}{\theta} (1 - e^{-z_i}) + e^{-z_i} (z_i - \gamma) $$

(22)

$$ V_{00}^{(i)} = \frac{\partial}{\partial \theta} U_0^{(i)} = \frac{\partial}{\partial \theta} \left[\frac{(z_i - \gamma)(1 - e^{-z_i}) - 1}{\theta} \right] $$

$$ = - \frac{1}{\theta^2} \left[(z_i - \gamma)^2 e^{-z_i} + 2 (z_i - \gamma) (1 - e^{-z_i}) - 1 \right] $$

(23)
تقدير معاملات ومعلمة القياس لأنموذج انحدار القبحة المتطرفة الخطية

(النموذج الأول) وللقيم الكبيرة مع جانب تطبيقي

$$L(\beta, \theta) = \sum_i \log f(Y_i)$$

حيث إن (Log – likelihood)

$$\frac{\partial L(\beta, \theta)}{\partial \beta} = \sum_i U_i^{(i)} = \sum_i U_i^{(i)}$$

إذا كان: على فرض (Log – likelihood) $L(\beta, \theta)$

$$\frac{\partial L(\beta, \theta)}{\partial \theta} = \sum_i U_i^{(i)}$$

وهكذا فإن تقديرات الامكان الاعظم ML تعطى بواسطة حل $K + 2$ من المعادلات: لجهاز تطبيقي

$$\sum_i U_i^{(i)} \sum_i x_i r \theta^{-1} \left(1 - e^{-z_i}
ight)$$

ويساواتها بالصفر تصبح:

$$\sum_i x_i r (1 - e^{-z_i}) = 0$$

$$\sum_i U_i^{(i)} \sum_i \theta^{-1}\left((z_i - \gamma) \left(1 - e^{-z_i}\right) - 1 \right)$$

$$\sum_i (\hat{z}_i - \gamma) \left(1 - e^{-z_i}\right) = n$$

وحيث إن: $r = 0, 1,, k$

$$\hat{z}_i = \left(\frac{y_i - x_i ^{\hat{\beta}}}{\hat{\theta}} + \gamma \right) \quad i = 1, 2, , n$$

لاستخراج تفاضلات المرتبة الثانية للوغارتم الامكان الاعظم نفترض:

$$\frac{\partial^2 L(\beta, \theta)}{\partial \beta \partial \beta} = \sum_i V_{r,x}^{(i)}, \quad \frac{\partial^2 L(\beta, \theta)}{\partial \theta \partial \theta} = \sum_i V_{r,\theta}^{(i)}$$

$$\sum_i V_{r,x}^{(i)} = -\sum_i x_i r x_i s \theta^{-2} e^{-z_i}$$

فان:

ويساواتها بالصفر تصبح:

$$\sum_i x_i r x_i s e^{-z_i} = 0$$

$$- \sum_i V_{r,\theta}^{(i)} = -\sum_i x_i r \theta^{-2} \left[(1 - e^{-z_i}) + e^{-z_i} (z_i - \gamma) \right]$$

ويساواتها بالصفر تصبح:

$$\sum_i x_i r e^{-z_i} \left(1 - (\hat{z}_i - \gamma) \right) = \sum_i x_i r$$

$$- \sum_i V_{r,\theta}^{(i)} = \frac{1}{\hat{\theta}^2} \sum_i [(z_i - \gamma)^2 e^{-z_i} + 2 (z_i - \gamma) (1 - e^{-z_i}) - 1]$$
تقدير معاملات ومعالجة القياس لأنموذج انحدار القبيحة المتطرفة الخطية

(النوع الأول) وللقيمة الكبيرة مع جانب تطبيقي

ويمسواها بالصفر:

\[\sum_{i} \left(\hat{z}_i^2 - (1-e^{-\tilde{\beta}}) \gamma \right)^2 e^{-\tilde{\beta}+2(\hat{z}_i - \gamma)} = n \]
(31)

أ – طريقة نيوتن رافسون

فهي إحدى الطرق العديدة لحل معادلات

الإمكان اعدادا عن طريق إيجاد جذر تقريبية من خلال الحل المتنايلي لها وذلك باستخدام طريقة المربعات الصغرى كتقديرات أولية لمعاملات الانحدار ومعالجة القياس والتي تستخدم للحصول على تقديرات معاملات

الانحدار ومعالجة القياس لطريقة الإمكان الأعظم، ويتم ذلك بوضع:

\[D_{k+2} (J) = \begin{bmatrix} \frac{\partial^2 L(\beta, \theta)}{\partial \beta \partial \theta} = \tilde{\beta} = \hat{\theta} (\epsilon) , \theta = \tilde{\theta} (\epsilon) \end{bmatrix} , J = 0, 1, \ldots, k \]
(32)

ٝثَٔبٝارٜب ثبُظلو : \(J= 0, 1, \ldots, k \)

ٝٛ١ اؽلٟ اُطوائ

ٝاُؼلك٣خ ُؾَ ٓؼبكلاد

ٝٓزطبثوخ اُزٞهغ ُِ

ة – تقدير كشو

\[f_{\tilde{\beta}} (z) = \exp \left(- \frac{z - e^{-z}}{\tilde{\beta}} \right) , \quad (-\infty < z < \infty) \]
(35)

حيث أن (35) تمثل دالة الكثافة الاحتمالية ل分布متوزع القبيحة المتطرفة النوع الأول وللقيم الكبيرة وان الدالة

النموذج للموزع لتوزيع

E.V.D

النوع الأول القياسي:

\[M_{\tilde{\beta}} (t) = \int_{-\infty}^{\infty} e^{xt} e^{-z} \exp \left(- \exp (-z) \right) dz = \Gamma(1-t) , (t < 1) \]
(36)

ٝثَٔبٝارٜب ثبُظلو : \(J= 0, 1, \ldots, k \)
تقدير معاملات ومعالمة القياس لأنموذج اندماج القيم المتطرفة الخطية

(النوع الأول) وللقيم الكبرى مع جانب تطبيقي

ومن خلالها فان:

\[E(ze^{zt}) = d^t M_z(t) / d t^t = d^t \Gamma(1-t) / d t^t \] \tag{37}
\[M_z(t) = -\Gamma(1-t), E(ze^{-zt}) = - (1-\gamma) = -0.422784 \]
\[M_z''(t) = \Gamma(1-t), E(z^2e^{-zt}) = \Gamma''(2) = 0.823680, E(e^{-zt}) = \Gamma(2) = 1 \] \tag{38}

بالتعاقب Trigamma و digamma تشير إلى دوال
\[\frac{d}{dx} \log \Gamma(x) \]
وباستخدام المعادلات (36) ، (37) نحصل على:

\[E[e^{-z}(z-\gamma)] = -\Gamma(2)-\gamma = -1 \]
\[E[e^{-z}((z-\gamma)^2 - 2(z-\gamma)-1)] = 2.644934 \]
\[I_{rs} = E(-\sum_i V_{r,i}^{(i)}), I_{r0} = E(-\sum_i V_{r,0}^{(i)}), I_{00} = E(-\sum_i V_{0,0}^{(i)}) \]

نفرض:

باستخدام (21)، (22)، (23)، (38) فالعناصر في مصفوفة المعاملات يتم الحصول عليها عن طريق الصيغ التالية:

\[I_{rs} = 0^{-2} \sum_i x_{i,r} x_{i,s}, I_{r0} = -0^{-2} \sum_i x_{i,r}, I_{00} = 2.644934 n 0^{-2} \] \tag{39}

والتي تستبدل تلك الموجودة في المصفوفة
والتقدير لدرجة (t) من التكرار. استخدام التكبير الحالي
والنافخ؛ يصبح مستقلة عن التكرار المستمر باستخدام السلسلة المعطاة في (34) حتى يتم استخراج التقارب الملازم. مصفوفة المعاملات (Information matrix) ستكون:

\[
\begin{bmatrix}
2.644934n & -n & -n \bar{x}_1 & -n \bar{x}_2 & \cdots & -n \bar{x}_k \\
-n & n & n \bar{x}_1 & n \bar{x}_2 & \cdots & n \bar{x}_k \\
-n \bar{x}_1 & n \bar{x}_1 & \Sigma x^2_{11} & \Sigma x_{11} x_{12} & \cdots & \Sigma x_{11} x_{1k} \\
-n \bar{x}_2 & n \bar{x}_2 & \Sigma x^2_{12} & \Sigma x_{12} x_{12} & \cdots & \Sigma x_{12} x_{1k} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
- & \vdots & \vdots & \vdots & \ddots & \Sigma x^2_{ik} \\
-n \bar{x}_k & n \bar{x}_k & \Sigma x_{1k} x_{1k} & \Sigma x_{1k} x_{2k} & \cdots & \Sigma x_{1k} x_{ik} \\
\end{bmatrix}
\]

\[
\frac{1}{\theta^2} \left[\begin{array}{cccc}
2.644934n & -n & -n \bar{x}_1 & -n \bar{x}_2 & \cdots & -n \bar{x}_k \\
-n & n & n \bar{x}_1 & n \bar{x}_2 & \cdots & n \bar{x}_k \\
-n \bar{x}_1 & n \bar{x}_1 & \Sigma x^2_{11} & \Sigma x_{11} x_{12} & \cdots & \Sigma x_{11} x_{1k} \\
-n \bar{x}_2 & n \bar{x}_2 & \Sigma x^2_{12} & \Sigma x_{12} x_{12} & \cdots & \Sigma x_{12} x_{1k} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
- & \vdots & \vdots & \vdots & \ddots & \Sigma x^2_{ik} \\
-n \bar{x}_k & n \bar{x}_k & \Sigma x_{1k} x_{1k} & \Sigma x_{1k} x_{2k} & \cdots & \Sigma x_{1k} x_{ik} \\
\end{array} \right] \frac{1}{\theta^2}
\]

\[\text{Information matrix} \]

