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Abstract:

In this paper, the generalized inverted exponential distribution is
considered as one of the most important distributions in studying failure times. A
shape and scale parameters of the distribution have been estimated after
removing the fuzziness that characterizes its data because they are triangular
fuzzy numbers. To convert the fuzzy data to crisp data the researcher has used
the centroid method. Hence the studied distribution has two parameters which
show a difficulty in separating and estimating them directly of the MLE method.
The Newton-Raphson method has been used.

For the Bayesian method, the gamma distribution has been proposed as a
prior distribution for the two parameters with a quadratic loss function and by
using Metropolis-Hasting algorithm to find the Bayesian parameters estimators.
Different samples have been generated to represent the population under study
by using simulation approach. After estimating the parameters, the results of the
two methods have been compared according to the Mean Squared Error
measurement. And the researcher concluded that the best estimation method is
the MLE followed by the Bayesian.
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- Comparing Bayes estimation with Maximum Likelihood Estimation of

Generalized Inverted Exponential Distribution in Case of Fuzzy Data

1- Introduction

Inference of the properties of a population by estimating the unknown
parameters of a sample drawn from it is the most important branch of statistical
inference. The problem of estimating parameters for a distribution which
represents a real life phenomenon with uncertain data quality is one of the major
problems that a fuzzy theory (fuzzy theory is introduced by Zadeh in 1965)
describes. Yager in (1981) proposed a centroid method to transfer fuzzy numbers
to crisp numbers.

Abouammoh and Alshingiti in (2009) have proposed the generalized
inverted exponential (GIE) distribution by introducing a shape parameter of the
inverted exponential (IE) distribution. They studied parameters estimation by
using maximum likelihood estimation and least square estimation methods. Also,
they discussed statistical and reliability properties of the distribution. This
lifetime distribution is capable of modeling various shapes of failure rates and
hence various shapes of ageing criteria X

This paper is organized as follows: - In section (2), the model of the (GIE)
distribution and some of its statistical properties defined and explained. Sections
(3 and 4) contain the estimation of parameters of this distribution using the
methods of maximum likelihood estimation and Bayes estimation depending on
Quadratic Loss function. Section (5) introduces some concepts of the fuzzy set
theory. Section (6) the simulation experiments. Finally, the conclusions of this
paper are in section (7).

2- The Model

The probability density function (PDF) and the cumulative distribution

function (CDF) of the (GIE) distribution are given by the forms respectively **:

o =1
f(t; 2,8) = 5T e /8t (1 — o= 1/8Y) t=0,.,0 >0 (1)
L
F(;2,0) = 1—(1—e%/®) ;t=0,2,0 >0 ~(2)
PDF CDF
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2 Comparing Bayes estimation with Maximum Likelihood Estimation of

Generalized Inverted Exponential Distribution in Case of Fuzzy Data

Where 7. is a shape parameter and 8 is a scale parameter.
Figure (1) represents the PDF and the CDF of the (GIE) distribution respectively
when i = 0.3and 8 = 1,1.5and 2 .

The reliability (survival) function and the hazard (failure) rate function of
the (GIE) distribution are given by respectively ':

R(t) =1 —F(t) _
_ (1 _ e—ﬂEt)”‘ t=0,2,80 >0 - (3)
_fo
"O=R
)

= 12 (el,frat —1) ;t=0,4,8 =0 . (4)

Figure (2-2) represents the reliability function and the hazard function of the
(GIE) distribution respectively when ». = 0.3and 8 = 1,1.5and 2 .

The median is the value of t which satisfies the inverse image of the
following

Reliability Hazard function
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d Comparing Bayes estimation with Maximum Likelihood Estimation of

equation:
F() ==
_p-1(1
t=F (2)
—1
= - (5
Blog(1—(2) ) ®)
The mode ! is the value of t which satisfies the following equation
dlog f(t) B
ot
Where
) 1 . _
Mgmj=Mg&)—ZMQﬂ—a+{h—Im$u—ﬂlmq .. (6)
1— 26t — (L — 1)e /o5 (1 — e=2/0%) " — (7
Eq. (7) can be solved numerically to get the mode.
The formula of a random number generation of the (GIE) distribution as
follows :
—1
=1,2,...,n ...(8)

t, = —-1
' Blog(1 — (1 —u)™)
Where u; is a random variable uniformly distributed on (0, 1).

