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 الملخص
جديرد لتقردير معلمرة  أسرلو طريقة تحليل القيمة الشاذة في اقتررا   استخدامفي هذا البحث تم 

ار الحرف والذي يعتبر البديل المناس  لمقدر المربعات الصغرى الاعتيادية عند الحرف في مقدر انحد
 ظهور مشكلة التعدد الخطي غير التام في نموذج الانحدار الخطي العام.

Abstract: 

In this paper the method of singular value decomposition  is used to 

estimate the ridge parameter of ridge regression estimator which is an 

alternative to ordinary least squares estimator when the general linear 

regression model suffer from near multicollinearity. 

1- Introduction: 

The linear regression model is one of the most widely used statistical 

models. It is used to model relations of one or more dependent variables to one or 

more explanatory variables. Although the ordinary least squares estimator 

(OLS) is the uniformly best unbiased estimator for the regression vector when 

the errors are iid normally distributed , there are situations when there are 

better estimators for the given problem even if the errors are iid normal. This 

may happen when multicollinearity occur. In this situation least squares 

estimators are unbiased but their variances are large so they may be far from the 

true value. One possibility to improve the OLS is to perform a ridge regression 

(RR) . In a ridge regression an additional parameter "the ridge parameter" is 

introduced . However there exist a number of different methods for choosing the 

ridge parameter. The one we tried is to estimate the ridge parameter by using the 

technique of singular value decomposition . 
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2- Singular Value Decomposition: 

Given an (n×p) matrix of regressors X and an (n×1) vector of the 

corresponding responses Y, assume that sample means have been removed 

from the data and write the standard multiple linear regression model as: 

Y=Xβ+u …….(1)  

Where β is a (p×1) vector of unknown regression coefficients , u is the 

(n×1) vector of errors. The singular value decomposition is a fundamental 

way of studying the X data in the above regression model to get a deepoer 

understanding of our data which are often collinear. According to this way 

we decompose the matrix X into three matrices: X = H G′  …….(2) 

Where H is (n×p) semi orthogonal  matrix of standardized "principal 

coordinates" of X  is (p×p) diagonal matrix contains ordered singular 

values of X. 

 ≥   ≥…..≥  >0……..(3) 

G is a (p×p) orthogonal matrix containing columns   to  .The 

column  is a direction  cosine vector which  orient the i_th principal axis 

of X with respect to the given original axis of the X data. It is interesting 

that G also comes from eigenvalue eigenvector decomposition for the 

information matrix X′X it is given by: 

X′X=G H′H G′=GDG′……….(4) 

Thus the eigenvalues in the diagonal matrix D are squares of singular 

values. Assuming that  is the ordinary least squares estimator, it is well 

known that 

=  x′y and also ~N[β, ],  with the 

new notations: 
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= G H′y=G G′G H′y   or: 

=G H′y=GC………(5) 

Where C= H′y is the vector of uncorrelated components of the 

ordinary least squares estimator . From (5) we can write C=G′   

thus: 

E(C)=E(G′ )=G′β =γ say…….(6) 

The variance covariance matrix of C is given by: 

Var (C) = var(G′ )=G′var( )G=  

G′ G= G′G G′G =
 

……(7) 

Since the off diagonal elements (covariances) are all zero we call 

them uncorrelated components. 

3- Generalized Shrinkage Estimators: 

The regression estimators of more interest to our exposition here are 

known as generalized shrinkage estimators. The vector of estimators for 

all p of the elements of the β coefficient vector in a linear model such as 

that in equation (1) will be denoted here by  and will be of the form:                                                                                                                                        

=GΔC=    ……….(8) 

Where is the j_th column of the principal axis direction cosines 

matrix G ,  is the j_th diagonal element of the shrinkage factors matrix 

Δ and  is the j_th element of the uncorrelated components vector, C . 

The range of shrinkage factors in equation (8) ,….,  is usually 

restricted as: 0≤ ≤1,i=1,2,….,p. The generalized  shrinkage estimator 
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corresponding to =,….,= =1 (i.e  Δ=I) coincides with the ordinary least 

squares estimator. 

4- The Case Of Multicollinearity: 

The problem of multicollinearity exists when there exist a linear 

relationship or an approximate linear relationship among two or more 

explanatory variables. The problem of multicollinearity is among the most 

intractable of the problems that plague regression analysts.It can be 

thought of as a situation where two or more explanatory variables in the 

data set move together. As a consequence it is impossible to use this data 

set to decide which of the explanatory variables is producing the observed 

change in the response variable. Thus multicollinearity is a problem in 

which the available data is inadequate to give us the desired answer. 

5- Ridge Regression Estimators: 

Hoerl and Kennard (1970) proposed the use of ridge regression to 

estimate β when the explanatory variables are highly correlated. The basic 

idea is to reduce the variance by shrinking the estimator so that the mean 

squares error MSE can be reduced. To achieve that in a ridge 

regression,an additional parameter k is added to the OLS estimation 

problem. 

= x′y  , k≥0 ……..(9)  

If k=0 the resulting estimator is the OLS estimator for β. It can be 

shown that the ridge regression estimator given in (9) is special case of 

generalized shrinkage estimator given in (8) as follows: By using matrix 

algebra and singular value decomposition of matrix X we obtain:                                                                                                        

= G H′y 

      =G  G′G H′y 

     =G H′y 
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     =G[ D] H′y = GΔC  ………(10) 

Where Δ = D. Equivalently,the shrinkage factors of ridge 

estimator have the form: 

=   ,   1≤j≤p  ……….(11) 

6- Proposed Method For Estimating The Ridge 

Parameter: 

By using the MSE for generalized shrinkage estimator we can derive 

a new method for estimating the ridge parameter as follows: 

MSE( )=MSE(GΔC)=GMSE(ΔC)G′ 

Where: MSE(ΔC)= +(I-Δ)γγ′(I-Δ)  ……..(12) 

Is the mean squared error matrix of ΔC . It is the sum of two matrices, 

namely: 

1- The diagonal variance matrix ,  which is void of covariance 

terms, because the components of ΔC are uncorrelated. 