وحيث انه في الغالب يكون المتوسط العام (General mean) ومهم في النموذج الخطبي، فإذا اخضنا النظر الاعتقاب العارض التالية (Without loss of generality) نفترض:

\[x_j = 0, j = 1, 2, \ldots, k \]
\[x_{i0} = 1, i = 1, 2, \ldots, n \]
\[\sum_{j=1}^{k} x_{ij} = 0, j = 1, 2, \ldots, k \]
تقدير معامد ومعطيات القياس لأنموذج انحدار القيم المتطرفة الخطية

(النوع الأول) وللقيم الكبرى مع جانب تطبيقي

فصفوفة المعادلات سوف تجزى على الشكل التالي:

\[l = \frac{1}{\theta^2} \begin{bmatrix} Q_{12} & Q_{13} \\ Q_{23} & Q_{24} \end{bmatrix} \]

حيث أن \(l^{-1} \) تشير إلى 0 و 1، و
\[I = \begin{bmatrix} \sum x_i^2 & \sum x_i x_{ij} & \cdots & \sum x_i x_{ik} \\ \sum x_i x_{ij} & \sum x_i^2 & & \cdots & \sum x_i x_{jk} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \sum x_i x_{ik} & \sum x_i x_{jk} & \cdots & \sum x_i^2 & \sum x_i x_{jk} \end{bmatrix} \]

حيث أن
\[I_1 = \begin{bmatrix} 2.644934 n & -n \\ -n & n \end{bmatrix} \]

و \(I_2 = \begin{bmatrix} \sum x_i^2 & \sum x_i x_{ij} & \cdots & \sum x_i x_{ik} \\ \sum x_i x_{ij} & \sum x_i^2 & & \cdots & \sum x_i x_{jk} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \sum x_i x_{ik} & \sum x_i x_{jk} & \cdots & \sum x_i^2 & \sum x_i x_{jk} \end{bmatrix} \]

وهكذا فالمعكوس لمصفوفة
\[I^{-1} = \theta^2 \begin{bmatrix} I_1^{-1} & 0 \\ 0 & I_2^{-1} \end{bmatrix} \]

فستكون التقديرات القياسية (كبيانات العينة الكبيرة)
\[\begin{bmatrix} \hat{\beta}_0 \\ \hat{\theta} \end{bmatrix} = \hat{\beta}_0 \frac{\text{Var} \hat{\theta}}{n}, \quad \text{Var} \hat{\theta} = (\hat{\beta}_0, \hat{\theta}), \quad \text{Cov} \frac{0.607927 \theta^2}{n} \]

والخريطة لمصفوفة النتائج المشترك ل
\[= \left(\hat{\beta}_0, \hat{\beta}_1, \cdots, \hat{\beta}_k \right) \quad \theta^2 \approx \left| \sum x_i x_{i1} x_{i2} \right|^{-1} \]

وفي حالة وجود مثير مستقل واحد (حالة الارتداد البسيط) يمكن أن نحصل على مقدرات الأمكان الأعظم من خلال الإستهلاك، بما أن الأمكان الأعظم لنموذج انحدار القيم المتطرفة (النوع الأول) وللقيم الكبرى التي لها دالة كثافة احتمالية:

\[L = -n \log \theta - n \varphi - \sum_{i=1}^{n} \left(\frac{y_i - x_i \beta}{\theta} \right) \sum_{i=1}^{n} \exp \left(- \frac{y_i - x_i \beta}{\theta} + \gamma \right) \]

وبافترض أن
\[x_i = \beta_0 + \beta_1 + \cdots + \beta_k \sum_{r=0}^{k} \beta_r x_{i, r} \quad x_{i0} = 0 \]

استخراج التفضيلات الأولية وذات المرتبة الثانية لكل من 0 و 1، و 0 ومنها فان:

\[\begin{bmatrix} \frac{\partial L}{\partial \beta_0} \\ \frac{\partial L}{\partial \beta_1} \\ \vdots \\ \frac{\partial L}{\partial \beta_k} \end{bmatrix} = \begin{bmatrix} 0 \\ -n \sum x_i^2 \\ \vdots \\ -n \sum x_i^2 \end{bmatrix} \]

وبمساواتها بالصفر نحصل على تقديرات الأمكان الأعظم:

\[D^{(1)} = (\hat{\beta}_0, \hat{\beta}_1, \hat{\theta}) = 0 \]

اما مصفوفة المعادلات فستكون:

\[I = \theta^{-2} \begin{bmatrix} n & 0 & -n \\ 0 & \sum x_i^2 & 0 \\ -n & 0 & 2.644934 n \end{bmatrix} \]
تقدير معامات ومعالفة القياس لنموذج انحدار القيمة المتطرفة الخطية

(نوع الأول) وللقيم الكبير مع جانب تطبيقي

إذا كانت \((ML) \) تشير إلى التقديرات الأولية لتقديرات الأمكان الأعظم، و

ويستخدم طريقة فشل التقديرات الجديدة تعني عن طريق التكرار المستمر باستخدام السلسلة الممتدة في

(34) حتى استخراج التقارب لمعظم القيم للاصدارات التي تم استخدامها في الجانب التجريبي بعد تبديل قيم المشتقات الثانية في مصفوفة المعلومات بقيم موقعة للمشتقات الثانية التي تتطلبها طريقة فشل.

3-4 خصائص العزوم لمقدرات المربعات الصغرى الاعتراضية

\[\beta \] لـ (O.L.S) هو:

\[\hat{\beta} = (X'X)^{-1}X'y \]

ويوضح تقديرات المعالمة حيث أن \(\beta_r \) و

(48) وتعد أفضل مقدر (صغر تباین) غير متحيز

بالمقارنة مع كل التقديرات غير المتحزبة التي تكون خطيية في المشاهدات (Yi). علمها ان:

\[E(\hat{\beta}) = \beta, \quad V.C(\hat{\beta}) = \sigma^2(X'X)^{-1} \]

(49) وان مقدر المربعات الصغرى ل

\[\sigma^2 = \frac{1}{n-k-1}(Y - X\hat{\beta})^2(X'X)^{-1}(Y - X\hat{\beta}) \]

(50) وحيث ان:

وهناك فإن:

\[\text{Var}(\hat{\beta}_0) = \frac{\pi^2\sigma^2}{6n}, \quad (\pi = 3.1415903) \]

(51)

اما مصفوفة التباين والتباين المشترك لـ \(\hat{\beta}_k \):

\[\text{Cov}(\hat{\beta}_1, \hat{\beta}_2, ... , \hat{\beta}_k) = \frac{1}{6}\pi^2\theta^2\sum_{i=1}^{k} x_i x_i' \sum_{i=1}^{k} x_i x_i' \]

(52)

اما مقدر المربعات الصغرى الاعتراضية (O.L.S)

\[\tilde{\theta} = 0 [1 + (\theta^2/\sigma^2)]^{1/2} \]

(53)

اما قيمة التوقع والتيابين لـ \(\tilde{\theta} \) فهي على التوالي

\[E(\tilde{\theta}) = 0 [1 - \frac{1}{4(n-k-1)}(1 + \frac{12}{n-k-1}\sum_{i=1}^{n-k-1} (1 - h_{ii}))^2] \]

(54)

\[\text{Var}(\tilde{\theta}) = \frac{1.1\theta^2}{n} \]

(55)
تقدير معاملات ومعالفة القياس لنموذج انحدار القبضة المتطرفة الخطي

(النوع الأول) وللقيم الكبيرة مع جانب تطبيقي

Asymptotic Efficiency

أولاً: الكفاءة التقديرية ل ل (β₀) بالنسبة مع (β₀):
\[
\frac{\text{Var}(\hat{\beta}_0)}{\text{Var}(\beta_0)} = \left(1.69752 \frac{\theta^2}{n} \right) / \left(\frac{\theta^2}{6n} \right) = 0.978
\]

(56)

ثانياً: الكفاءة التقديرية ل (βᵢ) للقيم الكبيرة مع (βᵢ) لكل عدد مقدر على (βᵢ):
\[
\frac{\text{Var}(\hat{\beta}_j)}{\text{Var}(\beta_j)} = \left(\frac{1}{\theta^2} \cdot \frac{1}{6} \cdot \pi^2 \theta^2 \right)^{-1} = 0.608, \quad j = 1, 2, \ldots, k
\]

(57)

ثالثاً: الكفاءة التقديرية ل (θ) بالنسبة مع (θ):
\[
\frac{\text{Var}(\hat{\theta})}{\text{Var}(\theta)} = \left(\frac{6 \theta^2}{\pi^2 n} \right) / \left(\frac{11 \theta^2}{n} \right) = 0.553
\]

(58)

ومن خلال القيم الثلاث التي استخرجت وجمعها كل من وحيد صحيح ، أي أن تقديرات الامكان الاعظم (MLE) اثاث كفاءة من تقديرات انحدارات الصغرى الاعتيادية (OLSE) في تقدير معامل النموذج.