3- Maximum Likelihood Estimation
Lett,,t,, ..., t, be a random sample of size n drawn from a population

with probability density function f(t;; ) where [ is a vector of unknown
parameters. The likelihood function is defined by
n

L(t;; B) = 1_[ f(t; B)

The maximum likelihood estimator of [3 is the solution of the following equation:
dlogL(t; B)
ap B

Therefore; the likelihood function of the (GIE) distribution is given as follows 21

uqm_ﬂm”

Let L = L(t; 2, 8)
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:( ) H(tzje TR (a/ey) H(l a—1/8t )’ 1 - (9)

By taking the log function to equation (9) we get

logL—nlogx—nlogB+Zlog( ) Z(—H—(;

-1) Zlng(l— e~1/0) -.(10)

Differentiating eq (10) with respect to the parameters and 8 gives %

AlogL
g _ —+ Zlng(l e=1/0%) (11

alngL -n, e~ 1/0n
a ez ]Zezt (1—e1/84) ~(12)

Equating eqg. (11) and eq. (12) to zero They are nonlinear equations, therefore,
any iterative procedure such as Newton-Raphson method can be used to get a
solution, and the formula of this method is given by

Ayt 1] _ [fk]
E’k+1 Bk

1 g, (1)
(13
- [EQ(B] (13)
Where
i dlog L dlog L
g, (n) = an and g,(0) = a8
dg, (1) 0dgy (1)
ar do
= (14
| dg,(0) ag,(8) (14
ar db
dg,(A) —n
= ...(15
a}b }Lz {: )
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dg, (1) agz [B] a—1/8%
do Zgzt (1—e-1/8) .. (16)
@) _ 1 e (1 ee4) 1 205) - 1
s/ 83 UZ [0%t; (1 — e~ /% )2

. (17)
Where %, and By are the initial values, which are imposed. This iteration process
continues until convergence (i.e.)

}'*k+1]_[}'*k] { E
EIk+1

Where £ is pre-fixed greater than zero. Let £ = 107 After satisfying the

. (18)

condition (18), the result . and g are the maximum likelihood estimators of A

and 8 respectively.

4- Bayes Estimation

In Bayesian method must assume that the parameter (parameters) is a
random variable and has a prior distribution to be determined from previous
information and experience. This approach is a combination between the prior
distribution and the likelihood function.

To find the Bayesian estimator of the (GIE) distribution we assume the
parameters of this distribution are random variables, It may be noted that the
gamma distribution is flexible enough to cover wide variety of the prior
experiments believes ", Therefore, 2. and 8 have prior gamma distributions as

follows:

) 11:1 @ Ushy Vi~ 1 )
h, (1) = rov) ;g vy =0 ..(19)
uzvz e—uzﬂevz—l
h3(8) = =1 . 8,u,v, >0 (20
2

The hyper- parameters u,,v,,u, and v, are known.
The joint prior PDF of % and B is

h(2,8) = h,(3)h, (8) .21
u; ", - g
—— = Vil gvela—(ugh+uy) 22
" TOI(v) (22)
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A joint posterior distribution of A and 8 is:
h (}"J B) L(tlr }"'J B]

(2, 0|t) = —= .. (23
(.016) JI, h(2,8)L(t; 2,0) dh db (23)
(1, 8|t,) =
jvemt gralgTlugdAug ) (%) n( t.lz:] o~ Liz,(1/0%) Hf’:l[l _ E—ifﬂtl)f-‘l
— L ..(24)
ff: 5.2 gva—1g—(u,h+u,6) (’E) H?:ﬂt_l:] o IR, (1/8%) [12,(1—e~1/85)"1 g} 48
The marginal posterior PDFs of % and B are given respectively by *”
T (Alt) = f m(4,0|t;)do ..(25)
0
T, (6lt) = f m(h,0|t)d i ..(26)
0

Note that the above integrals cannot be obtained directly, therefore; we
must resort to numerical methods at their evaluation. By using Markov Chain
Monte Carlo (MCMC) methods and specially Metropolis-Hasting algorithm to
generate random samples from posterior distributions for two the parameters
under study in order to be used as Bayesian estimators [,

Posterior distributions can be written as follows:

—1/81; }] 3

m, (18,t) o A¥rrlemlva Tk, logl1-e (27
T[E (Bl}"'.! tl] o
7—1
Qvz—n—1,-us0 l—[in:1 e—{lfﬂtj] (1 —a lfﬂtj) [:28]
The following steps show how to get the above estimators
1- Set A, and §, as an initial values for 4 and & respectively.
2-Seti = 1.
3- Generate a random sample for A and & from equations (27) and (28)
respectively.
4- Repeat steps 2 and 3, 1m times.
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5- To compute the Bayesian estimators of A and & by using the following

equations:
% 1 m—my,
=— 21:1 A; --(29)
§ =
—— T, (30)

This means that each of A and & represent the average number of samples

generated randomly from the posterior distributions and 1, represent the

number of random samples that have been generated at the beginning of the
experiment, which are neglected in order not to cause abnormalities in the
estimated values (burn-in- period).

