استعمال طريقة العزم في تقدير دالة المعولية لبيانات التوزيع الطبيعي المتنوع المبتو

الباحث/ حاتم كريم عباس
وزارة الصحة، دائرة صحة ديالى، العراق
hatimhp2013@gmail.com

الباحث/ أحمد ذياب أحمد
جامعة بغداد، كلية الإدارة والاقتصاد، العراق
ahmedthieb19@gmail.com

Received: 16/9/2020 Accepted: 13/10/2020 Published: December / 2020

المصطلحات الرئيسية للبحث/ التوزيع الطبيعي المتنوع المبتو، التوزيع الطبيعي، دالة المعولية، طريقة العزم.

بحث مستند من رسالة ماجستير بحوث عملية بعنوان "تقدير دالة المعولية لبيانات التوزيع الطبيعي المتنوع المبتو" مع تطبيق عملي.

وزارة الصحة - دائرة صحة ديالى
(2) جامعة بغداد - كلية الإدارة والاقتصاد
(3)
1- المقدمة

تعتبر المغولية من المؤشرات المهمة التي تراقب التطور التكنولوجي للاجهزة والمكائن والأنظمة

الالكترونية المعقدة في كافة المجالات الطبية واللوموانية والصناعية في جميع أنحاء العالم، وهي احتمال أن يؤدي عنصر ما وتوزيع معلومات في ظل ظروف صعبة واقعة زمنية محددة (Rausend,2004:5) فكلمة عنصر يمكن أن تشري إلى مكون أو نظام. وقد تكون الظروف المطلوبة وظيفة واحدة أو مجموعة وظائف ضرورية لتقديم خدمة محددة، يهدف البحث إلى استعمال طرقاً العزوم في تقرر دالة المغولية لبيانات التوزيع الطبيعي الميتور من خلال استعمال بيانات حقيقية تمثل ثلاث مكائن من قسم القدرة في شركة ديالي للصناعات الكهربائية، حيث لوحظ وجود ألوان موجب في تلك البيانات، مما يطلب إيجاد توزيع ممتاز بالمرنة في التعامل مع تلك البيانات.

2- دالة المغولية

أحد دوال الفشل وتم احتمال أن المكائن مستمرة بالعمل خلال الفترة الزمنية (0,t) بدون توقف (Kadhim, 2018:8) حيث أن (0 > t). رياضياً بالشكل الآتي (Rausend,2004:17):

\[R_{TSND}(t) = pr (T > t) = \int_{t}^{\infty} \phi_{TSND}(u) \, du \]

\[= 1 - \left(\int_{0}^{t} \phi_{TSND}(u) \, du \right) \]

\[= 1 - \Phi_{TSND}(t) = \overline{F}_{TSND}(t) \]

\[\overline{F}_{TSND}(t) \] دالة المغولية للتوزيع الطبيعي الميتور

\[R_{TSND}(t) \] : زمن الاشتغال تكون قيمة موجبة

في حالة التكلفة المكلفة للإعالة للتوزيع

\[\phi_{TSND}(u) \] دالة التكلفة لامعالة للتوزيع

توجد عدة مؤشرات أو دوال لها علاقة بمؤشر دالة المغولية مرتبطة بها ارتباطاً مباشراً والتي يمكن عن [0,∞] طريقة (T) المنهاجية للتوزيعات الفشل والتي تكون معرفة للمتغير العشوائي (Unreliability Function)

والتي يكون مستمراً غالباً حتى حدث الفشل، ومن هذه المؤشرات دالة المغولية

وهي احتمال عطل (فشل) المكائن قبل الوقت t أو نسبة عدم التحول على المكائن تسمى أيضاً (Abdul,2007:8)

\[\Phi_{RSND} (t) \] الدالة التجمعية للفشل يرمز لها

\[\Phi_{RTSND} (t) = pr(T \leq t) \]

\[\Phi_{RTSND} (t) = \int_{0}^{t} \phi(t) \, dt \]

\[R_{TSND}(t) + \Phi_{RSND}(t) = 1 \]

\[\Phi_{TSND}(t) = 1 - R_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]

\[\Phi_{RSND} (t) \]

\[\Phi_{RTSND} (t) \]

\[R_{TSND}(t) \]

\[\Phi_{TSND}(t) \]
3 التوزيع الطبيعي الملتوي (SND)