3-6

اجراءات الاستدلال الإحصائي لنموذج انحدار القبضة المتطرفة (النوع الأول) وللقيم الكبيرة

Asymptotic distribution

(النوع الأول) لتقديرات الامكان الاعظم:
\[
\hat{\beta}_0 \sim N \left(\beta_0, 1.6079 \frac{n^{-1} \theta^2}{n} \right)
\]

(59)

\[
\hat{\beta}_r, \beta_r \sim N \left(0, 0.6079 \frac{n^{-1} \theta^2}{n} \right)
\]

(60)

حيث أن (n, r) معكوس مجموع مصفوفة الضرب المتتالي:
\[
V = \begin{bmatrix}
\sum_{i} x_i^2 & \sum_{i} x_{1i} x_{i2} & \cdots & \sum_{i} x_{1i} x_{ik} \\
\sum_{i} x_{1i} x_{i2} & \sum_{i} x_{i2}^2 & \cdots & \sum_{i} x_{i2} x_{ik} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{i} x_{1i} x_{ik} & \sum_{i} x_{i2} x_{ik} & \cdots & \sum_{i} x_{ik}^2
\end{bmatrix}
\]

(62)

(Asymptotic

\[\text{فأذا تحقق الشرط (} \sum x_{ir} = 0, \quad r = 1, 2, \ldots, k \text{)} \quad \text{بين كل من} \quad \hat{\beta}_0 \quad \text{و} \hat{\beta}_r \quad \text{وبين} \quad \hat{\theta} \quad \text{و} \beta_r \quad \text{و} \beta_r \text{}}

(63)

وذلك يكون:
\[
\text{cov}_a \left(\hat{\beta}_0, \hat{\theta} \right) 0.6079 n^{-1} \theta^2, = (\text{cov}_a \hat{\beta}_r, \cdot \cdot \cdot) = \hat{\beta}_r \frac{\theta^2}{\theta^2} V_{rs}, \quad r, s = 1, 2, \ldots, k
\]
تقدير معاملات ومعلمة القياس لأنموذج انحدار القبضة المترتبة الخطية

(النوع الأول) وللتقييم الكبيرة مع جانب تطبيقي.

وتحديد حدود الثقة التقديرية لمعلمات اللاحدار ومعملة القياس بالاعتماد على تقديرات (Pivotal R.) التي تتطابق مع نظرية الحد المركزي وهي كالآتي:

\[\theta^* = \frac{\hat{\theta}}{\sigma} = \frac{\frac{1}{n} \sum (y_i - \mu)^2}{\sigma^2} \]

(64)

التي تكون مستقلة عن \(\beta \) و 0، ومن الملاحظ أن التوزيعات الخاصة بهذه التوزيعات تمتلك العمومية لكل حجوم العينات، لذلك يجب استخدام صفات التوزيع للحالة المتوسطة للحالة البسيطة ل\\(\theta^* \) وصفات التوزيع للمتغير العشوائي:

\[T_r = \frac{\hat{\beta}_r}{\hat{\theta}} \]

(65)

والاقتصادي حول 0.

ورغم من التوزيعات العشوائية التي استخدمها، ومن الملاحظ احصائياً بان:

\[T_1 = \frac{r - \mu}{\sigma / \sqrt{n}}(n-1)^{1/2} T_2 = \frac{\hat{\sigma}^2}{\hat{\sigma}^2} \]

(66)

حيث أن المتغير العشوائي (R.V.) يعتمد فقط على قيمة المعلمات المجهولة (μ)، وتوزيعه مستقل ل و μ. و هذا ما يضمن

على المتغيرات العشوائية التي استخدمتها وهو:

\[\beta^*_r = \frac{\hat{\beta}_r - \mu}{\hat{\theta}}, \quad \hat{\theta}^* = \frac{\hat{\theta}}{\sigma} \]

(67)

وحيث فحص الدالة التوزيعية ذات الجانبين ل 0 والمستندة إلى مقدر الاكماك الأعظم هي:

\[t_{\alpha/2} = \frac{\hat{\theta}(n-1)^{1/2} T_2}{\sqrt{\hat{\sigma}^2 / (n-1)}} \]

(68)

حيث أن:

\[t_{\alpha/2} = \frac{\hat{\theta}(n-1)^{1/2} T_2}{\sqrt{\hat{\sigma}^2 / (n-1)}} \]

(69)

وهي العنصر (r,r) لمجسم مجموع مصفوفة الضرب المثلثي كما ذكرت سابقا.

كما تم التركيز في اختبار الفرضيات المتعلقة بفعالية اللاحدار التي تكون قيمها صفرًا وقيمة 0 (معملة القياس). تساوي واحدة وذلك لتجاوز الأفاضل المعتمد على الفرضيات الفورية مثل (3) لأن

المتعلق أن لا تكون (3) أو رفضها عندما تكون 0. ومن الجدير بالذكر احصائياً أن نتيجة حدود الثقة لها هي علاقة

متطابقة مع نتيجة اختبار الفرضيات التي يتم التركيز فيها.
تقدير معاملات ومعايير القياس لأنموذج القيمة المتطرفة الخطي

3- حسن التطبيقة لتوزيع القيمة المتطرفة: عند افتراض توزيع معين للأخطاء فإن المتغير المعتدل يتبع توزيع التوزيع المفترض للأخطاء نفسه ومن أجل فحص هذه الأخطاء وأختيارها على أنها تسلك وفق (Goodness of fit tests) يعد التوزيع المفترض (نوع الأول) تم استخدام أحد حسابات حسن التطبيقة (Probability plot) الخاص لهذا التوزيع وهو اختبار الاسم الاحتمالي (R이) للإحصاءات المرتبة لقيم الأخطاء المشاهدة (قابلية قيم

\[R_i, \frac{y_i - x_i}{\delta} = \log \left(\frac{\log(K_i + 1)}{n+1 - i} \right), \quad i = 1, 2, \ldots, n \] (70)

ويمت التقويم الأولي للرسمو البياني الاحتمالي فيمكن ذلك بقدر تراض وضع تلك النقاط بتقيب خطا مستقيماً قدر الإمكان وعصب يعطي نصساً في مطابقة التوزيع المفترض ، أما صياغة الإحصاءة (S_R) الخاصة باختبار الاسم الاحتمالي فهي:

\[S_R = 1 - r^2 (R_i, K_i), \quad i = 1, 2, \ldots, n \] (71)

حيث أن (R_i, K_i) تمثل معامل الارتباط بين R_i و K_i مع مقارنة قيمة R_i مع قيم جودية ومستوى معنوية [9 Smith and Bain].

4- التطبيقي الأول: زمن البقاء (Survival Times)

صد 처음 أي أن كان التوزيع المفترض للأخطاء هو التوزيع العلامة لبيانات تلك العينة.

الجانب التطبيقي

3-4- التطبيقي الأول: زمن البقاء

بعد مرض أبيضاض الدم (Leukaemias) مرضان التكاثر والأماز الشاذ في النجاة المتناقش للدم بسبب الزيادة التدريجية لمرشج تفاع غلذة ظلم، فهو ورم حبيش ينشأ عن اضطراب للخلايا المنتجة للدم التي تخضع لتغير جوهري بسبب منشأة من قيود طبيعية تفرض على قيم جودية ومستوى معنوية ويتضمن إلى أبيضاض الدم الحاد وابيضاض الدم المزمن و ذلك يطبق إلى الملاحظة السريرية للمرض والشوكاني (أي ما يتعلق بالذخان الشوكي) والمفاوية (متعلق بالنسج المفاوية) يطبق إلى حق الخلية السامة وأيضاض الدلم الفوسي (Acute L.) حيث يضم أبيضاض الدم الحاد (Acute Myelogeneous Leukemia) AML وابيضاض الدم المفاوية الحاد (Acute Lymphoblastic Leukaemia) ALL إلى سبعة أنواع تأخير الرموز من إلى M_1 إلى M_7 إلى ثلاثة أنواع هي L_1 (L_3) لامعاً ارتفاع الاسم الذي تسبب لابيضاض الدم لينظريات الاسمية التي تويدي على مستوى جزئي إلى تطور مرض اللوكيميا ويشكل ولكن هناك عدد من العوامل المساعدة التي يشير إليها كعوامل تعمل على تطور التيورمي وتأثيم الانشاع، المواد الكيميائية، الفيروسات. إسباب تعود إلى الاستعداد الآثاري للمرض والعوامل النفسية ويلاحظ أن أغنية المرض بهذا المرض يموتون كنتية للمرض ولن يوش من خلال المعالجة فجرات العلاج يمكن أن تساعد المريض على مجال الحياة ويساعد على أطالتها. يمكن أن يحدث المرض في أي عمر حيث أنه في الاطفال يكون حدوثه أكثر في السنت سنوات الأولى من العمر أما عند البالغين فيحدث في كل الأعمار وكذلك يحدث عند الاشخاص الكبير في السن.
تسجيل معاملات ومعيلة التقيس لأنموذج اندمار القبيه المتطرفة الخطية

(السعود الأول) وللقيم الكبيرة مع جانب تطبيقي

-1- الهدف من تجميع البيانات

إن استدلال جميع البيانات كان باخذ القالب الخاص بالمرضى الذين اثنوا على المراجعة أي المتوفر (1) (عينين الدم النقابي الحاد (2) إيضاح الدم المفبرقي الحاد للقطرة من 1985/10/20
386
إلى 1994/10/20. وذلك من عيانة أعمال الدم (مستضعف في مدينة الطيب) فتم توقيع المعلومات المطلوبة عن كل مريض من خلال استمارة الطلبة الخاصة بالمرضى من خلالها ترشيح
قائمة المريض وتاريخ التشخيص للمرض وفصول المراجعات المراجعات. وفي كل هذه المشاهدات (ALL) المشاهدة (عينين الدم النقابي الحاد (AML) و 43 مشاهدة (عينين الدم النقابي الحاد)

-2- ونوع من خلال هذه الدراسة والمعلومات الأخرى المذكورة في القالب تم اخذ المعلومات التالية عن كل مريض:

-3- WBC (نتيجة: عدة عينين الدم البيضاء)

-4- عند تشخيص المريض، كمية الخلايا المتهالكة (White blood cells)

-5- (من خلال هذه الدراسة، بعض نتائج النظام الاستقصائية عند تأثير المجتمعات خاصة بالبحث، وعند

-6- ملاحظات وعمليات أخرى تثبيت على المريض ووظائف

-7- (تتبيه: عدة عينين الدم البيضاء) ووظائف

-8- -1- تم استدلال الحالات التي لم تذكر معلومات كافية فيها عن تاريخ تشخيص المريض ولا توجد أي

-9- معلومات عن حالة المريض والفحوصات الخاصة به.

