مقارنة بين طريقة الامكان الاعظم والطريقة البيزية في تقدير انحدار كاما مع
تطبيق عملي

أ.د قتيبة نبيل نايف
باحث
جامعة بغداد/كلية الإدارة والاقتصاد
dr.qutaiba@coadec.uobaghdad.edu.iw2
Luay.yahya1989@gmail.com

Received:23/9/2020 Accepted :18/10/2020 Published : January / 2021

٘زا اٌؼًّ ِشخض رؾذ ارفبل١خ اٌّشبع الاثذاػٟ
َٔغت اٌُّظَّٕف
- غ١ش رغبسٞ - اٌزشخ١ض
اٌؼِّٟٛ اٌذٌٟٚ
ٚ٠ؾزٛٞ أ٠ؼًب
، ٚاٌزٟ رىْٛ غ١ش صبثزخ ٚرؼزّذ ا٠ؼبً ػٍٝ رشو١جخ خـ١خ ثٛاعـخ داٌخ اٌشثؾ
ٚوبٔذ افؼً ؿش٠مخ
ٌٍزمذ٠ش ٟ٘ ؿش٠مخ الاِىبْ الاػظُ (MLE) لأٙب اػـذ الً ِزٛعؾ ِشثؼبد
اٌخـأ (MSE).

ٔٛع اٌجؾش: ٚسلخ ثؾض١خ
المصطلحات الرئيسية في البحث:
انحدار كاما، طريقة الامكان الاعظم، الطريقة البيزية، متوسط مربعات الخطأ (MSE).

ابحاث مستن من رسالة ماجستير
المقدمة:

تعتبر تحليل الانحدار من أهم الادوات لبناء أنموذج تمثل الظواهر المدروسة وذلك من خلال معرفة العلاقة بين المتغيرات حيث يكون أحد المتغيرات متغير تابع (معتمد) والآخر متغير تقديرية حيث يقوم الأنموذج بربط هذه المتغيرات معادلة رياضية ومن ثم تقدير معلم الأنموذج وبدعه يمكننا اكتساب الظاهرة المدروسة واستخدام هذا الأنموذج لتطبيق تحقيق شروط فروض المربعات الصغرى إذ يتم تقدير الأنموذج من خلال معادلة الانحدار (0,0) يتبع توزيع كاما نناج اص معامل الربط بحيث تنجا إلى تقديره من خلال معامله والذي تمثل كل معلمات معادلة الانحدار (Máyلاسل) حسب نال الخرط التي تم افتراضها، حيث يكون المتغير المعتمد يتب توزيع كاما (Y) يتبع توزيع كاما واما لجاء إلى استفاس دالة الربط بحيث تنجا إلى تقديره من خلال معامله والتي تمثل كل معلمات معادلة انحدار (Máyلاسل) حسب نال الربط التي تم افتراضها.

\[f(y;\alpha,\lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} (\lambda y)^{\alpha-1} \exp(-\lambda y) I_{(0,\infty)}(y) \]

حيث أن:
- alpha : تمثل معلمة الشكل
- lambda : معلمة القياس
- I(0,\infty) = (n - 1)!
- lambda, alpha > 0

خصائص توزيع كاما:

\[Y_i \sim G(\alpha, \lambda) \] ...

\[E(Y_i) = \frac{\alpha}{\lambda} \] ...

1- الوسط الحسابي [2Bossio , 2015 :p]
2- التبادين [2Bossio , 2015 :p]
$V(Y_i) = \frac{\alpha}{\lambda^2} = \mu^2 \left(\frac{1}{\alpha}\right) = \sigma^2 E(Y_i)^2 \quad \ldots (5)$

ويمكن كتابة الدالة الكثافة الاحتمالية (Pdf) للتوزيع كاما بدلالة معلمتي الشكل (α) والجذر الحسابي (μ) ووالثبات (λ) كالتالي:

$\mu = \frac{\alpha}{\lambda} \quad \ldots (6)$

$\lambda = \frac{\alpha}{\mu} \quad \ldots (7)$

$f(\mu, \alpha) = \frac{1}{\gamma(\alpha)} \left(\frac{\alpha}{\mu}\right)^\alpha \exp \left(-\frac{\alpha}{\mu} y\right) \quad I(0, \infty)Y$ \quad \ldots (8)

- اختراع كاما

يعتبر النموذج اختراع كاما (GRM) اعتمادا على مضموع النماذج الخطية المعممة (GLM) أو انحذاس كايا (Linear Models) الذي يختلف عن الانحذاس الخطي المعروف كون انقيم المتوقعة للعوامل Y تسمى مكثفة خطي لمتغير η ويعتبر نموذج اختراع كاما، نموذج نموذج اختراع كاما مع الحالة قائمة في جميع حالات، بالإضافة إلى أنه يمكن اختبار الخطأ الخاص بالنموذج بصورة يكون مستقل ومعكس الإختراع الخطي الذي يجب دائما أن يكون توزيع الخطأ توزيع طبيعيا. تتم توليد نموذج اختراع كاما على أساس أن ذلك التوزيع هو توزيع كاما وأن متوسطه مرتبط بمقدار الإحصاء من خلال ميزة خطي (يُشير إلى ميزة كسرية) بواسطة دالة ربيع. يمكن أن تكون دالة الربيع في الدالة الدالة المكعبه أو الدالة الوبييرثيم. يتضمن النموذج اختراع كاما أيضا معالجة الشكل، والتي قد تكون ثابتة أو تعتمد ببايادلة اختراع من خلال مؤشر خطي (يُشير إلى ميزة خطي ودالة ربيع أيضا، كدالة الوبييرثيم). يتم تطبيق النموذج اختراع كاما في مجموعة واسعة من التطبيقات التجريبية كمثاب الحالة في عملية توزيعات الناسد ووجاءت نموذج اختراع كاما بهذا النسبية كون نموذج الاستجابة $(0, \infty)$ [Bossio, 2015;p2]