التوزيع الطبيعي الملتوي (SND) هو أحد التوزيعات الاحتمالية المعتمدة المستخدمة، حيث يكون في التوزيع الطبيعي القياسي (Standard Normal) حالة خاصة جدا.

cالحالة العامة لتكوين التوزيع الطبيعي الملتوي يكون في تعمية دالة كثافة الاحتمالية لـ (Azzalini) عام (1985) الذي درس بصورة شاملة استخدام فكرة التعبير عن التوزيعات الطبيعية الملتوية على صيغة ضرب لدائنة التوزيعات الطبيعية اللمتوية والشييرة ببعض صيغ تعريف التوزيع.

إذا كانت دالة (SND) بمثابة التوزيع الطبيعي الملتوي Z يقال للمتغير العشوائي Z يوزع حسب التوزيع الطبيعي الملتوي (SND) إذا كانت دالة $\phi_{SND} (z) = 2 \phi_{STN} (Z) \Phi_{STN} (\alpha Z) , I(-\infty, \infty)^{(z)}$ صيغتها (3)

$\Phi_{SND} (z; \alpha) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} z^2 dt}$

$\Phi_{STN} (z)$: دالة التوزيع الاحتمالية للتوزيع الطبيعي القياسي

$\Phi_{SND} (CC\alpha)$: دالة التوزيع الاحتمالية للتوزيع الطبيعي الملتوي

$\Phi_{SND} (\alpha)$: متغير عشوائي مستمر بدالة كثافة احتمالية يتوزع حسب التوزيع الطبيعي الملتوي يكتب μ مهماً الموقع

σ : مهماً القياس

$\Phi_{SND} (\alpha)$: متغير الشكل (الإثناء)

4- Truncated Skew normal distribution(TSND)

في بعض الأحيان ولأسباب تخص دراسة أو البحث، يوجد اهمية استنتاج دالة كثافة احتمالية μ معرفة على جزء من القيم المعروفة في Ω. ويرجى أن نلاحظ لقب (بنر) في Ω. (Hirmenez, 1990:138) وهو يشير إلى فترات زمنية تؤثر بشكل مباشر على تحصيص التوزيع الطبيعي الملتوي وهي الاحتمال المتكرر للفضاء المتغير العشوائي أقل من الواحد الصحيح ($1 < pr < 0$) وبالتالي يوجد اقتران توزيع جديد من التوزيع الطبيعي الملتوي المتبقي Z بالتقدير دالة كثافة احتمالية للتوزيع الطبيعي الملتوي المتبقي Z الذي سيتم استخدامه كثافة احتمالية للتوزيع الملتوي المتبقي. يمكن فهمه على الفترة من 0 إلى ∞، أي أنه سيتم قطع دالة التوزيع من جهة اليسار أو من جهة اليمين.

ويمكن التعبير عن ذلك رياضياً كالتالي:
\[
\phi_{TSND}(\alpha) = [\Phi_{SND}(\infty) - \Phi_{SND}(0)]^{-1} \phi_{SND}(\alpha)
\]

\[
\phi_{TSND}(\alpha) = [1 - \Phi_{SND}(0)]^{-1} \phi_{SND}(\alpha); Z > 0
\]

\[
\phi_{TSND}(\alpha) = \left[\frac{\phi_{SND}(\alpha)}{1 - \Phi_{SND}(0)} \right]
\]

\[
\phi_{TSND}(\alpha) = \left[\frac{2 \phi(Z) \Phi_{SND}(Z, \alpha)}{1 - \Phi_{SND}(z) - 2T(z, \alpha)} \right]
\]

\[
\phi_{TSND}(\alpha) = \left[\frac{2 \phi(Z) \Phi_{SND}(Z, \alpha)}{1 - \left(\frac{1}{2} \cdot \frac{1}{\pi} \tan^{-1} \alpha \right)} \right]
\]