-10- تم تحديد زمن البقاء لكل مريض من خلال حساب الفترة من تاريخ بداية تشخيص المريض إلى تاريخ

-11- (أخذ نتائج الدراسات، إيضاح المريض لا تعني تاريخ دخوله إلى المستشفى أو بعد بالاعتماد على القالب الخاصة بالمرض). [1]

-12- تم أخذ عمال واحد من العوامل التي تؤثر في زمن البقاء وهو كمية كريات الدم البيضاء WBC .

-13- و بعد اختبارها تم (ALL,AML) وجبة عينة صورة عضوية وجسم مختلفة لكل حالة (AML)

-14- (لا امتباه) ويتراوح بين 22 مريضا مصابين بهذا المرض. (ALL)
4-1-2 التحليل الإحصائي

أولاً: أبيضاض الدم التقني الحاد (AML)

- مجتمع البحث: لقد شمل مجتمع البحث على 19 مريضا مصابا بمرض AML (الذين يمثلون أولاهم) وهو المتغير التابع (Y) الذي يمثل عدد الاصابات التي يعيشها المريض حتى الوفاة ومن خلال استخدام عدة تحويلات وجدنا أن أفضل تحويل كان باستخدام تحويل로그ارتمي والذي حقق التحويل

\[Y = \log(T) \]

الخاصة بما هي توزيع القيمة المتطرفة (حيث أن لوغرام تم توزيع زمن البقاء) والمتغير المستقل (X) يمثل لوغرام كريات الدم البيضاء للمريض والميزة

في الجدول رقم (1) وباتخذ العلاقة مابين المتغيرين بشكل خطأ سبيطة على وفق نموذج الانحدار الآتي:

\[Y_i = \beta_0 + \beta_1 (X_i \theta Z_i + X) \]

جدول رقم (1) بيانات زمن البقاء للمريض المصابين بمرض AML، يمثل لوغرام توزيع زمن البقاء (T) و X يمثل لوغرام كريات الدم البيضاء للمريض (Y)

<table>
<thead>
<tr>
<th>(\tau_i)</th>
<th>(Y_i)</th>
<th>(X_i)</th>
<th>(X_i \theta Z_i + X)</th>
<th>(\mu_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.857</td>
<td>3.968</td>
<td>4.338</td>
<td>1.5507</td>
<td>2.9063</td>
</tr>
<tr>
<td>12.857</td>
<td>2.554</td>
<td>3.989</td>
<td>0.424</td>
<td>2.0953</td>
</tr>
<tr>
<td>3.286</td>
<td>1.1897</td>
<td>3.415</td>
<td>-1.27366</td>
<td>2.56753</td>
</tr>
<tr>
<td>9.571</td>
<td>2.259</td>
<td>4.53</td>
<td>0.02401</td>
<td>2.23303</td>
</tr>
<tr>
<td>1.857</td>
<td>0.619</td>
<td>5.093</td>
<td>-1.32958</td>
<td>2.06413</td>
</tr>
<tr>
<td>3.857</td>
<td>1.3497</td>
<td>3.785</td>
<td>-1.02297</td>
<td>2.45653</td>
</tr>
<tr>
<td>31.143</td>
<td>3.439</td>
<td>4.029</td>
<td>0.97587</td>
<td>2.38333</td>
</tr>
<tr>
<td>23.143</td>
<td>3.142</td>
<td>5.086</td>
<td>0.99444</td>
<td>2.06623</td>
</tr>
<tr>
<td>25.143</td>
<td>3.225</td>
<td>3.23</td>
<td>0.55647</td>
<td>2.62303</td>
</tr>
<tr>
<td>110.143</td>
<td>4.702</td>
<td>3</td>
<td>1.85802</td>
<td>2.69202</td>
</tr>
<tr>
<td>274.286</td>
<td>5.614</td>
<td>3.914</td>
<td>2.95455</td>
<td>2.41783</td>
</tr>
<tr>
<td>4.429</td>
<td>1.488</td>
<td>4.248</td>
<td>-0.76691</td>
<td>2.31763</td>
</tr>
<tr>
<td>2.286</td>
<td>0.827</td>
<td>3.69</td>
<td>-1.53268</td>
<td>2.48503</td>
</tr>
<tr>
<td>8.286</td>
<td>2.115</td>
<td>4.628</td>
<td>-0.08193</td>
<td>2.20363</td>
</tr>
<tr>
<td>7.856</td>
<td>2.061</td>
<td>5.031</td>
<td>-0.02009</td>
<td>2.08273</td>
</tr>
<tr>
<td>3.143</td>
<td>1.145</td>
<td>4.537</td>
<td>-1.00383</td>
<td>2.23093</td>
</tr>
<tr>
<td>2.286</td>
<td>0.827</td>
<td>3.845</td>
<td>-1.4897</td>
<td>2.43853</td>
</tr>
<tr>
<td>2.143</td>
<td>0.762</td>
<td>4.601</td>
<td>-1.34013</td>
<td>2.21173</td>
</tr>
<tr>
<td>31.143</td>
<td>3.439</td>
<td>3.491</td>
<td>0.82667</td>
<td>2.54473</td>
</tr>
</tbody>
</table>
تقدير معاملات ومعادلة القياس لأنموذج أحاد القيمة المتطرفة الخطية

(النوع الأول) وللقيم الكبيرة مع جانب تطبيقي

- 2- لأجل التحقق من مدى صحة النموذج المفترض تم رسم الشكل البياني لمعرفة نوع العلاقة واتضح من

الشكل المرمّى (1) بنالعلاقة بين قيم Y مقابل قيم X علاقة خطية ويتبّح من الشكل المرمّى (2) أن العلاقة خطية

بين قيم Y مقابل قيم الانحرافات المتغير المستقل (X) ومن خلالها يتبّح بأن استخدام الانحرافات لا يؤثر في

نتائج النموذج ولكن فقط لغرض السهولة تؤخذ.

شكل (1) شكل الانتشار لقيم X مقابل قيم Y

شكل (2) شكل الانتشار لقيم X مقابل قيم الانحرافات لـ Y
تقدير معاملات ومعالجة القياس لأنموذج انحدار القيمة المتطرفة الخطية

(النوع الأول) وللقيم الكبيرة مع جانب تطبيقي

3- بعد أن تم افتراض والتحقق من ان الاختياء في النموذج المفترض تشكل على وفق توزيع القيمة المتطرفة:

\(f(z) = \exp \left\{ - (z + \gamma) - \exp(-z - \gamma) \right\} \), \(-\infty < Z < \infty \)

3-1 طريقة المربعات الصغرى: تقديرات OLS هي كالآتي:

\[\begin{align*}
\hat{\beta}_1 &= 2.35, \\
\hat{\beta}_0 &= 1.0913
\end{align*} \]

حيث أن \(\hat{\beta}_1 \) و \(\hat{\beta}_0 \) تمثل معاملات النموذج المفترض بينما \(\hat{\theta} \) تمثل معلمة القياس.

3-2 طريقة الأمكان الاعظم: على اعتبار ان طريقة OLS كتقدير أولي يستخدم في تقديرات الأمكان الاعظم (OLS) والمعتمدة على طريقة فشر والوضوح في الجانب النظري للبحث فإن تقديرات الأمكان الأعظم هي:

\[\begin{align*}
\hat{\beta}_0 &= 0.299997, \\
\hat{\beta}_1 &= 2.33708, \\
\hat{\theta} &= 1.08178
\end{align*} \]

3-3 معادلة الانحدار المقدرة:

\[X_i = 2.33708 - 0.299997 (Y_i X) \]

ويجب من خلالها بناء إضافة وحدة واحدة من X (كمية كريات الدم البيضاء) تقلل بمقدار Y (زمن البقاء) للمريض ويتضح من الشكل (6) خط الانحدار العينة لقيم X_i (الانحرافات) رقم (1) مقابل كمية Y_i (الانحرافات).

\[\hat{\beta}_1, \hat{\beta}_0 \]

شكل (6) خط الانحدار مع القيم التقديرية
4. اختبار الارسان الاحتمالي (P.P) للقيم المرتبة للاختياء المشاهدة وذلك لمعرفة فيما إذا كان هناك دليل

ضد توزيع القيمة المتطرفة للاختياء وذلك عن طريق استخدام الصيغة الآتية للاختياء المشاهدة:

\[R_i = (\tilde{Y}_i - \tilde{\beta}_0 - \tilde{\beta}_1 x_i) \]

حيث أن: \(R_i \) تمثل القيم المرتبة للاختياء المشاهدة (جدول رقم 1) مقابل قيمة \(K_i \)

\[K_i = -\log(\log(20/(20-i))) \]

ويطبق اقتراح اختبار الارسن الاحتمالي فأن:

\[r(R_i, K_i) = -0.921, \quad S_R = 0.151759 \]

وبمقارنة هذه القيمة مع القيم الجدولية ومستوى معنوية (0.05, 0.01)، كا = 19، والموجودة في جداول خاصة [9]، فإن الاختيار فأن القيم الجدولية هي (0.189, 0.271) ولعله فإن التوزيع المتغير للاختياء بعد التوزيع المتعمد لبيانات هذه الدراسة وذلك لأن القيم المستخرجة هي أصغر من القيم الجدولية.