It is worth mentioning that the Metropolis-Hasting algorithm depends (in
addition to the posterior distribution) on additional distributions, the first is
called the random generating distribution, which gives an initial value to base
the generating process on, and the second is called the proposal distribution,
which is based on the selection of a posterior value of the random sample

depending on the current valuep(t;,,|t;).

Both distributions (random generation distribution and the proposal
distribution) Requires that their corresponding ranges are equivalent to the

parameters ranges under study (4,8 > 0). In this paper, both of the proposal

and the random generation distributions were distributed according the gamma
distribution with 5000 iterations for each random sample.
4- Fuzzy Set Theory

The following introduces some concepts of fuzzy set theory.

Definition: Let T be a nonempty set. A fuzzy set A in T is defined as a set of
ordered pairs; A= {(t, ug[t]) |te T}, where iz (t) is called the membership
function for the fuzzy set 4, it's defined as @ :-
iz (0: T [0,1]
Definition: a fuzzy subset A of a real number R with membership function
iz (£): R — [0,1] s said to be a fuzzy number if
i.  Aisnormal, ie. 3 anelement t, s.t. px (t;) = 1.
ii. 1z (t)is upper semi-continuous membership function.
i, Alis fuzzy convex, i.e.
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iv.  pg(8t,+ (8 — 1)t,) = min(pg(ty), px () Vt,t, € T,V 8€[0,1]

v. Supportof A ={t € T:pz(t) > 0} is bounded &I
Definition: A fuzzy number Ais a triangular fuzzy number denoted by (a, b, c)
where a, b and c are real numbers and their membership function g z(t) is given

by:-
t—a “t<b
ast<
b—a
‘H._‘Il:f] = 1 t=b (31)
c—t bete
<t<c
—b )
Remark: The triangular fuzzy number 4 = (3, b, ¢), in this paper The
researcher assume that
a=t—0.05t,b=tandc=1t+ 0.07t, then
A= (t—0.05tt,t+ 0.07t) ..(32)

Eq. (32) called is a triangular fuzzy data this is because t represented a data

satisfying the (GIE) distribution. The defuzzification methods must be to convert
a fuzzy number approximately to a crisp number so that this can be used
efficiently in practical applications .

One important defuzzification methods is centroid method where the

centroid C(ﬁ) of fuzzy number A is defined for continuous case by .
Jtug(Ode
C(A (33
(8)= [ux(®dt (33)
Then the Centroid Method of triangular fuzzy number is defined as
. [‘tug(Ddt
C(A)=LCL .38
fa Uy (Ddt
[ — ] dt+ [t [ — ] dt
c(B)== (3_3) E - (35)
[ ] dt+ [ [ ] dt
a) (c—
c(ﬁ)=§[a+ b+ - (36)
9 S B PRI PN S
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6- Simulation Experiments
To apply what has been mentioned, the necessary data has been simulated
using MATLAB 2015a.Choosing the sample sizes n= 14, 25, 50 and100 and the

default parameters values ». = 0.3,0.5and 0.8 and 6 = 1,1.5and 2 and by

using eq. (8) to generate a random number follows the (GIE) distribution. To
obtain a fuzzy data set for all sizes by using eq. (32). Fuzzy data are converted to
crisp data by using eq. (36). Estimating the model parameters by using the MLE
and Bayesian methods. Finally, the estimators have been compared by using the
mean squared error of the model, which it is given by

r

MSE (’f{t)) = %Zﬁ&i) - f(*ta-)]2

i=1
Where 1 represents the number of experiment replicates (In this paper  =500)

while f(ti] is obtained by substituting the estimates of 4 and 6 (for each
method) in eq.(2).
The mean squared error for % and 8 given respectively by %

MSE() = [~ 2]
r i=rl

- 1 -~ 2

MSE(8) =~ > [8,—0]
i=1

The following contains the tables and the figures for the simulation
results.
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Table (1) Simulation results for sample size 14 and different values of 4 and @

1=0.3 1=05 || A=0.8

g=18=15 g=2 g=1 g=1.35 g=2 g=1 g =1.5 g =2
estimators
N method MLE

Y 0.340047977 | 0.324949453 | 0.322151993 || 0.600603195 | 0.579313044 | 0.571078007 || 0.775363713 | 0.864873595 | 1.018299516