ويعتبر الصيغة أعلاه فإن دالة الكثافة الاحتمالية للتوزيع الطبيعي المتباين تكون بالصيغة الآتية:

\[
\phi_{TSND}(t, \mu, \sigma; \alpha) = \frac{1}{1 + 1/2 \pi \cdot \tan^{-1} \alpha} \phi_{STD} \left(\frac{t_i - \mu_i}{\sigma} \right) \Phi_{SND} \left(\frac{(t_i - \mu_i) \alpha}{\sigma} \right)
\]

المقدار (c_a)

\[
\phi_{TSND}(Z; \alpha) = c_a \phi_{STD}(z) \Phi_{SND}(\alpha Z)
\]

اذن:

\[
\phi_{STD}(z)
\]

تمثل دالة الكثافة الاحتمالية للتوزيع الطبيعي القياسي

\[
\Phi_{SND}(\alpha Z)
\]

تمثل دالة التوزيع التجميعي للتوزيع الطبيعي المتباين

5- دالة التوزيع التجميعي للتوزيع الطبيعي المتباين المبتكر

تنبؤ صيغة دالة التوزيع التجميعي للتوزيع الطبيعي المتباين كالآتي (Kim, 269:2004)

\[
\Phi_{TSND}(Z, \alpha) = c_a \int_{0}^{\alpha} \phi(t)\phi(u)\text{d}u\text{d}t
\]

\[
= c_a \left[\int_{0}^{\alpha} \phi(t)\phi(u)\text{d}u\text{d}t - \int_{-\infty}^{0} \phi(t)\phi(u)\text{d}u\text{d}t \right]
\]
وَبِعَامِلٍ خُصُصِّصَ دَلَّةً :

$$\Phi_{TNSD}(Z, \alpha) = \frac{c_{\alpha}}{2} \left[\Phi \left(\frac{t_i - \hat{\mu}}{\hat{\sigma}} \right) - 2T \left(\frac{t_i - \hat{\mu}}{\hat{\sigma}}, \alpha \right) - 1/2 + \pi^{-1} \tan^{-1} \alpha \right] \quad (9)$$

6- الدالة المولدة للتوزيع الطبيعي المختلط المنغوم

يمكن اشتقاق الدالة المولدة للعزم المنغوم (المنغوم الطبيعي المختلط):

$$M^{(t)}_Z = E(e^{zt}) = \int_0^\infty e^{zt} c_{\alpha} \phi(z) \Phi(\alpha z) dz \quad \text{............... (10)}$$

$$= c_{\alpha} e^{zt} \int_0^\infty \phi \left(\frac{t_i - \hat{\mu}}{\hat{\sigma}} \right) \Phi \left(\frac{t_i - \hat{\mu}}{\hat{\sigma}}, \alpha \right) dt$$

$$= c_{\alpha} e^{zt} \int_0^{t} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{z-t}{2} \right)^2} \Phi(\alpha z) dz$$

$$= c_{\alpha} e^{zt} \int_0^{t} \frac{1}{\sqrt{2\pi}} (e^{\frac{1}{2}(u^2)} * e^{zt}) \Phi(\alpha(u+t)) du$$

$$= c_{\alpha} e^{zt} \left(\frac{1}{\sqrt{2\pi}} \right) E[\alpha(u+t)]$$

$$= \frac{c_{\alpha}}{2} e^{zt} E[\alpha(u+t)]$$

$$= \frac{c_{\alpha}}{2} e^{zt} \Phi \left(\frac{\alpha t}{\sqrt{1 + \alpha^2}} \right) \quad \text{............... (11)}$$