5 - حدود الثقة: حدود الثقة التقديرية 95% لـ \(\beta_1 \) هي:

\[0.151759 \leq \beta_1 \leq 0.518767 \]

ويتضمن هذه النتيجة بأنه لا يوجد دليل واضح ضد الفرضية القائمة بـ \(\beta_1 = 0 \).

اما حدود الثقة 95% لـ \(\theta \) فتكون بين:

\[0.800965 \leq \theta \leq 1.665804 \]

ويتضمن من خلالها بأنه لا يوجد دليل ضد الفرضية القائمة بـ \(\beta_1 = 1 \).

6 - الكفاءة التقديرية: ظهرت لـ \(\beta_1 \) مساوية ل (0.57889) ولـ \(\theta \) مساوية ل (0.5057405) ومن خلال هذه القيم وهي أقل من الواحد الصحيح أي أن تدريجات الأمكان الإجمالي أكثر كفاءة من تدريجات المربعات الصغرى الاحتمالية في تقدير معلم النموذج.

ثانيا: إضافة الدم للمفاوي الحاد (ALL)

1 - مجتمع البحث: لقد شمل مجتمع البحث على 22 مريضا مصابا بمرض (ALL) الذي تمثل قراءته

ببعين أولهما هو المتغير التابع (Y) الذي يمثل عدد الأسباب التي يعيشها المريض حتى الوفاة ومن خلال استخدام عدة تحويلات للبيانات وجدنا ان أفضل تحويل كان باستخدام التحويل اللوغاريتي والذي حقق الإحالة الخاصة بنا وهي توزيع القيمة المتطرفة (حيث أن يمثل اللوغرامي زمن البقاء) والمتغير المستقل (X) وتمثل نمط تدريج الدم البيضاء للمريض والمبينة في الجدول رقم (2) وباتباع علاقة مابين المتغيرين بشكل خطئي سبسط على وفق نموذج

الإحالة الآتية:

\[Y_i = \beta \theta Z_i (X_i + \tilde{\beta}_1 X_i - \tilde{\beta}) x_i, \quad i = 1, 2, ..., 22 \] (73)
تقدير معاملات ومعلامة القياس لأنموذج انحدار القبحة المتطرفة الخطية

(النوع الأول) وللقيم الكبيرة مع جانب تطبيقي

جدول رقم (2) بيانات أزمة البقاء للمرضى المصابين بمرض ALL يمثل لوغاراتم توزيع زمن البقاء، يمثل لوغاراتم كربات الدم البيضاء

<table>
<thead>
<tr>
<th>x_i</th>
<th>y_i</th>
<th>X_i</th>
<th>$\hat{\beta}_i$</th>
<th>R_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.857</td>
<td>3.492</td>
<td>4.538</td>
<td>3.43777</td>
<td>0.07356</td>
</tr>
<tr>
<td>18.714</td>
<td>2.929</td>
<td>4.633</td>
<td>3.3728</td>
<td>-0.60201</td>
</tr>
<tr>
<td>79.571</td>
<td>4.377</td>
<td>4.238</td>
<td>3.64294</td>
<td>0.99575</td>
</tr>
<tr>
<td>16.143</td>
<td>2.781</td>
<td>3.987</td>
<td>3.81459</td>
<td>-1.40207</td>
</tr>
<tr>
<td>64.571</td>
<td>4.168</td>
<td>3.462</td>
<td>4.17634</td>
<td>-0.00765</td>
</tr>
<tr>
<td>69.857</td>
<td>4.246</td>
<td>4.528</td>
<td>3.44461</td>
<td>1.08709</td>
</tr>
<tr>
<td>34.571</td>
<td>3.543</td>
<td>5.74</td>
<td>2.61573</td>
<td>1.25784</td>
</tr>
<tr>
<td>5.143</td>
<td>1.638</td>
<td>5.301</td>
<td>2.91596</td>
<td>-1.73355</td>
</tr>
<tr>
<td>26.143</td>
<td>3.264</td>
<td>4.447</td>
<td>3.5</td>
<td>-0.32014</td>
</tr>
<tr>
<td>54.429</td>
<td>3.9969</td>
<td>4.747</td>
<td>3.29484</td>
<td>0.95235</td>
</tr>
<tr>
<td>12.857</td>
<td>2.554</td>
<td>3.778</td>
<td>3.95753</td>
<td>-1.90388</td>
</tr>
<tr>
<td>10.857</td>
<td>3.385</td>
<td>4.303</td>
<td>3.59848</td>
<td>-1.64609</td>
</tr>
<tr>
<td>121.571</td>
<td>4.8</td>
<td>4.076</td>
<td>3.75373</td>
<td>1.41927</td>
</tr>
<tr>
<td>29.286</td>
<td>3.377</td>
<td>5.301</td>
<td>2.91596</td>
<td>0.6254</td>
</tr>
<tr>
<td>37.714</td>
<td>3.63</td>
<td>3.602</td>
<td>4.07789</td>
<td>-0.60757</td>
</tr>
<tr>
<td>64</td>
<td>4.159</td>
<td>3.375</td>
<td>4.23314</td>
<td>-0.10057</td>
</tr>
<tr>
<td>38.286</td>
<td>3.645</td>
<td>4.923</td>
<td>3.17447</td>
<td>0.63827</td>
</tr>
<tr>
<td>61.857</td>
<td>4.125</td>
<td>3.756</td>
<td>3.97257</td>
<td>0.20676</td>
</tr>
<tr>
<td>89.571</td>
<td>4.495</td>
<td>3.934</td>
<td>3.85084</td>
<td>0.8738</td>
</tr>
<tr>
<td>11</td>
<td>2.398</td>
<td>4.722</td>
<td>3.31193</td>
<td>-1.23975</td>
</tr>
<tr>
<td>126.857</td>
<td>4.843</td>
<td>3.301</td>
<td>4.28375</td>
<td>0.75863</td>
</tr>
<tr>
<td>35.571</td>
<td>3.572</td>
<td>3.806</td>
<td>3.93838</td>
<td>-0.49699</td>
</tr>
</tbody>
</table>
تقدير معاملات ومعالجة القياس لنموذج انحدار القبضة المتطرفة الخطي

(النوع الأول) وللقيم الكبيرة مع جانب تطبيقي

1- لا لم يتم اقتراح ان الاخطاء في النموذج المفترض تتساوى وفق توزيع القبضة المتطرفة (النوع الأول) وللقيم الكبرى والمتطلبة ببدالة الكثافة الاحتمالية التالية:

\[f(z) = \exp\{- (z+\gamma) - \exp(- (z+\gamma))\} \quad -\infty < z < \infty \]

2- طريقة المربعات الصغرى: القيادات OLS هي كالآتي:

\[\hat{\beta}_0 = 3.56 \quad \hat{\beta}_1 = 0.608861 \]

3-2- طريقة الامكان الأعظم: كتكرار اولي يستخدم في تقديرات الامكان الأعظم OLS والمعتمدة على طريقة فشر والموضحة في الجانب النظري لبحث تقديرات الامكان الأعظم هي:

\[\hat{\beta}_0 = 3.60371 \quad \hat{\beta}_1 = -0.683894 \quad \hat{\theta} = 0.737193 \]

3-3- معادلة الانحدار المقدرة:

\[\hat{\gamma} = 0.683894 \quad (\hat{\gamma}X_i - \bar{X}) \]

ويتضمن من خلالها على بعد وحدة واحدة من x (كمية كربات الدم البيضاء) تقلل بمقدار (0.683894) من زمن البقاء للمريض.

شكل (3) شكل الانشار لقيم Y مقابل قيم X

المجلة الاقتصادية والإدارية، العدد 68، المجلد 18
تقدير معاملات ومعطيات القياس لنموذج احتمال احترام القوة المتطرفة الخطية

4. اختر الرسم الاحتمالي (P.P) للقيم المرتبة للاختبارات المشاهدة وذلك لمعرفة فيما إذا كان هناك دليل
ضد توزيع القيمة المتطرفة للإختبار وذلك عن طريق استخدام الصيغة التالية للإختبار المشاهدة.

\[R_i = (\hat{y}_i - \hat{\beta}_1 x_i) \]

حيث أن تمثل القيم المرتبة للإختبار المشاهدة (دوجدل رقم2) مقابل قيم \(R_i \) حيث أن:

\[K_i = - \log(\frac{\log(23/23 - i)}{23/23 - i})) \]

بتطبيقاً لاختبار الرسم الاحتمالي فإن:

\[r(\alpha) = 0.982 \quad S_R = 0.035676 \]

وبمقارنة هذه القيمة مع القيم الجدولية ومستوى معنوية (0.05, 0.01) = 22، ووجدت القيمة المشاهدة في كامل
المواصفات [9]، في هذا الاختبار فان القيمة الجدولية هي (0.189, 0.271) = 0.08، وعندما فان التوزيع المفترض
للاختبار بعد التوزيع المآتيم لبيانات هذه الدراسة وذلك لأن القيمة المستخرجة هي أصغر من القيم الجدولية.

5. حدد الثقة: حدود الثقة التكرارية 95% لـ \(\beta_1 \) هي:

\[1.1870473 \leq \beta_1 \leq 1.1870470 \]

ويضح من هذه النتيجة بأنه لا يوجد دليل واضح ضد الفرضية القائمة بناء 0 = \(\beta_1 \).
اما حدود الثقة 95% لـ:

\[0.5560297 \leq \theta \leq 1.0934594 \]

ويضح من خلالها بناء لا يوجد دليل ضد الفرضية القائمة بناء 1 = \(\theta \).