- اختراع كاما

يتم توزيع كاما حيث تكون قيمة أخرى ضمن الفترة: Y_i للكن: $Y_i \sim \Gamma(\mu, \alpha)$ حيث α هي متغيرات عشوائية مستقلة وعمودية

$\eta_i = g(\mu_i) = \hat{x}_i \beta \quad \ldots (9)$

أمثلة اختراع كاما

$\beta = (\beta_0, \beta_1, \ldots, \beta_p)$

من المتغيرات المستقلة $x_i $(i=1,2,, n)
في حالة معلومة الشكل غير ثابتة وهذا ما دعاه دراسته في هذا البحث أي يمكن تعميمها كما في معادلة (9)

حيث أن الحداد كاملا يصبح بالمراجع المشتركة لمعظم الوسط والشكل متغير توزيع كاملا أي أن

حيث أن

\[\eta_{1i} = g(\mu_i) = \hat{x}_i \beta \]
\[\eta_{2i} = h(\alpha_i) = \hat{z}_i \gamma \]

هي متجهات معلومات الالحاد篮 المتعلقة بالوسط.

هناك ثلاثة دوال ربط

1- دالة الربط اللوغارتمية
2- دالة الربط الطبيعية
3- دالة الربط العكسية

حيث

\[\eta_{1i} = g(\mu_i) = \log(\mu_i) \]
\[\eta_{2i} = h(\alpha_i) = \frac{1}{\mu_i} \]

حيث

\[Y_i \sim G(\mu_i, \alpha_i) \]

حيث

\[\theta \]

3- طريقة الأمكان الأعظم (MLE)

تعد هذه الطريقة من أهم الطرق المهمة لما لها من تطبيقات واسعة لتقدير معلومات النماذج الإحصائية وتشمل هذه الطريقة عدة خواص استدلالية منها خاصية الأساق والثوابت وعدم التحيز في أغلب

الاحيان إذا كان كتبية دالة الأمكان للاحداد كاملا بالشكل التالي

\[L = \prod_{i=1}^{n} f(y; \lambda, \alpha) \]

\[L = \prod_{i=1}^{n} \frac{1}{\Gamma(\alpha_i)} \frac{\alpha_i}{\mu_i} y_i^{\alpha_i-1} \exp \left(-\frac{\alpha_i}{\mu_i} y_i \right) \]

\[\log(L) = \sum_{i=1}^{n} \left(-\log(\Gamma(\alpha_i)) + \alpha_i \log \left(\frac{\alpha_i y_i}{\mu_i} \right) - \log(y_i) - \left(\frac{\alpha_i}{\mu_i} \right) y_i \right) \]

حيث

\[\alpha_i = \exp(\hat{z}_i \gamma) \]
\[\mu_i = \hat{x}_i \beta \]

\[\frac{\partial L}{\partial \beta_j} = \sum_{i=1}^{n} -\frac{\alpha_i}{\mu_i} \left(1 - \frac{y_i}{\mu_i} \right) x_{ij} \quad ; j = 1, \ldots, p \]

\[\frac{\partial L}{\partial y_k} = \sum_{i=1}^{n} -\alpha_i \left[\frac{d}{d \alpha_i} \log \Gamma(\alpha_i) - \log \left(\frac{\alpha_i y_i}{\mu_i} \right) - 1 + \frac{y_i}{\mu_i} \right] z_{ik} \quad ; k = 1, \ldots, r \]
والتي هي مصفوفة الاشتقاق الجزئي من الدرجة الثانية لدالة عدبة متعددة، وتضم جميع المشتقات الجزئية من الدرجة الثانية الممكنة لدالة [Adekannmbi, 2017:p7].

\[
\frac{\partial^2 L}{\partial \beta_k \beta_j} = \sum_{i=1}^{n} \frac{\alpha_i}{\mu_i^2} \left(1 - \frac{2y_i}{\mu_i}\right) x_{ij} x_{ik} \quad j, k = 1, \ldots, p \quad \ldots (17)
\]

\[
\frac{\partial^2 L}{\partial \gamma_k \beta_j} = \sum_{i=1}^{n} \frac{-\alpha_i}{\mu_i} \left(1 - \frac{y_i}{\mu_i}\right) x_{ij} z_{ik} \quad k = 1, \ldots, r \quad \ldots (18)
\]

\[
\frac{\partial^2 L}{\partial \gamma_k \gamma_j} = \sum_{i=1}^{n} -\alpha_i \left[\frac{d}{d \alpha_i} \log \Gamma(\alpha_i) - \log \left(\frac{\alpha_i y_i}{\mu_i}\right) - 1 + \frac{y_i}{\mu_i} \right] z_{ij} z_{ik}
\]

\[-\sum_{i=1}^{n} \alpha_i \left[\frac{d^2}{d \alpha_i^2} \log \Gamma(\alpha_i) - 1 \right] z_{ij} z_{ik} \quad j, k = 1, \ldots, r \quad \ldots (19)
\]