MSE {?. 3.86E-07 8.08E-07 1.42E-06 1.36E-06 2.97E-06 5.13E-06 2.72E-06 7.28E-06 1.67E-05

) 0.985260954 | 1.48817165 | 1.992363675 || 0.964245669 | 1.471669143 | 1.972375532 || 0.998088292 | 1.464814626 | 1.9244915
MSE{@} 2.22E-13 2.92E-11 1.53E-12 6.47E-07 6.46E-10 1.63E-16 3.85E-15 6.59E-10 7.67E-12
MSE (f(ﬂ) 4.36E-05 9.89E-05 | 0.000178532 | 4.73E-05 9.71E-05 | 0.000174071 || 4.44E-05 9.56E-05 | 0.000166476

1 | estimators

method Bayes

0.340294957 | 0.326951783 | 0.324781246 || 0.587434661 | 0.566977317 0.5657196 0.76953052 | 0.844501905 | 0.934649824

)

MSE{?-} 0.000562793 | 0.000300951 | 0.000655221 || 0.001401671 | 0.003958425 | 0.005378434 | 0.000308833 | 0.002088346 | 0.015546328

[==}]

1.214284791 | 1.597232148 | 1.886092607 [ 1.158476486 | 1.682099177 | 2.070136458 || 1.040620144 | 1.576485885 | 2.098517105

MSE{H} 0.000479402 7.61E-05 0.000280085 [ 0.000936744 | 0.002782309 | 0.001072981 [ 0.000448777 | 0.001472485 | 0.047818488

MSE (f (ﬂ) 0.080772728 | 0.071548805 | 0.100815225 || 0.054415459 | 0.157732572 | 0.128928842 || 0.006576752 | 0.031795216 | 0.200415761
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Generalized Inverted Exponential Distribution in Case of Fuzzy Data

Table (2) Simulation results for sample size 25 and different values of 4 and @

A=0.3 A=02 A=038
g=18=15 g =2 =1 =123 g=2 g=1 =113 g=2
estimators
N method MLE
3 0.324968427 | 0.343194732 | 0.31742911 || 0.544933827 | 0533502579 | 0.526301512 || 0.79383925 | 0.866963023 | 0.871219891
MSE (.'} 3.49E-07 8.23E-07 1.29E-06 1.09E-06 2.39E-06 4.07E-06 2.61E-06 7.29E-06 1.32E-05
g 0.989066978 | 1.455356406 | 2.009834315 || 0.978488082 | 1.48184365 | 1.976325146 | 0.996399367 | 1.477310954 | 1.957498098
M_gg(ﬁ} 4.43E-07 7.50E-12 5,65E-16 3.98E-10 9.66E-14 1.98E-12 5.37E-09 4,65E-12 3.26E-07
MSE (f (ﬂ) 4.36E-05 9.55E-05 | 0.000181256 | 4.29E-05 9.84E-05 | 0.000174414 || 4.42E-05 9.72E-05 | 0.000170039
estimators
25 method Bayes
3 0.327249099 | 0.34071283 | 0.321578258 || 0.540251768 | 0.531195413 | 0.528476978 | 0.796864246 | 0.861857127 | 0.851543164
MS5E {r} 0.000327986 | 0.000880874 | 0.000881059 || 0.000900452 | 0.00128912 | 0.001212135 || 0.000440347 | 0.002792854 | 0.004496749
8 0.989066978 | 1.455356406 | 2.009834315 || 0.978488082 | 1.48184365 | 1.976325146 | 0.996399367 | 1.477310954 | 1.957498098
MS5E I[EI} 0.000109252 | 4.66E-04 | 0.000108564 || 0.000457642 | 0.000819739 | 0.000269749 | 0.000588098 | 0.00103158 | 0.004636221
MSE (f (ﬂ) 0.05041138 | 0.116983147 | 0.105368343 || 0.039400798 | 0.05348049 | 0.054071228 || 0.007075251 | 0.037475454 | 0.070405139
12 Aaylaily O\ﬁé\.&m?&tﬂw@
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Table (3) Simulation results for sample size 50 and different values of 4 and @