6. الكفاءة التقديرية: ظهرت لـ \(\beta_1 \) فاصلة 0.810 = 0.810 و 0.891 من خلال هذه القيم
والوحي أقل من الواحد الصحيح أي أن تقديرات الامكانيات الاكثر كفاءة من تقديرات المربعات الصغرى
الاعتادية في تقدير معالم النموذج.

4-2-2-2 التطبيق الثاني: درجات الحرارة العظمى: للفلضة تأثير عميق في مختلف أوجه النشاط الإنساني، وقد
تعزى العراق لموجات من الحر الشديد باللغة الآتية خلال السنوات الماضية في مختلف مناطق القطر وعلى
الخصوص في محافظة بغداد، وتزايد هذه الزيادة في درجات الحرارة إلى تنشيط جملة عمود منها الظروف
الإضافيية المحلية وتاثيراتها في إعاقة حركة النقل الهوائي وعلى توزيعات درجة الحرارة وتاثيرات
العوارض الجوية والأوقات، وطبيعة تكوين مطحنة الفرصة وجود المراقبات المائية ومصدر المياه الموزعة في
مختلف المناطق إضافة إلى بعض التأثيرات الناتجة عن الفعاليات البشرية، إن صفة النشأة لهذا التأثيرات
كانت حافزاً لتعطى هذا الموضوع اهتماماً كبيراً وذلك للاحتمالية الكبيرة في تكرار مثل هذه الحادثات المميزة
والخطرة في المستقبل والتي قد تعرض العراق لأضرار مختلفة في الامكانيات تلقيها وذلك من خلال تهيئة
الوسائل اللازمة والوسائل المستخدمة لاعداد التنبؤات الجوية الصافية لدرد الأضرار والانحراف ومن هنا جاء
أهمية هذا التطبيق.
تقييم معامد ومعالفة القياس لنموذج انحدار القبضة المترتبة الخطي

(النموذج الأول) والتقييم الجيد مع جانب تطبيقي 4-2-1 درجة الحرارة العظمى: تعرف الحرارة بأنها نوع من أنواع الطاقة وهي كمية الطاقة المتقلبة في جسم تعرف من درجة حرارة متجمعة من الدرجات الحرارية المعدلة على الحرارة الحرارية المخفضة والمصدر الرئيسي لها. وهو أحد نواحي الطقس وهمها (نواحي الطقس هي الإشعاع الشمسي والحركة والضخ ورياح ورطوبة). ويوجد نظام لقياسها الأول النظام المحدود (السليبيسوس) المتبنا في الهيئة العامة للإترنت الدولية وفيه، نقطة القبضة هي درجة الماء مو. ونقطة الجليد (نقطة الثلج). أما درجة الحرارة العظمى فهي أعلى درجة حرارة بينها الهواء السطحي خلال اليوم الواحد. وتحدد قبل شروط الشمس يناف وناء عامل كثير تؤثر في درجة حرارة تتعلق من خلال منطقة من حيث خطوط العرض، توزيع الارتفاع، وتدفق التيار المحيط، ويدر من الساحل والبضائع الأخرى. تتأثر عملياً من قاعدة الإنسان، التي لاحصر لها. وقد تم التأكد على عصر مختلفة من عناصر الطقس التي تتأثر بكافة العوامل وتترب تبورة في درجة الحرارة، وهي شدة الإشعاع الشمسي والعتاد الغير، حيث أن كمية الإشعاع الشمسي الدالة للهواء السطحي. في فصل الشتاء بالإضافة إلى الظروف الجوية المتغيرة، إذا ووجود الغيوم أو الغبار والشمسية الأخرى. وهم كمية الطاقة للسهرات لكل سم². والصاع 1 سم². (1 سعة سم²=163 ملم٠ واط/سم²) أي أن كل سنتيمتر مربع من سطح الأرض يكتب طاقة إشعاع (Clodness) تساوي 1 سعة أو ما مقداره 163 ملم٠ واط. أما كمية التغليك (OKTA) (وأو) (والمقصود بها أن السماء تقسم إلى 8 أقسام، إذا كانت طبقاً بالغيوم تكون (8/4). وهكذا الحساب الآخر هو أن أسماء إما صافية أو غامقة أو غامقة جزئياً ويتم تضمين ذلك على وفق الاتصالية عن كمية الغيوم أقل من 1.6، غامقة كمية الغيوم أكثر من 6.5 وغامقة جزئياً. كمية الغيوم 1.6 إلى 6.5.

394

394

394

394

394

394

394
تقدير معاملات ومعلمات القياس لأنموذج انحدار القبعة المترطة الخطي

(النوع الأول) وللقيم الكبرى مع جانب تطبيقي

جدول رقم (3) الصيغة النهائية لبيانات درجات الحرارة العظمى، شدة الإشعاع الشمسي والغطاء الغيتي التي استخدمت في التحليل

<table>
<thead>
<tr>
<th>السنوات</th>
<th>الفصول</th>
<th>درجات الحرارة العظمى</th>
<th>شدة الإشعاع الشمسي</th>
<th>الغطاء الغيتي</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>1</td>
<td>60.9</td>
<td>1311.9</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>104.4</td>
<td>2065.6</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>127.3</td>
<td>2120.2</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>70.8</td>
<td>1154.4</td>
<td>7.9</td>
</tr>
<tr>
<td>1972</td>
<td>1</td>
<td>50.1</td>
<td>1175.2</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>104.2</td>
<td>1987</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>126.6</td>
<td>2074.9</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>73.4</td>
<td>1148.6</td>
<td>8</td>
</tr>
<tr>
<td>1973</td>
<td>1</td>
<td>61.2</td>
<td>1370.7</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>105.4</td>
<td>2189</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>127.8</td>
<td>2048</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>74.3</td>
<td>1190.7</td>
<td>6.6</td>
</tr>
<tr>
<td>1974</td>
<td>1</td>
<td>49.3</td>
<td>1120.3</td>
<td>12.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>104</td>
<td>2144</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>124.2</td>
<td>1971.8</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>75.9</td>
<td>1118.6</td>
<td>7.5</td>
</tr>
<tr>
<td>1975</td>
<td>1</td>
<td>54</td>
<td>1239.5</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>107.7</td>
<td>1887.4</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>127.1</td>
<td>2004.9</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>71.1</td>
<td>1153.2</td>
<td>7.2</td>
</tr>
<tr>
<td>1976</td>
<td>1</td>
<td>52.8</td>
<td>1041.9</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>104.1</td>
<td>1764.4</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>122</td>
<td>1822.7</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>78.4</td>
<td>953.1</td>
<td>9.1</td>
</tr>
<tr>
<td>1977</td>
<td>1</td>
<td>59.4</td>
<td>1059.5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>106.5</td>
<td>2079.8</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>128.2</td>
<td>2091.4</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>70.1</td>
<td>1090.2</td>
<td>8.1</td>
</tr>
<tr>
<td>1978</td>
<td>1</td>
<td>62.5</td>
<td>1261.5</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>107.3</td>
<td>2094.9</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>125.5</td>
<td>1982.9</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>73.9</td>
<td>1077</td>
<td>7.8</td>
</tr>
<tr>
<td>1979</td>
<td>1</td>
<td>62.7</td>
<td>1154.8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>108.4</td>
<td>1947.9</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>129</td>
<td>1921</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>77.3</td>
<td>1038.1</td>
<td>8.9</td>
</tr>
<tr>
<td>1980</td>
<td>1</td>
<td>55.5</td>
<td>1147.9</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>107.6</td>
<td>2027.2</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>125.7</td>
<td>1994.7</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>73.2</td>
<td>1061.8</td>
<td>8.9</td>
</tr>
</tbody>
</table>
تقدير معاملات ومعلمة القياس لأنموذج انحدار القيمة المتطرفة الخطية (النوع الأول) وللقيم الكبرى مع جانب تطبيقي

1- عينة البحث : لقد شملت عينة البحث 40 مشاهدة تمثل المجاميع الفصلية لثلاثة متغيرات اولها هو المتغير
التابع \(Y_i \) الذي يمثل المجاميع الفصلية لدرجات الحرارة العظمى والمتغير المستقل الأول \(X_{1i} \) ويمثل المجاميع
الفصلية لكمية الإشعاع الشمسي والمتغير المستقل الثاني \(X_{2i} \) ويمثل المجاميع الفصلية لكمية الغيوم .وحيث
ان تحليل الانحدار يتطلب بعض الأجراءات وخاصة في اختيار النموذج المقترح ومن أجل ذلك تم اقراح عدة
نماذج واجراء الاختبار عليها وتبين بان أفضل نموذج يلائم بياناتنا هو النموذج الاساسي التالي :
\[
Y_i = \exp(\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}) \cdot 0Z_i \quad (i = 1,2,\ldots,40)
\]
وذلك من خلال معامل التحديد ومتوسط مربع الخطا حيث أن :
ويمكن تحويل النموذج إلى الصيغة الخطية باخذ اللوغاراتط الطبيعي لطرفيه فنتجه :
\[
\ln Y_i = \ln(\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}) + \ln(0Z_i)
\]
والجدول رقم (4) يوضح بيانات درجات الحرارة العظمى ل40 فصل مع القيم المعيارية للمتغيرات المستقلة
وبعض المقاييس المهمة التي يشار إليها خلال الفقرات القادمة.
تقدير معاملات ومعله القياس لأنموذج انحدار القمي المتطرفة الخطي

(النوع الأول) وللمقي المتطرفي مع جانب تطبيقي

جدول رقم (4) درجات الحرارة ل 40 فصل مع القمي المتطرفة للمتغيرات المستقلة وبعض المقاييس المهمة