وباستخدام مصفوفة المعلومات لفيسر (Fisher information matrix) المرتبطة بتقديرات الاحتمالات القصوى، وكما موضح في المعادلات (20) و (24) [Adekannmbi, 2017:p8]:

\[
l(\beta) = \begin{bmatrix}
-\mathbb{E}\left(\frac{\partial^2 L}{\partial \beta_k \beta_j} \right) & \mathbb{E}\left(\frac{\partial^2 L}{\partial \gamma_k \beta_j} \right) \\
-\mathbb{E}\left(\frac{\partial^2 L}{\partial \gamma_k \beta_j} \right) & \mathbb{E}\left(\frac{\partial^2 L}{\partial \gamma_k \gamma_j} \right)
\end{bmatrix} \quad \ldots (20)
\]

\[-\mathbb{E}\left(\frac{\partial^2 L}{\partial \beta_k \beta_j} \right) = \sum_{i=1}^{n} \frac{\alpha_i}{\mu_i^2} x_{ij} x_{ik} \quad \ldots (21)
\]

\[-\mathbb{E}\left(\frac{\partial^2 L}{\partial \gamma_k \beta_j} \right) = 0 \quad k = 1, \ldots, r ; j = 1, \ldots, p \quad \ldots (22)
\]

\[-\mathbb{E}\left(\frac{\partial^2 L}{\partial \gamma_k \gamma_j} \right) = \sum_{i=1}^{n} \alpha_i \left[\frac{d^2}{d \alpha_i^2} \log \Gamma(\alpha_i) - \frac{1}{\alpha_i} \right] z_{ij} z_{ik} \quad j, k = 1, \ldots, r \quad \ldots (23)
\]

\[
l(\beta) = \begin{bmatrix}
\sum_{i=1}^{n} \frac{\alpha_i}{\mu_i^2} x_{ij} x_{ik} & 0 \\
0 & \sum_{i=1}^{n} \alpha_i \left[\frac{d^2}{d \alpha_i^2} \log \Gamma(\alpha_i) - \frac{1}{\alpha_i} \right] z_{ij} z_{ik}
\end{bmatrix} \quad \ldots (24)
\]
حيث أن مصفوفة المعلومات لـ (Fisher information matrix) تتم تطبيق أحدث الكتل (Blocks) مع معلمات الانحدار المتوسط والآخرين مع مادحة الحد الشكل وبالتالي فإن متجهات المعلومة
\(\hat{\beta}, \hat{\gamma} \) مستقلة عن بعضها وغيّر متانة. ومن خلال معادلة (24) نلاحظ أنه لكي يمكن تقدير معلمات المودد انحدار كاما (GRM) بالطرائق الاعتيادية وإلى حد الأقصى لمتتي تقدير احتمال معلمات المودد انحدار كاما وهي مشابهة لطريقة نيوتن رافسن أو خوارزمية المربعات الصغرى (iterative weighted least square) التي تستخدم فيها القيم المتوقعة من مشتقين من مصفوفة الكوارمودد المتوقعة من خلال الخوارزمية وصولاً إلى تقدير المعلومة.

\[
\hat{\beta}^{(k+1)} = (XW_1^{(k)}X)^{-1}XW_1^{(k)}Y
\]

(25)

اذ أن:

مصفوفة قطرية عنصرها هي:

\[
W_1^{(k)} = \frac{(\mu_{1})_{(k)}}{\alpha_{1}(k)}
\]

(26)

وأن:

\[
\hat{\gamma}^{(k+1)} = (ZW_2^{(k)}Z)^{-1}XW_2^{(k)}Y
\]

(27)

\[
X \ [Cuervo \ , \ 2001 : \text{p}33].
\]

أذ أن مصفوفة Z تحتوي على نفس المتغيرات الموجودة في مصفوفة.

مصفوفة قطرية عنصرها هي:

\[
W_2^{(k)} = \frac{1}{\alpha_{2}(k)}
\]

(28)

اذ أن:

\[
di = \frac{1}{\alpha_{i}^{-2}} \left[\frac{d^2}{d\alpha_{i}^2} \log \log \Gamma(\alpha_{i}) - \frac{1}{\alpha_{i}} \right]^{-1}
\]

(29)

والخطط الأساسي رقم (1) يوضح خطوات الخوارزمية التكرارية لطريقة الأمكن الأعظم (من قبل الباحث):

البداية

أجعل قيمة العدد \(k=0 \)

تقدير معلمة \(\beta \) من المعادلة (25)

تقدير معلمة \(\gamma \) من المعادلة (27)

أجعل عدد التكرار \(k=1 \)

طبع النتائج

النهاية
Bayesian Method:

The Bayesian method is a statistical method that is used to update the probability of a hypothesis as more evidence or information becomes available. In this context, the prior distribution represents the initial or prior beliefs about the parameter of interest, while the posterior distribution is the updated distribution reflecting the updated beliefs after considering the new data.

The prior distribution is often represented by a probability density function (PDF) or a probability mass function (PMF), and it is denoted as $p(\theta)$ or $f(\theta)$.

