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Abstract 
 

Maximum likelihood estimation method, uniformly minimum variance 

unbiased estimation method and minimum mean square error estimation, as 

classical estimation procedures, are frequently used for parameter estimation in 

statistics, which assuming the parameter is constant , while Bayes method 

assuming the parameter is random variable and hence the Bayes estimator is an 

estimator which minimize the Bayes risk for each value the random observable 

and for square error lose function the Bayes estimator is the posterior mean. It is 

well known that the Bayesian estimation is hardly used as a parameter 

estimation technique due to some difficulties to finding a prior distribution. 

The interest of this paper is that whether above classical estimators of the 

parameter for a particular probability distribution can be obtained from Bayes 

estimator is determined. In this analysis one-parameter Pareto distribution is 

used to examine the relationship between Bayesian and classical estimators. 

Considering improper prior distribution for shape parameter of the Pareto 

distribution of the first kind with known scale parameter which equals one, we 

have tried to show how the classical estimators can be obtain from Bayes 

estimator for various choices of hyper parameters of the prior function. 
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1. Introduction 
Bayesian theory and Bayesian probability are named after Thomas Bayes  

( 1702 – 1761 ), who proved a special case of what is now Bayes formula. The 

Bayesian method in estimation, came in to use only around 1950 and in decision 

theory and estimation theory, a Bayes estimator is an estimator or decision rule 

that maximize the posterior expected value of utility function or minimize the 

posterior expected value of a loss function [1]. 

Classical statistics, originating with R. A. Fisher, J. Neyman and E. S. 

Pearson, this include the technique of point estimation on this bais that the 

parameter assumed constant. Most well known classical parameter estimation 

procedures are the maximum likelihood estimation, minimum variance unbiased 

estimation and minimum mean square error estimation [2 ] 

The Pareto distribution is named after an Italian-born Swiss professor of 

economics Vilfredo Pareto (1848 – 1923), this distribution is first used as a model 

for the distribution of incomes a model for city population within a given area  

[4], failure model in reliability theory [3] and a queuing model in operation 

research [5]. 

The Pareto distribution is easy to manipulate analytically and provides a 

good starting point for discussions of more general distribution. For the more 

it's analytical tractability allows exploration of the relationships between 

classical and Bayesian estimators. 

In this paper we consider the problem of estimating the shape parameter of 

Pareto distribution using both classical and Bayesian approach. Bayesian 

estimator derived from posterior distribution has been used to derive the three 

classical estimators. 

The main object of this paper is to examine the classical estimators can be 

obtained from various choices made within a Bayesian framework for the Pareto 

distribution for different values of the pair of hyper parameters of the prior 

function, the Bayes estimator provides three classical estimators. 

2. Some classical estimation methods 

Consider a random sample of independent observations nxxx ,.....,, 21  from 

Pareto distribution with density function [ 4 ]: 
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Which is the maximum likelihood estimator ( MLE ) for α  

 Let )X~Pareto(á , then nixT ii ,........,2,1   ,ln   having 

exponential distribution

, with parameter α and hence 

   n
i i

n
i i xtT 11 ln having Gamma distribution with parameters n and 

α and the p.d.f for T is given by: 
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 To obtain uniformly minimum variance unbiased estimator ( UMVUE )    for α by  

 

Lehmann Scheffe, let us set the density function to exponential family as 

   )()()()(exp)1(exp),(  QSKPTxf n     

Which provides a complete sufficient statistic [ 2 ] 
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By Lehmann Scheffe approach -(6)---------  
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is the uniformly minimum variance unbiased estimator for α 

Let us now consider the form of mean square error 
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3. Bayes method 
To obtain a Bayes estimator for α, we will consider the improper prior 

distribution for α of the form 
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The prior distribution is the kernel of a gamma distribution when 0a . Now, the 

posterior p.d.f for random parameter α is given by 

 

 
 

 

 

 

 

 























































Tb
angammaxoreand theref

)e
na

Tb
xh

getweTbputting

dTb

Tb

dbT

eT

dxL

xL
xh

nx

Tbna
na

nx

na

na

na

bnn

nx

nx

nx

1
,~)(   

-(9---------    
)(

)(

  ,)(   

)(exp

)(exp
                        

)1(exp

)1(exp
                        

)()(

)(

,........,1

)(1
,........,1

0

1

1

0

1

1

0
,........,1

,........,1
,........,1
























 



                                                                                              
                             

03 
Bayes Estimator as a Function of Some Classical Estimator 

 

 

Using squared error lose function    2,ˆ,ˆ  L  the Bayes estimator for α is 

simply the posterior mean [ 4 ] and hence 
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4. Conclusion 
In this paper we found that ( MMSEE ) can be explored from Bayes estimator 

when a=-2, b=0 which suggests that if prior function for α is  
3

1


   , 

the posterior mean coincides with ( MMSEE )            when α=-1, b=0 ; the Bayes 

estimator provides ( UMVUE ) and in this case prior function becomes 

 
2

1


   , for the case a=b=0, this implies prior function is the Jeffrey's 

prior  


 1   ,a standard     non-informative prior as well as improper 

prior and the Bayes estimator leads ( MLE ). Finally, we conclude that the Bayes 

estimator of reliability function for Pareto distribution is   BttR


ˆ   , 

because the Bayes estimator        ˆ forB  in this case will have the properties 

of ( MLE ) specially the invariant property. 
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