<table>
<thead>
<tr>
<th>Log τ</th>
<th>x_a</th>
<th>x_s</th>
<th>R_i</th>
<th>\bar{R}_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10923</td>
<td>-0.59595</td>
<td>0.98495</td>
<td>-0.71389</td>
<td>4.18593</td>
</tr>
<tr>
<td>4.64823</td>
<td>1.09702</td>
<td>0.19643</td>
<td>-0.00302</td>
<td>4.64855</td>
</tr>
<tr>
<td>4.84655</td>
<td>1.21966</td>
<td>-1.69039</td>
<td>-1.31821</td>
<td>4.98817</td>
</tr>
<tr>
<td>4.25986</td>
<td>-0.94973</td>
<td>0.42172</td>
<td>0.45432</td>
<td>4.21105</td>
</tr>
<tr>
<td>3.91402</td>
<td>-0.90301</td>
<td>1.18208</td>
<td>-1.66564</td>
<td>4.09297</td>
</tr>
<tr>
<td>4.64631</td>
<td>0.92046</td>
<td>0.67517</td>
<td>1.04563</td>
<td>4.53397</td>
</tr>
<tr>
<td>4.84103</td>
<td>1.11791</td>
<td>-1.35246</td>
<td>-0.6583</td>
<td>4.91176</td>
</tr>
<tr>
<td>4.29592</td>
<td>-0.96276</td>
<td>0.44988</td>
<td>0.85754</td>
<td>4.20379</td>
</tr>
<tr>
<td>4.11415</td>
<td>-0.46388</td>
<td>0.33723</td>
<td>-1.9169</td>
<td>4.32009</td>
</tr>
<tr>
<td>4.65776</td>
<td>1.3742</td>
<td>-1.47945</td>
<td>-1.47072</td>
<td>4.81577</td>
</tr>
<tr>
<td>4.85047</td>
<td>1.05748</td>
<td>-1.63407</td>
<td>-0.89915</td>
<td>4.94707</td>
</tr>
<tr>
<td>4.30811</td>
<td>-0.86819</td>
<td>0.05562</td>
<td>0.18511</td>
<td>4.28822</td>
</tr>
<tr>
<td>3.89792</td>
<td>-1.02633</td>
<td>1.80163</td>
<td>-0.6265</td>
<td>3.96523</td>
</tr>
<tr>
<td>4.64439</td>
<td>1.27312</td>
<td>-0.14151</td>
<td>-0.88517</td>
<td>4.73949</td>
</tr>
<tr>
<td>4.82189</td>
<td>0.88632</td>
<td>-1.54959</td>
<td>-0.72234</td>
<td>4.8995</td>
</tr>
<tr>
<td>4.32942</td>
<td>-1.03015</td>
<td>0.30907</td>
<td>1.07255</td>
<td>4.21419</td>
</tr>
<tr>
<td>3.98898</td>
<td>-0.75858</td>
<td>0.59069</td>
<td>-2.1514</td>
<td>4.22012</td>
</tr>
<tr>
<td>4.67935</td>
<td>0.69674</td>
<td>0.22459</td>
<td>1.05827</td>
<td>4.56565</td>
</tr>
<tr>
<td>4.84497</td>
<td>0.96067</td>
<td>-1.43694</td>
<td>-0.46728</td>
<td>4.89518</td>
</tr>
<tr>
<td>4.26409</td>
<td>-0.95243</td>
<td>0.22459</td>
<td>0.1916</td>
<td>4.2435</td>
</tr>
<tr>
<td>3.96651</td>
<td>-1.20243</td>
<td>1.06943</td>
<td>-0.80807</td>
<td>4.05333</td>
</tr>
<tr>
<td>4.64535</td>
<td>0.42046</td>
<td>0.30907</td>
<td>1.37573</td>
<td>4.49755</td>
</tr>
<tr>
<td>4.80402</td>
<td>0.55141</td>
<td>-1.63407</td>
<td>-0.41131</td>
<td>4.84821</td>
</tr>
<tr>
<td>4.36182</td>
<td>-1.40189</td>
<td>0.75966</td>
<td>2.75175</td>
<td>4.06619</td>
</tr>
<tr>
<td>4.08429</td>
<td>-1.1629</td>
<td>1.01311</td>
<td>0.12866</td>
<td>4.07047</td>
</tr>
<tr>
<td>4.66815</td>
<td>1.12891</td>
<td>0.02746</td>
<td>-0.13876</td>
<td>4.68305</td>
</tr>
<tr>
<td>4.85359</td>
<td>1.15497</td>
<td>-1.77488</td>
<td>-1.26657</td>
<td>4.98967</td>
</tr>
<tr>
<td>4.24992</td>
<td>-1.09394</td>
<td>0.47804</td>
<td>0.71173</td>
<td>4.17346</td>
</tr>
<tr>
<td>4.13517</td>
<td>-0.70916</td>
<td>0.67517</td>
<td>-0.74904</td>
<td>4.21564</td>
</tr>
<tr>
<td>4.67563</td>
<td>1.16283</td>
<td>-0.19783</td>
<td>-0.48159</td>
<td>4.79737</td>
</tr>
<tr>
<td>4.03231</td>
<td>0.91126</td>
<td>-1.71855</td>
<td>-0.93387</td>
<td>4.93264</td>
</tr>
<tr>
<td>4.30271</td>
<td>-1.12359</td>
<td>0.39356</td>
<td>1.12545</td>
<td>4.1818</td>
</tr>
<tr>
<td>4.13836</td>
<td>-0.94883</td>
<td>1.01311</td>
<td>0.2427</td>
<td>4.11229</td>
</tr>
<tr>
<td>4.68583</td>
<td>0.83264</td>
<td>0.42172</td>
<td>1.17846</td>
<td>4.55922</td>
</tr>
<tr>
<td>4.85981</td>
<td>0.77221</td>
<td>-1.23981</td>
<td>0.32045</td>
<td>4.82538</td>
</tr>
<tr>
<td>4.34769</td>
<td>-1.21097</td>
<td>0.70333</td>
<td>2.18537</td>
<td>4.11291</td>
</tr>
<tr>
<td>4.01638</td>
<td>-0.96433</td>
<td>1.46369</td>
<td>-0.16285</td>
<td>4.03388</td>
</tr>
<tr>
<td>4.67842</td>
<td>1.01076</td>
<td>-0.08519</td>
<td>-0.0037</td>
<td>4.67822</td>
</tr>
<tr>
<td>4.8339</td>
<td>0.93776</td>
<td>-1.54959</td>
<td>-0.70412</td>
<td>4.90955</td>
</tr>
<tr>
<td>4.2932</td>
<td>-1.15773</td>
<td>0.70333</td>
<td>1.58131</td>
<td>4.12331</td>
</tr>
</tbody>
</table>
تقدير معاملات ومعطيات القياس لأنموذج انحدار القيمة المتطرفة الخطي
(النوع الأول) وللقيم الكبير مع جانب تطبيقي

2- لاجل التحقق من مدى صحة النموذج المفترض فقد تم رسم الشكل البياني لمعرفة نوع العلاقة ويتضح من الشكل (3) و(4) بان العلاقة خطية بين قيم Y_i مقابل كل من X_{i1} و X_{i2}.

الشكل (3) شكل الانتشار لقيم $Log Y_i$ مقابل X_{i1}

الشكل (4) شكل الانتشار لقيم $Log Y_i$ مقابل X_{i2}
تقدير معاملات ومعالفة القياس لأنموذج انحدار القيمة المتطرفة الخطي (النوع الأول) وللفئتين الكبيرين مع جانب تطبيقي

3- اختبار فرضية تجانس التباين: تم استخدام اختبار بارلبين لاختبار فرضية تجانس التباين وظهرت
القيمة المحتملة (0.0180972) ومقارنتها بقيمة \(Z \) الجدولية عند مستوى معنوية (0.05) ودرجة
حرية 1 والتي تساوي (3.841) نجد أن القيمة المحتملة أصغر من قيمتها الجدولية وعليه لا يوجد
دليل ضد فرضية التجانس التي تنص على ثبات تجانس تباين الخطا.

4- بعد أن تم اقتراح أن الاختفاء في النموذج المتغير تشكل على وفق توزيع القيمة المتطرفة (النوع الأول)
وللفئتين الكبيرين المماثلة بذالة الكثافة الاحتمالية التالية:

\[
f(z) = \exp\{- (z + \gamma) - \exp(- (z + \gamma))\}, \quad -\infty < Z < \infty
\]

أ. طريقة المربعات الصغرى: تقديرات \(\text{OLS} \) هي كالتالي:

\[
\begin{align*}
\hat{\beta}_0 &= 0.169, \quad \hat{\beta}_1 = 4.46, \quad \hat{\beta}_2 = -0.149, \quad \hat{\theta} = 0.0888498
\end{align*}
\]

حيث أن \(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2 \) تمثل معاملات النموذج المفترض بينما
تمثل \(\hat{\theta} \) ممثل معلمة القياس.

3-3- معادلة الانحدار المقدرة:

\[
\hat{Y}_i = 4.46712 + 0.195341X_{i1} - 0.167296X_{i2}
\]

ويتضمن من خلالها أن إضافة وحدة واحدة من
(كمية كريات الإشعاع الشمسي) تزيد بمقدار (0.195)
(درجة الحرارة العظمى) وعاء إضافة وحدة واحدة من
(كمية الغيوم) تقلل بمقدار (0.167) من
قيمة \(Y \) (درجة الحرارة العظمى) .