The posterior distribution is then obtained by applying Bayes' theorem, which states that the posterior distribution is proportional to the product of the prior distribution and the likelihood function. Formally, this can be written as:

$$p(\theta | y) \propto p(y | \theta)p(\theta)$$

where $p(y | \theta)$ is the likelihood function, which represents the probability of observing the data y given the parameter θ, and $p(\theta)$ is the prior distribution of θ.

The posterior distribution is often more difficult to compute than the prior distribution, and in many cases, it is necessary to use numerical methods to approximate it. However, when the prior and likelihood distributions are both normal distributions, the posterior distribution is also a normal distribution.

For example, consider the following scenario: suppose we want to estimate the mean of a normal distribution, and we have a prior belief that the mean is around 0 with some uncertainty. We then collect data and observe a sample mean of 2. Using Bayes' theorem, we can update our prior belief to obtain a posterior distribution that reflects both our prior knowledge and the new data.

The posterior distribution will be centered around the sample mean, but its variance will be smaller than the prior variance, reflecting the additional information gained from the sample data.

In summary, the Bayesian method provides a principled way to combine prior knowledge with new data to update our beliefs about the parameter of interest. It allows us to quantify the uncertainty in our estimates and to incorporate prior information in a systematic way.
3-4 Gibbs صياغت

لانونوج اخضام كاما

هو مولد التوزيعات الشرطية الكامنة لمعلمات

النموذج ولي تحصيل عليه بجب إيجاد التوزيع اللائق وذلك بفرض أن التوزيع الأولي (السابق) للمعلمات

(β, γ) هو أحد التوزيعات المتصلة وأن توزيع كل منها مستقل عن الآخر ويتكون دالة الكثافة الاحتمالية

الاولية المشتركة p(β, γ) كما موضحة في معادلة (31)

[Cuervo , 2001 :p60-61]:

\[
\begin{pmatrix}
\beta \\
\gamma
\end{pmatrix}
\sim N
\begin{pmatrix}
\mu_b \\
\mu_g
\end{pmatrix},
\begin{pmatrix}
\Sigma_b & \Sigma_{bg} \\
\Sigma_{gb} & \Sigma_g
\end{pmatrix}
\]

حيث أن:

\[
\Sigma = \text{diag}(\sigma_i^2)
\]

والرجوع إلى المعادلة (30) نرى أن من الصعوبة إيجاد التوزيعات الشرطية الكامنة للمعلمات باستخدام

طريقة Gibbs بعد استخدام تحويل Gibbs عينة من أي توزيع معروف وهنا سيكون التوزيع هو التوزيع الطبيعي

ومن خلال (Normal distribution) استخدام سلسلة ماركوف مونيتي كارلو (MCMC) سوف نولد عينات تقريرية من التوزيع اللاحق وكم يلي

[Cuervo , 2016 :p5]:

بالمعلمات β المتغيرات المسادة العامة (32)

\[
\hat{y}_i = \hat{h}(\mu_i) + \mu_i \gamma_i, \quad \mu_i \sim \text{Normal distribution}
\]

زٛ٠ً (the working observational variables)

ٍٚٓ اْ اٌٚٝ (Taylor approximation)

ٕٚ٘ب ع١ىْٛ اٌزٛص٠غ اٌلاؽك ٚوّب ٠ٍٟ

ٍٚٓ اْ اٌٚٝ (Current values)

ٕٚ٘ب ع١ىْٛ اٌزٛص٠غ اٌلاؽك ٚوّب ٠ٍٟ

ٍٚٓ اْ اٌٚٝ (the working observational variable)

ٕٚ٘ب ع١ىْٛ اٌزٛص٠غ اٌلاؽك ٚوّب ٠ٍٟ
ورغموضة في معادلة (36-2) وباستخدام تحويل (Kernel transition) سوف نحصل على التوزيع الشرطي الكامل للمعاقبة γ عندما β، γ (40) في خوازمية Λ [Cuervo, 2001 :p 91]

$\psi = \text{diag}(\sigma_i^2)$

$g(\sigma_i^2(c)) = \bar{z}_i \gamma$ (46)

$\sigma_i^2(c) = g^{-1}(\bar{z}_i \gamma)$ (47)

وربالتالي فإن β, γ (45) كملاطية:

$\gamma_i = \bar{z}_i \beta^{(c)} + g^1(\bar{z}_i \beta^{(c)})(\bar{t}_i - g^{-1}(\bar{z}_i \beta^{(c)})) ; i = 1, \ldots, n$ (48)

ويمكن ايجاد التباين للمعاقبة (48) وكما يلي:

$\text{var}(\gamma_i) = \sigma_i^2 = \left[g^1(\bar{z}_i \gamma) \right]^2 \text{var}(\bar{t}_i)$ (49)

أذ أن التوزيع الشرطي: γ على الصورة التالية:

$g = g_0 - CB_0^{-1}(\beta - \beta_0)$ (50)

$G = G_0 - CB_0^{-1}C$ (51)

وربالتالي سوف نحصل على التوزيع الشرطي الكامل للمعاقبة γ

$q_2(\gamma, \beta) = N(g^*, G^*)$ (53)

أذ أن:

$g^* = G^*(G^{-1}g + Z\psi^{-1}\bar{Y})$ (54)

$G^* = (G^{-1} + Z\psi^{-1}Z)^{-1}$ (55)