A=0.3 A=0.3 A=0.28
g=18=1.5 g=2 g=1 g=1.5 g =2 g=1 g =1.5 g=2
estimators
N method MLE
Y 0.313631671 | 0.304950696 | 0.320164155 || 0.538032837 | 0.526690313 | 0.521120545 || 0.772480952 | 0.840746386 | 0.846760763
MSE (?.} 3.04E-07 6.14E-07 1.20E-06 1.08E-06 2.31E-06 4.03E-06 2.54E-06 6.64E-06 1.22E-05
) 0.999814625 | 1.500105565 | 1.981973821 || 0.984404744 | 1.485790897 | 1.957514332 | 1.002240674 | 1.483329936 | 1.979459607
MS E{ﬁ} 5.35E-15 4.09E-19 3.42E-13 4.98E-12 4.43E-10 2.36E-07 9.72E-16 1.20E-13 1.06E-11
MSE (f(ﬂ) 4.46E-05 1.00E-04 | 0.000175673 || 4.32E-05 9.86E-05 | 0.000166098 | 4.47E-05 9.80E-05 | 0.000174666
estimators
50 method Bayes
3 0.31505561 | 0.306285206 | 0.321158947 || 0536461655 | 0.525558559 | 0.518119712 || 0.776836994 | 0.837180374 | 0.837276644
MSE {?.} 0.000114888 | 0.000143504 | 0.000366997 || 0.000397686 | 0.000594161 | 0.001264195 | 0.000226109 | 0.001168895 | 0.00367116
2] 1.111308706 | 1.598346967 | 2.142182567 || 1.077063362 | 1.591394794 | 2.053643753 || 1.00406525 | 1.560410104 | 2.063848747
MSE {H} 5.35E-15 4.09E-19 3.42E-13 4.98E-12 4.43E-10 2.36E-07 9.72E-16 1.20E-13 1.06E-11
MSE (t’ (ﬂ) 4.46E-05 1.00E-04 | 0.000175673 || 4.32E-05 9.86E-05 | 0.000166098 | 4.47E-05 9.80E-05 | 0.000174666
13 Aaylaily O\ﬁé\.&ﬁ"fjla."&dqu
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Table (4) Simulation results for sample size 100 and different values of 4 and @

A=0.3 A=0.2 A=0.38
g=18=15 g=2 g=1 =113 g=2 g=1 g=1.23 g =2
estimators
N method MLE
3 0.30378944 | 0.306250532 | 0.305403042 || 0.539112205 | 0.505604088 | 0.518816499 || 0.799174478 | 0.829342258 | 0.828470511
MSE {?.} 2.59E-07 6.08E-07 1.04E-06 1.10E-06 2.12E-06 3.93E-06 2.67E-06 6.54E-06 1.18E-05
g 0.991041676 | 1.485146872 | 1.989360457 || 0.988936869 | 1.485427087 | 1.977753542 || 0.993771087 | 1.485510659 | 1.999784535
M_gg{ﬁ 2.86E-11 2.11E-10 7.01E-12 1.52E-14 3.21E-07 7.22E-20 7.26E-17 3.91E-08 6.93E-12
MSE (f (t]) 4.37E-05 9.85E-05 | 0.000176322 || 4.36E-05 9.72E-05 | 0.000174252 || 4.40E-05 9.84E-05 | 0.000178146
estimators
100 method Bayes
i 0.304614608 | 0.306743968 | 0.306359495 || 0.53692058 | 0.504946449 | 0.517025444 || 0.797219883 | 0.825779284 | 0.829229224
MSE {?.} 3.32945E-05 | 5.90775E-05 | 9.78869E-05 || 0.000309976 | 0.000162357 | 0.000382794 |[ 0.000126295 | 0.000766404 | 0.000978033
] 1034129739 | 1.537667109 | 2.033862528 || 1.059569889 | 1.510797633 | 2.043632591 || 1.005185185 | 1.531751377 | 2.042713487
MSE {H} 2.17967E-05 | 3.40E-05 | 2.37044E-05 || 0.000168734 | 0.000133799 | 0.000116051 || 0.000493027 | 0.000366953 | 0.000549643
MSE (f (t]) 0.006050246 | 0.011531579 | 0.021644866 || 0.013024435 | 0.008877315 | 0.018707879 || 0.00229846 | 0.011860465 | 0.017076308
14 Tyl a9 Ao aliaZa a glall Alsee
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Figure (1) an illustrative overview to curve of the (GIE) distribution
for estimation methods when n =100 and A = 0.3 and

86=1,1.5and 2

Lambda = 0.3, Theta =1

Lambda = 0.3, Theta = 1.5
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Figure (2) an illustrative overview to curve of the (GIE) distribution for estimation
methods whenn=100and A= 0.5and ® = 1,1.5 and 2.
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Figure (3) an illustrative overview to curve of the (GIE) distribution for
estimation methods whenn=100and 4 = 0.8and® =1,1.5 and 2.
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7-Conclusions

It can be seen that after removing the fuzziness from the data by using the
centroid method that the MLE method excels the Bayesian approximation
method for all sample sizes and for all default values of shape and scale
parameters. The effeciency of the MLE method decreases by the increase of the
default value if the scale parmeter but they vary in the Bayesian method.
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