5- اختبار الرسم الاحتمالي (P.P) للقيم المترتبة للإختفاء المشاهدة وذلك لمعرفة فيما إذا كان
هناك دليل ضد توزيع القيمة المترتبة للإختفاء وذلك عن طريق استخدم النمذجة التالية للإختفاء المشاهدة.

\[
R_i = (\hat{\theta}^{-1}Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{i1} - \hat{\beta}_2 X_{i2})
\]

حيث أن

\[
K_i = -\log(\log(41 / (41 - i)))
\]

وتطبيقاً لاختبار الرسم الاحتمالي فإن

\[
r (R_{(i)}, K_i) = -0.952, \quad S_R = 0.0940737
\]

وبمقارنة هذه القيم مع القيم الجدولية ومستوى معنوية
n=40، \(\alpha = 0.05(0.01) \) wäre درجة
جداول خاصة بهذا الاختبار فإن القيم الجدولية هي (0.147,0.225) وعليه فإن التوزيع المفترض للإختفاء بعد
التوزيعات المثلى لبيانات هذه الدراسة وذلك لأن القيم المستخرجة هي أصغر من القيم الجدولية.
5 - حدد تقييم القيمة المترتبة على طاقة الأجسام

\[0.161027 \leq \beta_1 \leq 0.229655 \]

ويتضمن من هذه التوجيهات بناء 두مل دليل واضح ضد الفرضية القياسية. أما حدد الفضلية التقريرية

\[\beta_1 = 0 \]

باعتبارها تأمل مقدار التفيف في المتغير المحدد الماثي في التفيف بوحدة واحدة مثال في المتغير المستقل الثاني الذي يمثل كمية الجحيم هي:

\[0.2016099 \leq \beta_2 \leq 0.132982 \]

ويتضمن من هذه التوجيهات بناء 두مل دليل واضح ضد الفرضية القياسية. أما حدد الفضلية التقريرية

\[\theta = 0.086528 \leq \theta \leq 0.1416672 \]

ويتضمن من خلالها بأنه يوجد دليل واضح ضد الفرضية القياسية.

6 - kafkaة التقريرية: دورة لـ \(\hat{\beta}_j \)

وقد خروج هذه القمية وهي أقل من الواد الصناعي أي أن تقريرات الامكان الاجتماع أكثر كفاءة

من تقريرات الامكانيات الصغرى الاعتيادية في تقديم ملائم الملاحظات.

- الاستنتاجات والنتيجة

5 - الاستنتاجات: من خلال سلوك الاختياء على وقفة توزيع القيمة المترتبة (النوع الأول) وللمصير الكوري

- لأجل الإنتاج الجسم: دوام البياض - دوام البياض المتقترح كان هو النموذج المناسب وكذلك من خلال رسم قيم

\(X \) مقابل قيم

\(Y \) من خلال استخدام اختبار الاسم الاصتالي تبين أنه ليس هناك أي دليل ضد التوزيع المفترض للاختلاف.

- هو توزيع القيمة المترتبة (النوع الأول) وللمصير الكوري.

- من خلال استخدام الصيغة حدد الفضلية لـ \(\hat{\beta}_1 \) و \(\hat{\beta}_2 \) أتضح:

- وانغماس الدم التلقائي الحاد (AML): أنه لا يوجد دليل واضح ضد الفرضية القياسية.

- أن المتغير المستقل (كمية كريات الدم البيضاء) لا تؤثر في زمن البقاء للمريض (وقد ات ابتداء هذه الحالة

بائه كمية كريات الدم البيضاء صحيح يعد عاملا من العوامل التي تؤثر في مرض التولهميا ولكن تأثيرها

بختلف حسب أنواع الفرض وكذاك كاذب أن زيادة كمية كريات الدم البيضاء إيجابي دائما إما أن تكون

سيئا في بعض الحالات تكون أصلا كمية كريات الدم في مدة الكرات في هذه الحالة تقل 100 كيلو متر من

دم فقط وهذه النسبة قليلة جدا بالمقارنة مع النسبة الطبيعية التي تراقب بين (4000 - 11000) كريات

بيضاء ولكن في حالة زيادة كمية كريات الدم البيضاء وفي الوقت نفسه كمية كريات المهمة فإن الحالة

ستكون هذا تريدة جدا وتتعدد مما لو حسب من خلال هذه الجريمة أجري الفحص للمريض الذين تفزوا.

ولو انتمضي أنه لا يوجد دليل ماسة ضد الفرضية القياسية. "

- أمام الدم النمائي الحاد (ALL): أن هناك دليل واضح ضد الفرضية القياسية.

- المتغير \(X \) الذي يمثل كمية كريات الدم البيضاء له تأثير عكس في زمن البقاء للمريض

وأما أن يوجد التوضيح الذي ذكر في حالة أبيض الدم البيني الحاد ولو انتمضي أنه لا يوجد دليل

- واضح ضد الفرضية القياسية. "

- من خلال قيم الكفاءة المترتبة لكل من

- متغيرات الامكانيات الصغرى الاعتيادية في تقديم ملائم الملاحظات.

- ثانيا: (بدلا من الجانب الحالة (ترادس الحاضر العملي))

- إن النموذج الاستمراري كان هو النموذج المناسب (من خلال محاولة التحليل وتمثيل مربع الخطا)

- لا يمكن أن يكون هناك علاقة طائرة بين المتغيرين.

- من خلال اختبارات اختبار فرضية تجاس التباين تبين أنه لا يوجد دليل ضد الفرضية التي تنفصل

على ثبات تجاس تباين الخطا.
تقدير معاملات ومعطيات التنبؤ لنموذج انحدار القيمة المتطرفة الخطي

(النموذج الأول) وللقيمة الكبرى مع جانب تطبيق

3- من خلال استخدام اختبار الرسم الاحتمالي بينه لا يوجد أي دليل ضد التوزيع المتغير للخطيئة وهو توزيع القيمة المتطرفة (النموذج الأول) وللقيمة الكبرى.

4- من خلال معالجة الانحدار المتدرجه تضح بأن هناك علاقة طردية بين درجة الحرارة العظمى وشدة الإشعاع الشمسي وعلاقة عكسية بين درجة الحرارة العظمى وكمية الغيوم ومن خلال استجابة القيم المقدرة 0 beta4 1= β1.

5- من خلال استخدام حذف الثقة لβ1، β2 = 0

6- من خلال ملاحظة نتائج تطبيق الكفاءة التقديرية تضح بأن تقديرات الامكان الاعظم أكثر كفاءة في تقدير معالم النموذج من طريقة المربيات الصغرى.

7- النتوصات:

ثانياً: الجانب التطبيقي:

1- الجانب الطبي: إن تعمل دراسة ممثلة تناول الوعوم الأساسية جميعها التي تؤثر في المرض كنموذج انحدار متعدد وهذه الوعوم ذكرت أغلبها ضمن فئة (جمع البيانات الخاصة بالبحث) أو إن تمت دراسة بشكل مباشر على المرضي وإن تراعي طردية الوقاية مثلاً تحدث ثلاث أو أربع سنوات وهذه الوعوم فائضها أكثر للحصول على القيمة المعتمدة المتสั่งซื้อةي بالمرض من المرض مباشرة لتفادي أي خطأ يمكن أن يقع فيه الباحث.

2- جانب المناخ (دراج الحالة العظمى): إن تعمل دراسة ممثلة تدرس أولاً الوعوم التي تثر في الانخاع الشمسي مثل الغبار والمواد العالية الأخرى والتي تثر بالتنايل في درجة الحرارة وكل هذه الوعوم مقاسة بالانصاف (Albedo) ومن جانب آخر من ضمن الوعوم التي تثر في درجة الحرارة من يؤخذ عامل الانكساس السطح، فطبيعة الأرض سواء كانت مزروعة أم لا رطبة أم جافة رملية أم صخرية وكذلك لونها كل هذا يؤثر في درجة الحرارة وفي هذه الحالة تعمل دراسة ميدانية لتلخيص هذا العامل للمنطقة المراد وضع الدراسة حولها وهذه الوعوم يمكن أن تقاس من قبل الأدوية الجوية.
تقدير معامالات ومعملة القياس لنموذج انحدار القيمة المتطرفة الخطى
(النوع الأول) وللقيم الكبرى مع جانب تطبيقي

المصادر
1- العزاوى، فاطمة جاسم محمد (تقدير معامالات ومعملة القياس لنموذج انحدار القيمة المتطرفة الخطى) (النوع الأول) وللقيم الكبرى، رسالة ماجستير، كلية الإدارة، جامعة بغداد، 1995.
2- العزاوى، فاطمة جاسم محمد (أهمية استخدام نموذج انحدار القيمة المتطرفة مع جانب تطبيقي)، بحث منشور، (مجلة وقائع المؤتمر السنوي الخامس للتخطيط والتسمية)، هيئة التخطيط، 2001.
3- الطواش، ميسون سالم مجيد "دراسة احصائية حول توزيع ويبول وتوسيع القيمة المتطرفة مع تطبيقات عملية "، رسالة ماجستير – كلية الإدارة والاقتصاد – جامعة بغداد - 1990.
4- العباسي، جمال ناجي صالح "الحصص القيمة القصوى مع تطبيق لتقدير مخاطر الزلازل في العراق". رسالة ماجستير - كلية الإدارة والاقتصاد – جامعة بغداد - 1984.
5- صالح، مصطفى محمد "موجة الحرا التي أثرت على القطر العراقي في شهر تموز1987". 20A ت 1982، الهيئة العامة للأنواء الجوية العراقية.
6- هدو، عادل أحمد "مقارنة طريقة المربعات الصغري (LSE) وطريقة الاكمان الاعظم (MLS) باستخدام الكفاءة التقديرية (Asymptotic Efficiency) موتمر جامعة القادسية 1989، مجلة كلية الإدارة والاقتصاد- الجامعة المستنصرية.