$\gamma_i = \gamma_i$ وان γ: مكونات المتغيرات المتماثلة وتتوابع على

$\gamma_i = \bar{z}_i \beta + \frac{y_i}{\mu_i} - 1$ (56)

وربالتالي سيتفرج قيم γ, β في خوازمية Λ [62Metropolis-Hastings] [Cuervo, 20016 :p6] [Cuervo, 2001 :p]

$\zeta(\beta, \phi) = \min\left\{ 1, \prod_i i \phi_i(q(\phi_i, \beta_i)) \prod_i i(\beta_i) q(\beta_i, \phi_i) \right\}$ and $\zeta(\gamma, \phi) = \min\left\{ 1, \prod_i i(\gamma_i) q(\gamma_i, \phi_i) \prod_i i(\phi_i) q(\phi_i, \gamma_i) \right\}$

$u \sim u(0, 1)$

$\gamma^{(j)} = \phi$, $\beta^{(j)} = \phi$ لJess $u \leq \zeta(\gamma, \phi)$ و $u \leq \zeta(\beta, \phi)$ (4) إذا كنا $\gamma^{(j)} = \gamma^{(j)}$ و $\beta^{(j)} = \beta^{(j)}$ لJess $u \geq \zeta(\gamma, \phi)$ و $u \geq \zeta(\beta, \phi)$ (7)

$|62Cuervo, 2001 :p| j$ ثم نذهب إلى الخطوة (2) (8)
المخطط الأساسي رقم (2) للطريقة البيزية [من قبل الباحث].

```
Start

- ندخل قيمة افتراضية لمعلمات النموذج
- توليد قيمة مقترحة من التوزيعات السابقة

- حسب التوزيعات الشرطية الكاملة من المعادلات (53) و (40)
- حسب احتمالية القبول
  \[ \zeta(\beta, \phi) \]

- توليد \( u \sim u(0, 1) \)

IF \( u \leq \zeta(\beta, \phi) \) & \( u \leq \zeta(\gamma, \phi) \)

\[ y^{(j)} = y^{(j-1)} \& \beta^{(j)} = \beta^{(j-1)} \]

YES

\[ y^{(j)} = \phi \& \beta^{(j)} = \phi \]

طبع النتائج

END
```

{486}
الجوانب التطبيقي:

تبذة عن مرضا يرنان الأطفال (ابو صفار في الدم)

الداحتي الولدات:

توجد هناك مادة تسمى البيليروبين (Bilirubin) موجودة في دم الأطفال وان ارتفاعها يؤدي إلى مايسمى بالبرقان الولدات، حيث أن هذه المادة ينتجها الجسم بشكل طبيعي وذلك بسبب تكسير كريات الدم الحمراء ومن بعدها يقوم الكبد بالتنقلها وطرحها عن طريق البراز. قد يحدث هذا النوع من البرقان بين اليوم الثاني والسابع، ويحدث البرقان نتيجة عدة أسباب، وأهمها هو ارتفاع في قيم ضغط الدم خلايا كريات الدم الحمراء الزائدة التي تنتج عن تحملها مادة البيليروبين والتي تكون مسؤولة عن البرقان، بالإضافة إلى ذلك عدم تضح الكبد عند الطفلك عند الولاده حيث أن الكبد لا يستطيع التخلص من كمية البيليروبين الزائدة في الدم، أي أن زيادته في هذه المرحلة المبكرة عند الطفلك يؤدي إلى ظهور لون أصفر في الجلد والعينين وعلى وجه الطفلك ثم الصدر والبطن والاخراء القدام، وتختلف كمية البيليروبين التي تكون فيها خطا على الطفلك وذلك حسب الوزن وعمر الطفلك، وكذلك حالات أخرى مرضا تتخلق بالمكان والوقت الصفراوي، والنفسة الطبيعية للبيليروبين عند الولدات الولدات (5.5) ملم جرام – ديمسيتر أو أقل [Dakhel: 2011].

وصف البيانات:

تم الاعتماد على بيانات حقيقية حول مرضا يرنان الأطفال حديثي الولدات، حيث توجد الكثير من المتغيرات التي تؤثر في هذا المرض، وإن في هذا البحث اخذنا بعض المتغيرات والذئ بمشاركة الأطباء المختصين لهذا المرض، حيث تم اخذ عينة لـ (67) مصاب بالبرقان الولدات من مستشفى العلاج التعليمي للولدات، والمدير المعتمد (Y) تمثل نسبة البيليروبين في دم الطفلك والمتغير (X1) تمثل عمر الطفلك والمتغير (X2) تمثل نسب خلايا كريات الدم الحمراء عند الطفلك والجذور رقم (PCV) (X3) يتمثل وزن الطفلك والمتغير (X4) تمثل نسب خلايا كريات الدم الحمراء عند الطفلك، والجدول رقم (1) يوضح البيانات الخاصة بمرضا البرقان الولدات عند الأطفال حديثي الولدات، والأعم العامل المؤثر عليه.