وَبِعَامِلٍ العَوْمِ الأَوَّل الخَاصُ بِالْمِنَغَمِ العَوْمِيّ:

$$E(Z) = M^{(t)}(t = 0)$$

$$= \left[t * c_{\alpha} e^{zt} \Phi \left(\frac{\alpha t}{\sqrt{1 + \alpha^2}} \right) + c_{\alpha} * e^{zt} \left(\frac{\alpha}{\sqrt{1 + \alpha^2}} \right) \Phi \left(\frac{\alpha t}{\sqrt{1 + \alpha^2}} \right) \right]_{t = 0}$$

$$= [0] + \frac{c_{\alpha}}{2} \left(\frac{\alpha}{\sqrt{1 + \alpha^2}} \right) * (1) \Phi'(0) \quad \text{............... (12)}$$
184 (16) (13)

\[E(z^2) = M_Z^2(t = 0) \]

\[\frac{c_a}{2} \left\{ \Phi \left(\frac{\alpha}{\sqrt{1 + \alpha^2}} \right) \frac{\alpha}{\sqrt{1 + \alpha^2}} \right\} + \left[2*t * \exp \left(\frac{t^2}{2} \right) \Phi \left(\frac{at}{\sqrt{1 + \alpha^2}} \right) \frac{\alpha}{\sqrt{1 + \alpha^2}} \right] + \left[(t^2 + 1) \Phi \left(\frac{at}{\sqrt{1 + \alpha^2}} \right) * \exp \left(\frac{t^2}{2} \right) \right] \]

\[= [c_a \Phi(0)] \]

\[= \frac{c_a}{4} \]

\[\text{وبذلك نحصل على التباين من خلال تطبيق الصيغة الآتية:} \]

\[v(z) = E(z^2) - (E(z))^2 \]

\[v(z) = \frac{c_a}{4} - \left(\frac{c_a}{2\sqrt{2\pi}} \frac{\alpha}{\sqrt{1 + \alpha^2}} \right)^2 \]

\[= \left(\frac{4 - \pi}{2} \right) \frac{[E(Z)]^3}{[\text{var}(Z)]^{\frac{3}{2}}} = \left(\frac{4 - \pi}{2} \right) \frac{\left[\frac{c_a}{2\sqrt{2\pi}} \frac{\alpha}{\sqrt{1 + \alpha^2}} \right]^3}{\left[\frac{c_a}{4} - \left(\frac{c_a}{2\sqrt{2\pi}} \frac{\alpha}{\sqrt{1 + \alpha^2}} \right)^2 \right]^{\frac{3}{2}}} \]

\[\text{دالة التباعد Skewness} = \text{Skewness}(t \ i) \]

\[\text{Skewness} = \left(\frac{4 - \pi}{2} \right) \frac{[E(Z)]^3}{[\text{var}(Z)]^{\frac{3}{2}}} \]

\[\text{طريقته العزوم - 7} \]

تعتبر طريقه العزوم (MOM) من الطرق الشائعة الاستعمال في حقل تقدير المعاليم حيث تعتمد على فرضية مساواة عزم المجتمع مع عزم العينة ومن خلال حل المعادلات يمكن إيجاد صيغ تقدير المعاليم و كالآتي:

486
\[\hat{m}_r = E(t) \]
\[\hat{m}_r = \frac{\sum (\bar{t})^r}{n} \] (14)

لغدما تكون قيمة \(r = 1 \) نحصل على صيغة تقدير معلمة المتوسط وكما يلي:
\[\hat{m}_1 = \hat{m} + \hat{\alpha} E(Z) \]
\[\hat{m}_1 = \frac{\sum (\bar{t})^r}{n} = \bar{t} \]
\[\hat{m}_2 = E(t)^2 \] (16)

وقما تكون قيمة \(r = 2 \) نحصل على صيغة تقدير معلمة التباين وكما يلي:
\[\hat{m}_2 = \frac{\sum (\bar{t} - \bar{t})^2}{n-1} = s^2 \]
\[\therefore m_2 = E(t)^2 = v(t) + (E(t))^2 \]
\[\sigma_{mo}^2 = s^2 - \left(\frac{c_a}{2\sqrt{2\pi}} \left(\frac{\hat{\alpha}}{\sqrt{1 + \hat{\alpha}^2}} \right)^2 \right) \] (17)