2- The matrix (I-Δ)γγ′(I-Δ),with squares bias terms along its main 

diagonal and bias cross product terms off that diagonal. 

Let us focus upon any single diagonal element,say the i_th of the 

mean squared error matrix of ΔC. 

MSE( )= / +    ……….(13) 

Now MSE( ) of (13) will clearly change as the i_th δ factor 

changes. In fact the partial derivative of MSE( ) with respect to is: 
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 =2 / -2(1- )   …………(14) 

While the second partial derivative is a nonnegative constant. 

 = +2   …………(15) 

It follows from (15) that equating   in (14) to zero will 

yield  a minimum value for MSE(  as long as either >0 or >o, 

this optimal amount of shrinkage for the i_th uncorrelated component  

is:       =  =    …………….(16) 

Our proposed method for estimating the ridge parameter  is 

summarized by comparing the shrinkage factor of ridge regression 

estimator given in equation (11) with given in equation (16) 

.Accordingly,we conclude that the value of k must equal to /  .Since 

each of and  is unknown, we  can use their estimated values. This 

yield: 

 =  =    …………..(17) 

Where  is the residual mean square in the analysis of variance  

table obtaind from the standard least squares fit.  Hoerl and Kennard 

(1976) proposed an iterative method  for selecting the  ridge  parameter k 

the method is based on the formula:                                         

k=    ……………(18) 
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To obtain the first value of k we use the least squares coefficients.In 

this case the iterative method in (18) coincides with our proposed method 

in (17). 

7- Numerical Example: 

An example of data appropriate for this procedure is shown 

below.These data were concocted to have a high degree of 

multicollinearity as follows.We put a sequence of numbers in .Next we 

put another series of numbers in  that were selected to be unrelated  to 

. We created  by adding  and  . We made a few changes in  so 

that there was not perfect correlation. Finally, we added all three variables 

and some random error to form y. 

      

                                                                                    y 

   1                            2                               1                             3 

  2                            4                                2                             9 

 3                            6                                4                            11 

4                            7                                 3                            15 

5                           7                                  2                            13 

    13                           6                                  7                            1                             

17                         7                                 8                              1                             

 8                          10                              2                            21 

  9                         12                           4                               25 

 10                       13                            3                              27 

  11                          13                              2                            25 
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12                          13                              1                            27 

13                          14                              1                            29 

14                          16                              2                            33 

15                          18                              4                            35 

16                          19                              3                            37 

17                          19                              2                            37 

18                          19                              1                            39 

Pearson correlation coefficients given in the correlation matrix below 

show which independent variables are highly correlated with the 

dependent variable and with each other. Independent variables that are 

highly correlated with one another may cause multicollinearity problems. 

             
                                                       y 

  1.000000      0.987841        -0.015051         0.985544 

 0.987841       1.000000          0.133813         0.995574 

 -0.015051      0.133813          1.000000          0.116539 

Y 0.985544        0.995574            0.116539          1.000000 

A quick summary of the various statistics that might go into the 

choice of the ridge parameter k is given below: 

  K                  s                      Ave VIF          Max VIF 

0.000000     0.9915      1.1028        1.4905        324.9567       485.8581 

0.010000     0.9857     1.4349          0.5002       3.3071          4.4637 

0.020000   0.9807     1.6639        0.4891     1.2575               1.4055 
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0.030000       0.9759        1.8619       0.4830      0.8309         0.9372 

0.040000       0.9711        2.0389        0.4778     0.6711         0.9146 

0.050000       0.9663       2.2000        0.4729      0.5918        0.8951 

0.060000       0.9616       2.3487       0.4682       0.5450        0.8771 

0.066237       0.9587        2.4361     0.4653       0.5244         0.8664 

0.070000       0.9570        2.4871    .4636          0.5140         0.8602 

0.080000       0.9523        2.6170    0.4591       0.4914          0.8439 

0.090000       0.9478        2.7396    0.4547       0.4739         0.8283 

0.100000       0.9432        2.8558        0.4503   0.4597        .8131  

The values of k in column (1) are the actual values. The value found 

by the analytic search (0.066237) sticks out because it does not end to 

zeros. The values of coefficient of determination  are given in column 

(2). Since the least squares solution maximizes  so 

the largest value of  occurs when k=0. We want to select a value of 

k that does not stray very much from this value. S in column (3) is the 

square root of the mean squared error. Leasat squares minimizes this 

value, so we want to select a value of k that does not stray very much from 

the least squares value. In column (4) the sum of the squared standardized 

ridge regression coefficients are given. We want to find a value of k at 

which this value has stabilized. The average and maximum variance 

inflation factors are given in columns (5) and (6) respectively. The 

variance inflation factor (VIF) is a measure of multicollinearity, it is the 

reciprocal of 1-  .   We treat any VIF in excess of 10 as evidence of 

multicollinearity. 
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8- Conclusions: 

In this paper the ridge estimators have been viwed as a subclass of 

the class of generalized shrinkage estimators. A new method for estimating 

the  ridge parameter was proposed by using the singular value 

decomposition approach. The proposed method depend on the fact that 

the shrinkage factor can be choosen which will guarantee the ridge 

estimator has mean square error smaller than the variance of the least 

squares estimator. 
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