<table>
<thead>
<tr>
<th></th>
<th>نسبة البيليروبين</th>
<th>وزن الطفلك</th>
<th>عمر الطفلك</th>
<th>pcv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.5</td>
<td>2.5</td>
<td>5</td>
<td>0.35</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>0.41</td>
</tr>
<tr>
<td>3</td>
<td>15.2</td>
<td>1.4</td>
<td>4</td>
<td>0.77</td>
</tr>
<tr>
<td>4</td>
<td>10.5</td>
<td>2</td>
<td>6</td>
<td>0.75</td>
</tr>
<tr>
<td>5</td>
<td>14.7</td>
<td>1.3</td>
<td>4</td>
<td>0.77</td>
</tr>
<tr>
<td>6</td>
<td>5.7</td>
<td>2.5</td>
<td>5</td>
<td>0.35</td>
</tr>
<tr>
<td>7</td>
<td>11.5</td>
<td>1.8</td>
<td>6</td>
<td>0.75</td>
</tr>
<tr>
<td>8</td>
<td>7.8</td>
<td>2.4</td>
<td>4</td>
<td>0.45</td>
</tr>
<tr>
<td>9</td>
<td>15.6</td>
<td>1.4</td>
<td>3</td>
<td>0.81</td>
</tr>
<tr>
<td>10</td>
<td>6.5</td>
<td>2.7</td>
<td>4</td>
<td>0.41</td>
</tr>
<tr>
<td>11</td>
<td>9.6</td>
<td>2.5</td>
<td>5</td>
<td>0.63</td>
</tr>
<tr>
<td>12</td>
<td>13.9</td>
<td>1.5</td>
<td>2</td>
<td>0.77</td>
</tr>
<tr>
<td>13</td>
<td>8.6</td>
<td>2</td>
<td>5</td>
<td>0.52</td>
</tr>
<tr>
<td>14</td>
<td>15.4</td>
<td>1.7</td>
<td>2</td>
<td>0.81</td>
</tr>
<tr>
<td>15</td>
<td>10.4</td>
<td>2.8</td>
<td>6</td>
<td>0.75</td>
</tr>
<tr>
<td>16</td>
<td>5.7</td>
<td>1.5</td>
<td>5</td>
<td>0.35</td>
</tr>
<tr>
<td>17</td>
<td>8.7</td>
<td>2</td>
<td>5</td>
<td>0.52</td>
</tr>
<tr>
<td>18</td>
<td>11.7</td>
<td>2.8</td>
<td>6</td>
<td>0.75</td>
</tr>
<tr>
<td>19</td>
<td>15.1</td>
<td>1.6</td>
<td>2</td>
<td>0.77</td>
</tr>
<tr>
<td>20</td>
<td>6.3</td>
<td>2</td>
<td>6</td>
<td>0.41</td>
</tr>
<tr>
<td>21</td>
<td>9.5</td>
<td>2.5</td>
<td>5</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>22</td>
<td>13.4</td>
<td>1.4</td>
<td>2</td>
<td>0.75</td>
</tr>
<tr>
<td>23</td>
<td>5.8</td>
<td>2.5</td>
<td>3</td>
<td>0.35</td>
</tr>
<tr>
<td>24</td>
<td>8.6</td>
<td>2.5</td>
<td>4</td>
<td>0.52</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>0.41</td>
</tr>
<tr>
<td>26</td>
<td>5.5</td>
<td>3</td>
<td>6</td>
<td>0.35</td>
</tr>
<tr>
<td>27</td>
<td>9.2</td>
<td>2.5</td>
<td>5</td>
<td>0.63</td>
</tr>
<tr>
<td>28</td>
<td>7.1</td>
<td>1.8</td>
<td>4</td>
<td>0.45</td>
</tr>
<tr>
<td>29</td>
<td>16.8</td>
<td>1.7</td>
<td>2</td>
<td>0.81</td>
</tr>
<tr>
<td>30</td>
<td>6.4</td>
<td>3</td>
<td>3</td>
<td>0.41</td>
</tr>
<tr>
<td>31</td>
<td>8.8</td>
<td>2</td>
<td>4</td>
<td>0.52</td>
</tr>
<tr>
<td>32</td>
<td>9.1</td>
<td>2.5</td>
<td>5</td>
<td>0.63</td>
</tr>
<tr>
<td>33</td>
<td>14.2</td>
<td>1.5</td>
<td>2</td>
<td>0.77</td>
</tr>
<tr>
<td>34</td>
<td>7.2</td>
<td>2.8</td>
<td>4</td>
<td>0.45</td>
</tr>
<tr>
<td>35</td>
<td>5.9</td>
<td>3</td>
<td>5</td>
<td>0.35</td>
</tr>
<tr>
<td>36</td>
<td>10</td>
<td>2.5</td>
<td>6</td>
<td>0.75</td>
</tr>
<tr>
<td>37</td>
<td>7.3</td>
<td>2.8</td>
<td>4</td>
<td>0.45</td>
</tr>
<tr>
<td>38</td>
<td>15.7</td>
<td>1.5</td>
<td>2</td>
<td>0.81</td>
</tr>
<tr>
<td>39</td>
<td>6.7</td>
<td>3</td>
<td>3</td>
<td>0.41</td>
</tr>
<tr>
<td>40</td>
<td>10.1</td>
<td>2.8</td>
<td>6</td>
<td>0.75</td>
</tr>
<tr>
<td>41</td>
<td>5.6</td>
<td>3</td>
<td>3</td>
<td>0.35</td>
</tr>
<tr>
<td>42</td>
<td>5.7</td>
<td>2.5</td>
<td>3</td>
<td>0.35</td>
</tr>
<tr>
<td>43</td>
<td>14.6</td>
<td>1.5</td>
<td>7</td>
<td>0.77</td>
</tr>
<tr>
<td>44</td>
<td>8.5</td>
<td>2</td>
<td>5</td>
<td>0.52</td>
</tr>
<tr>
<td>45</td>
<td>7.2</td>
<td>2.8</td>
<td>4</td>
<td>0.45</td>
</tr>
<tr>
<td>46</td>
<td>12.5</td>
<td>1.7</td>
<td>5</td>
<td>0.75</td>
</tr>
<tr>
<td>47</td>
<td>8.4</td>
<td>2</td>
<td>5</td>
<td>0.52</td>
</tr>
<tr>
<td>48</td>
<td>16.3</td>
<td>1.5</td>
<td>2</td>
<td>0.81</td>
</tr>
<tr>
<td>49</td>
<td>7.4</td>
<td>2.8</td>
<td>4</td>
<td>0.45</td>
</tr>
<tr>
<td>50</td>
<td>13.7</td>
<td>3</td>
<td>2</td>
<td>0.75</td>
</tr>
<tr>
<td>51</td>
<td>6.1</td>
<td>3</td>
<td>3</td>
<td>0.41</td>
</tr>
<tr>
<td>52</td>
<td>9.6</td>
<td>2.5</td>
<td>5</td>
<td>0.63</td>
</tr>
<tr>
<td>53</td>
<td>12</td>
<td>2.8</td>
<td>3</td>
<td>0.75</td>
</tr>
<tr>
<td>54</td>
<td>7.4</td>
<td>2.5</td>
<td>4</td>
<td>0.45</td>
</tr>
<tr>
<td>55</td>
<td>9</td>
<td>2.5</td>
<td>5</td>
<td>0.63</td>
</tr>
<tr>
<td>56</td>
<td>16.5</td>
<td>1.5</td>
<td>3</td>
<td>0.81</td>
</tr>
<tr>
<td>57</td>
<td>8.5</td>
<td>2</td>
<td>4</td>
<td>0.52</td>
</tr>
<tr>
<td>58</td>
<td>6.2</td>
<td>3</td>
<td>3</td>
<td>0.41</td>
</tr>
<tr>
<td>59</td>
<td>8.1</td>
<td>2.5</td>
<td>4</td>
<td>0.52</td>
</tr>
<tr>
<td>60</td>
<td>5.7</td>
<td>1.5</td>
<td>3</td>
<td>0.35</td>
</tr>
<tr>
<td>61</td>
<td>6.8</td>
<td>3</td>
<td>3</td>
<td>0.41</td>
</tr>
<tr>
<td>62</td>
<td>14.8</td>
<td>1.4</td>
<td>3</td>
<td>0.77</td>
</tr>
<tr>
<td>63</td>
<td>7.5</td>
<td>2.5</td>
<td>4</td>
<td>0.45</td>
</tr>
<tr>
<td>64</td>
<td>15.3</td>
<td>1.5</td>
<td>2</td>
<td>0.77</td>
</tr>
<tr>
<td>65</td>
<td>10.3</td>
<td>2.8</td>
<td>6</td>
<td>0.75</td>
</tr>
<tr>
<td>66</td>
<td>6.2</td>
<td>2.7</td>
<td>5</td>
<td>0.41</td>
</tr>
<tr>
<td>67</td>
<td>9.3</td>
<td>2.5</td>
<td>5</td>
<td>0.63</td>
</tr>
</tbody>
</table>
اختبار البيانات:

لمعرفة فيما إذا البيانات الخاصة بمعرض برقان الولادي عند الأطفال حديثي الولادة تتبع توزيع كاما فقد تم اختبار بيانات متغير الإستجابة (Y) للبيانات الحقيقية بعد تطبيق اختباري (Chi-Squared) و (Kolmogorov-Smirnov) لاختبار حسن المطابقة وتبين ان نسبة (Easy fit) لتحليل البيانات (Y) تتبع توزيع كاما (Gamma distribution) وكما موضح في الجدول رقم (2) والشكل رقم (2).

جدول رقم (2) يبين اختبار حسن المطابقة لتوزيع كاما باستعمال برنامج (Easy fit).

<table>
<thead>
<tr>
<th>Gamma [19]</th>
<th>Kolmogorov-Smirnov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size</td>
<td>67</td>
</tr>
<tr>
<td>Statistic</td>
<td>0.09716</td>
</tr>
<tr>
<td>P-Value</td>
<td>0.52035</td>
</tr>
<tr>
<td>Rank</td>
<td>12</td>
</tr>
<tr>
<td>α</td>
<td>0.1</td>
</tr>
<tr>
<td>Critical Value</td>
<td>0.14693</td>
</tr>
<tr>
<td>Reject?</td>
<td>No</td>
</tr>
<tr>
<td>Chi-Squared</td>
<td></td>
</tr>
<tr>
<td>Deg. of freedom</td>
<td>5</td>
</tr>
<tr>
<td>Statistic</td>
<td>7.8021</td>
</tr>
<tr>
<td>P-Value</td>
<td>0.16748</td>
</tr>
<tr>
<td>Rank</td>
<td>32</td>
</tr>
<tr>
<td>α</td>
<td>0.1</td>
</tr>
<tr>
<td>Critical Value</td>
<td>9.2364</td>
</tr>
<tr>
<td>Reject?</td>
<td>No</td>
</tr>
</tbody>
</table>