وقما تكون قيمة \(r = 3 \) نحصل على صيغة تقدير معلمة الانتباء وكما يلي:
\[\hat{\alpha} = \frac{4 - \pi}{2} \frac{E(z)^3}{V(z)^{3/2}} \] (18)

وقد ما أن:
\[\hat{m}_3 = \frac{\sum (\bar{t} - \bar{t})^3}{n-1}, \]
والتعويض بصيغة التباين والمتوسط نحصل على:
\[\hat{m}_3 = \hat{\alpha} \]

\[\frac{2m_3}{4 - \pi} = \frac{c_a}{2\sqrt{2\pi}} \left(\frac{\hat{\alpha}}{\sqrt{1 + \hat{\alpha}^2}} \right)^3 \]
\[\left[\frac{c_a}{4} - \left(\frac{c_a}{2\sqrt{2\pi}} \left(\frac{\hat{\alpha}}{\sqrt{1 + \hat{\alpha}^2}} \right) \right)^2 \right]^{3/2} \]
ويتبسيط الصيغة أعلاه نصل على صيغة تقدر ملزمة الاتواعد:

\[
\hat{\alpha}_m = \frac{1}{\left(\frac{1}{m} + \frac{c_a}{\pi} - 1\right) + \left(\frac{2m}{4-n}\right)^{2}}
\]

(19)

8- دالة المولوية للتوزيع الطبيعي المثلي المبتور

يمكن ايجاد دالة المولوية للتوزيع الطبيعي المثلي المبتور وذلك بتعويض معلومات التوزيع المقدرة بطريقة العزوم والتي يرمز لها

\[
\hat{R}_{TSND} = 1 - \Phi_{TSND}\left(\frac{t_i - \hat{\mu}}{\hat{\sigma}}, \hat{\alpha}\right)
\]

\[
= 1 - \frac{c_a \left[\Phi\left(\frac{t_i - \hat{\mu}}{\hat{\sigma}}\right) - 2T\left(\frac{t_i - \hat{\mu}}{\hat{\sigma}}, \alpha\right) - 1/2 + \pi^{-1}.\tan^{-1} \alpha\right]}{2}
\]

(20)

اذ أن: (\hat{\mu}, \hat{\sigma}, \hat{\alpha}) : معلومات المقدرة بطريقة العزوم للتوزيع الطبيعي المثلي المبتور.

: دالة التوزيع التجريبي للتوزيع الطبيعي القياسي.

9- التجارب التطبيقية

تم اختيار شركة دانلي للصناعات الكهربائية في محافظة ديالى من قبل الباحث لذا للشركة من دور مهم وريادي في الصناعات العراقية وردت السوق المحلية بنتائج ذات مواصفات عالية الجودة، حيث تم جمع البيانات من قسم القدرة والمكان مصنع المحولات الكهربائية ولثلاثة تجارب، فيما يلي وصف تلك التجارب:

- التجربة الأولى: كان حجم العينة للتجربة 26 والتي تمثل وقت اشتغال المكان لحين حصول الفشل.
- التجربة الثانية: كان حجم العينة للتجربة 24 والتي تمثل وقت اشتغال المكان لحين حصول الفشل.
- التجربة الثالثة: كان حجم العينة للتجربة 24 والتي تمثل وقت اشتغال المكان لحين حصول الفشل.

وبين الجدول رقم (2) بيانات هذه التجارب.
تم اخبار البيانات للتجارب الثلاثة باستخدام اختبار طن المطاقة (شفيرو- ويلك). في حزمة التوزيع الطبيعي المستمر (Estrada & Cosmes, 2019: 15)، وقد مستوي معنوية 0.05 وفق الفرضية الأثرية (14-10:10:2013) في R، حيث البيانات تتوزع وفق التوزيع الطبيعي الملون والمثير. البيانات لا تتوزع وفق التوزيع الطبيعي الملون والمثير.