شكل رقم (2) يبين دالة الكثافة الاحتمالية لتوزيع كاما للمتغير المعتمد (Y) للبيانات الحقيقية باستعمال برنامج (Easy fit).
تحليل النتائج:

بعداً تم تعريف ووصف البيانات الحقيقية، تم استعمال برنامج (R) للحصول على تقدير معلومات انحدار كاماً باستخدام البيانات الحقيقية، حيث سيتم استخدام طريقة الإمكان الأعظم وطريقة ينحاز على البيانات الحقيقية والمقارنة بين الطريقتين باستعمال متوسط مربعات الخطأ:

\[
\frac{1}{n} \sum_{i=1}^{n} [Y_i - \hat{Y}_i]^2 = \text{MSE}
\]

وكتاب أكمل طريقة للتقدير هي طريقة الإمكان الأعظم (MLE) لانها أعطت أقل (MSE)، إذاً تم الحصول على النتائج الموضحة في جدول رقم (3) :

<table>
<thead>
<tr>
<th>المورد</th>
<th>(\hat{\beta}_0)</th>
<th>(\hat{\beta}_1)</th>
<th>(\hat{\beta}_2)</th>
<th>(\hat{\beta}_3)</th>
<th>(\hat{\phi}_0)</th>
<th>(\hat{\phi}_1)</th>
<th>(\hat{\phi}_2)</th>
<th>(\hat{\phi}_3)</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE</td>
<td>4.88076</td>
<td>1.39582</td>
<td>0.477591</td>
<td>17.03293</td>
<td>3.99978</td>
<td>0.13289</td>
<td>0.28421</td>
<td>3.21148</td>
<td>0.96134 8</td>
</tr>
<tr>
<td>BAYES</td>
<td>0.37694</td>
<td>0.24572</td>
<td>0.119263</td>
<td>17.91118</td>
<td>11.4673</td>
<td>0.64886</td>
<td>0.20035</td>
<td>6.81386</td>
<td>1.13818 3</td>
</tr>
</tbody>
</table>

جدول رقم (3) يوضح القيم التقديرية للمعلومات و(MSE) عند البيانات الحقيقية.

الاستنتاجات:

1- تم التوصل إلى أن متغير الاستجابة (Y) للبيانات الحقيقية يتبع توزيع كاماً.
2- طريقة الإمكان الأعظم هي أفضل طريقة لتقدير معنويان انحدار كاماً للبيانات مرضى البرقان حديثي الولادة (MSE) وذلك لأنها أعطت أقل
3- للاطلاع من نتائج التدقيق العملي أظهرت لدينا تقديرات حادة لمعنويات الإنموذج ولنلاحظ أيضاً ان بالنسبة لمعلومات المتوسط التقديرية (Mean parameters) والثانية هو الحال بالنسبة للمتغيرات المستقلة (\(Y_i \)).

الاستنتاجات:لاجعبيز من هذه القياسات، نقترح استخدام معلمات الربط في النظامة في تقدير

الاستنتاجات:

1- ضورية تطبيق طريقة الإمكان الأعظم في تقدير معلومات انحدار كاماً فهي أفضل من الطرق البسيطة كونها (MSE) أو دالة الربط اللوغاريتمية لمعنويات المتوسط لتوزيع كاماً (\(\mu_i \))،

\[
\text{inverse link} : g(\mu) = \frac{1}{\mu} \quad \text{أو} \quad \text{log link} : g(\mu) = \log \log (\mu)
\]

معنويات انحدار كاماً.
References:
6- Cuervo, E. C, Corrales, M., Cifuentes, M. V., & Zarate, H. (2016), "On gamma regression residuals".
8- Dakhel , T.R , (2011) , " Use of characteristic analysis to determine the importance of factors affecting the newborn with jaundice", Al-Rafidain University College for Sciences Journal, (27), 177-194
Comparison Between Maximum Likelihood and Bayesian Methods For Estimating The Gamma Regression With Practical Application

researcher. Luay Adel Abdaljabbar
Ministry of Higher Education and Scientific Research

Prof. Dr. Qutaiba Nabeel Nayef
University of Baghdad College of Administration and Economics

Luay.yahya1989@gmail.com
dr.qutaiba@coadec.uobaghdad.edu.iw2

Received: 23/9/2020 Accepted: 18/10/2020 Published: January / 2021

Abstract:

In this paper, we will illustrate a gamma regression model assuming that the dependent variable (Y) is a gamma distribution and that its mean (μ_i) is related through a linear predictor with link function which is identity link function g(μ) = μ . It also contains the shape parameter (α_i) which is not constant and depends on the linear predictor and with link function which is the log link: h(α_i) = log log (α_i), and we will estimated the parameters of gamma regression by using two estimation methods which are The Maximum Likelihood and the Bayesian and a comparison between these methods by using the standard comparison of average squares of error (MSE), where the two methods were applied to real data on the disease of jaundice of children newborns (Infant Jaundice) and it was the best method of estimation It is the Maximum Likelihood because it gave less (MSE).

Type of research: research paper.
Key word : Gamma Regression, Maximum Likelihood Method, Bayesian Method, mean squares error (MSE).

* The research is drawn from a master's thesis