والتلتنتال الاحصائي كما ذهب في الجدول رقم (3) أدناه:

<table>
<thead>
<tr>
<th>التجربة الأولى</th>
<th>التجربة الثانية</th>
<th>التجربة الثالثة</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>41</td>
<td>34</td>
</tr>
<tr>
<td>50</td>
<td>54</td>
<td>35</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>38</td>
</tr>
<tr>
<td>56</td>
<td>55</td>
<td>39</td>
</tr>
<tr>
<td>57</td>
<td>60</td>
<td>42</td>
</tr>
<tr>
<td>57</td>
<td>61</td>
<td>42</td>
</tr>
<tr>
<td>58</td>
<td>61</td>
<td>43</td>
</tr>
<tr>
<td>59</td>
<td>62</td>
<td>45</td>
</tr>
<tr>
<td>70</td>
<td>68</td>
<td>48</td>
</tr>
<tr>
<td>71</td>
<td>80</td>
<td>52</td>
</tr>
<tr>
<td>88</td>
<td>91</td>
<td>57</td>
</tr>
<tr>
<td>59</td>
<td>52</td>
<td>39</td>
</tr>
<tr>
<td>71</td>
<td>26</td>
<td>39</td>
</tr>
</tbody>
</table>

والتلتنتال الاحصائيается من خلال النتائج الموضحة تلاحظ أن جميع نتائج وفق (p-value) هي أكبر من مستوى المعنوية 0.05، وذلك نتائج فرضية الأثر والترفف الفرضية البديلة عليه فان بيانات التجارب تتوزع حسب التوزيع الطبيعي الملون والمثير.

الجدول أعلاه بين نتائج اختبار (شفيرو- ويلك) لبيانات التجارب (المكان). وقيم مستوى الدالة الإحصائية (p-value) من نطاق تأكد من نطاق التطبيق (p-value) في نطاق من نطاق تأكد من نطاق التطبيق (p-value) الضعيف في نطاق تأكد من نطاق التطبيق (p-value).
10- مناقشة النتائج

ينطبق طريقة الوزوم على التجربة ثم تقييم معلومات التوزيع الطبيعي المثلي المبتور حيث كانت القيم التقديرية لهذه المعلومات وكما مبين في الجدول (4) التالي:

جدول رقم (4) بين المعاملا المقدرة للعائق الطبيعي المثلي المبتور وحسب التجربة.

<table>
<thead>
<tr>
<th>الحالة</th>
<th>العائق</th>
<th>F(t)</th>
<th>R(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>الأولى</td>
<td>0.1535</td>
<td>0.8465</td>
<td>1</td>
</tr>
<tr>
<td>الثانية</td>
<td>0.1578</td>
<td>0.8422</td>
<td>2</td>
</tr>
<tr>
<td>الثالثة</td>
<td>0.1593</td>
<td>0.8407</td>
<td>3</td>
</tr>
</tbody>
</table>

ومن خلال النشأة إلى نتائج المجدول الخاصة بدولة المغوليا ود în الفشل ذات العلاقة بدولة المغوليا للعائق:

* النتائج الأولى

من خلال نتائج جدول رقم (4) للمعاملا المقدرة للعائق الطبيعي المثلي المبتور ونتائج جدول رقم (5) دالة المغوليا ود în الفشل ذات العلاقة بدولة المغوليا للعائق الطبيعي المثلي المبتور، أن متوسط اشغال المكان لحن حصول الفشل هو 29 يوم، كما وتبين أن متوسط قيم دالة المغوليا هو 0.8465 أي أن المكان يمكن التحول عليها بنسبة 84.7%، ونسبة عدم التحول على المكان هو 15.3% لكل 33 يوم تقريبا.

* النتائج الثانية

من خلال نتائج جدول رقم (4) للمعائلا المقدرة للعائق الطبيعي المثلي المبتور ونتائج جدول رقم (5) دالة المغوليا ودین الفشل ذات العلاقة بدولة المغوليا للعائق الطبيعي المثلي المبتور، أن متوسط اشغال المكان لحن حصول الفشل هو 38 يوم، كما وتبين أن متوسط قيم دالة المغوليا هو 0.8422 أي أن المكان يمكن التحول عليها بنسبة 84.2%، ونسبة عدم التحول على المكان هو 15.8% لكل 45 يوم تقريبا.

* النتائج الثالثة

من خلال نتائج جدول رقم (4) للمعاملا المقدرة للعائق طبيعي المثلي المبتور ونتائج جدول رقم (5) دالة المغوليا ودین الفشل ذات العلاقة بدولة المغوليا للعائق الطبيعي المثلي المبتور، أن متوسط اشغال المكان لحن حصول الفشل هو 42 يوم، كما وتبين أن متوسط قيم دالة المغوليا هو 0.8407 أي أن المكان يمكن التحول عليها بنسبة 84%، ونسبة عدم التحول على المكان هو 16% لكل 47 يوم تقريبا.

الاستنتاجات

1- مكان النتائج الأولى يمكن التحول عليها بنسبة 84.7%، ونسبة عدم التحول عليها هو 15.3% لكل 29 يوم تقريبا.
2- مكان النتائج الثانية يمكن التحول عليها بنسبة 84.2%، ونسبة عدم التحول عليها هو 15.8% لكل 38 يوم تقريبا.
3- مكان النتائج الثالثة يمكن التحول عليها بنسبة 84%، ونسبة عدم التحول عليها هو 16% لكل 42 يوم تقريبا.
4- سجلت قيم دالة المغوليا في جميع التجارب الحقيقية أقل من الواحد الصحيح وهو متوافق مع خصائص دالة المغوليا.
الدراسات المستقبلية

لغرض استعمال التوزيع المثلثي المبتور على بيانات تتعلق بحياة الإنسان والتي تسمى بحالة البقاء
مثما تم تطبيقه على حياة المكان والذي تم تسميته بحالة المغولية، فنان سيتي مستقبل اعد بحث بعنوان
"تقدمت حياة البقاء لبيانات التوزيع الطبيعي المبتور مع تطبيق عملي" حيث سيتم تطبيقه على بيانات
مرضى مركز ابن سينا في محافظة ديالى لمرضى الفشل الكلوي.

References
3- Azzalini, A.(2018),The Skew-Normal and Related Families, University of Padua, Italy University of Bologna In collabora- ration with Antonella Capitano.
Use The moment method to Estimate the Reliability Function Of The Data Of Truncated Skew Normal Distribution

(1) Hatem Kareem Abbas
Ministry of Health
Diyala Health Directorate
hatimhp2013@gmail.com

(2) Ahmed Dheyab Ahmed
College of Administration and Economics
University of Baghdad
ahmedthieb19@gmail.com

Received: 16/9/2020 Accepted: 13/10/2020 Published: December / 2020

Abstract
The Estimation Of The Reliability Function Depends On The Accuracy Of The Data Used To Estimate The Parameters Of The Probability distribution, and Because Some Data Suffer from a Skew in their Data, to Estimate the Parameters and Calculate the Reliability Function in light of the Presence of Some Skew in the Data, there must be a Distribution that has flexibility in dealing with that Data. As in the data of Diyala Company for Electrical Industries, as it was observed that there was a positive twisting in the data collected from the Power and Machinery Department, which required a distribution that deals with those data and searches for methods that accommodate this problem and lead to accurate estimates of the reliability function, The Research Aims to Use The Method Of Moment To Estimate The Reliability Function for Truncated skew normal Distribution, As This Distribution Represents a Parameterized Distribution That is Characterized By flexibility in dealing with data that is Distributed Normally and Shows some Skewness. From the values defined in the sample space, this means that a cut (Truncated) will be made from the left side in the Skew Normal Distribution and a new Distribution is Derived from the original Skew Distribution that achieves the characteristics of the Skew normal distribution function. Also, real data representing the operating times of three machines until the failure occurred were collected from The Capacity Department of Diyala Company for Electrical Industries, where the results showed that the machines under study have a good reliability index and that the machines can be relied upon at a high rate if they continue to work under the same current working conditions.

Key words: Skew Normal Distribution, Truncated Skew Normal Distribution, Reliability Function, Method of Moments.

1 Ministry of Health- Diyala Health management
2 University of Baghdad College of Administration and Economics