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Abstract:

Linear regression is one of the most important statistical tools through
which it is possible to know the relationship between the response variable and
one variable (or more) of independent variable(s), which is often used in various
fields of science. Heteroscedastic is one of linear regression problems, the effect of
which leads to inaccurate conclusions. The problem of heteroscedastic may be
accompanied by the presence of extreme outliers in the independent variables
(High leverage points) (HLPs), the presence of (HLPs) in the data set result
unrealistic estimates and misleading inferences. In this paper, we review some of
the robust weighted estimation methods that accommodate both Robust and
classical methods in the detection of extreme outliers (High leverage points)
(HLPs) and determination of weights. The methods include both Diagnostic
Robust Generalized Potential Based on Minimum Volume Ellipsoid (DRGP
(MVE)), Diagnostic Robust Generalized Potential Based on Minimum
Covariance Determinant (DRGP (MCD)), and Diagnostic Robust Generalized
Potential Based on Index Set Equality (DRGP (ISE)). The comparison was made
according to the standard error criterion of the estimated parameters SE (HC4y)
and SE (HCsy) of general linear regression model, for sample sizes (n=60, n=100,
n=160), with different degree (severity) of heterogeneity, and contamination
percentage (HLPS) are (t =10%, t=30%). it was found through comparison that
weighted least squares estimation based on the weights of the DRGP (ISE)
method are considered the best in estimating the parameters of the multiple
linear regression model because they have the lowest standard error values of the
estimators (HC4y,) and (HCsy) as compared to other methods.

Paper type: Case study
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1- Introduction:

The homoscedasticity assumption is one of the basic assumptions on which
the Ordinary Least Squares (OLS) method depends in estimating the parameters
of the linear regression model that are consistent, unbiased, and efficiency.
Failure to achieve this assumption result the fact that OLS estimators will not be
the best linear unbiased estimate (BLUE) and so the confidence intervals that
are set are incorrect. Therefore, do not use the Ordinary least squares (OLS)
method when presence of Heteroscedastic problem. outliers observations have an
effect even if there is a single observation in the data, its effect may result
incorrect conclusions due to distorted estimates of location estimators and
dispersion ,and the presence of a single outlier may emptying the properties of
the ordinary least squares (OLYS).

Detection and processing of outliers observations is essential because their
presence in the data set results unrealistic estimates and misleading inferences,
the extreme outliers values in the independent variable (HLPs) are considered is
one of those outliers observations. classical diagnostic methods fail to correctly
detect extreme outliers values (HLPs) due to masking effects, so they are
unrealistic methods for determining those values, robust methods are
alternative methods as good and effective methods in identifying (HLPS) correctly
compared to the methods classical. but robust methods have a tendency to
identify more number of outliers in the independent variables (HLPs) and they
are not. This reflects the swamping effects, which is also undesirable. DRGP
(MVE) method is one of the methods to detect the (HLPs), which is characterized
by being an adaptive method that accommodates the two approaches (diagnostic
and robust). The robust approach is used in the first stage in identifying
suspicious observations as extreme outliers values in the independent variable
(HLPs) Then comes the diagnostic methodology as a second stage in confirming
from all suspicious observations.

To remedy the problem of Heteroscedastic and presence of extreme
outliers values (HLPs) together, we worked on the computation of the Robust
Heteroscedastic Consistent Covariance Matrix (RHCCM) for each of the
estimators (HC4y) (HCsy) . These estimators included two stages, the first is
based on adaptive methods to reduce the effect of (HLPs) through determining
the weights and estimation of model parameters, the second stage is the use of a
Heteroscedastic Consistent Covariance Matrix (HCCM) in the case of
Heteroscedastic to eliminate the effect of the Heteroscedastic problem, the
adoption of the standard error criterion in the comparison between the
performance of the methods in estimating model parameters.

Among the most important studies that dealt with the problem of
heteroscedastic errors and the presence of extreme outlier (HLPS), we mention
the study of the researchers (Rousseeuw & Leroy) [8] which included robust
estimates of location and dispersion. The study included the detection of leverage
points using examples and drawings. .

Furno [4] also adopted the use of robust residuals in finding the
Heteroscedastic Consistent Covariance Matrix (HCCM) when there are outliers
in the independent variables (HLPs), which required the computation of the
robust weights to reduce the effect of the outliers. The idea of using robust
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residuals is to reduce the bias of HCCM estimators and to obtain consistent and
robust of Covariance Matrix (RHCCM) estimators.

In 2018, the researchers (Midi) and others [7] presented a comparison
study between some of the robust weighted least squares methods in estimating
model parameters when there is a problem of heteroscedastic errors and the
presence of extreme outliers in the independent variables (high leverage points)
(HLPs) by finding the Robust Heteroscedastic Consistent Covariance Matrix
(RHCCM) that included both of the estimators (HC4y ) (HCsy) , based on
Furno's method of adding the robust weight matrix to the estimators, which were
found based on the RMD (MVE) and DRGP (ISE) as detection methods for
HLPs . The results showed that the weighted least squares method which is based
on the DRGP (ISE) method is the best compared to other methods and in various
percentage of outliers in the independent variables (HLPS).

This paper a review of some robust weighted methods on the basis of
measures of detecting extreme outliers values in the independent variable (high
leverge points) (HLPs) and their use in the weighted least squares method to
estimate the parameters of the general linear regression model when there is a
problem of heteroscedastic and outliers in the independent variable (high leverge
points). The robust estimates of the parameters of the general linear regression
model were compared through the (SE) criterion of estimators (HC4y,) (HCsyy).

2- Theoretical Section

Linear regression is a functional relationship written in the form of a
linear equation, and Considered one of its uses is to explain a variable that called
the response variable through one or more of the independent variables , it is
calculated according to the following formula:

Vi = Bo + B1Xij1 + BoXiz + -+ BpXjp+ & ,i=1,2..,n (1)
Where
y; : observations of the Response variable
Xi1, Xi2, -+, Xjp - ObsServations of the independent variables
Bo, B1, B2, ---, Bp : parameters of the linear regression model
g . The random error is a random variable that is assumed to be normally
distributed with a mean zero and constant variance o?

The assumption that the random error limit is constant, or what is known
as the homogeneity hypothesis is achieved if the observations were drawn from
identical populations and had the same variance, i.e.

6%y = 0%, =06%, = ....= 6%, (2)
the general formula
0210---0] 10 - 0
2
Been=| 9 72 0 0 =0 b D V=on,
lo 0o - aZnJ 0 0 1

But when this hypothesis is not achieve, the problem of heteroscedastic
errors appears, or what is known the error limit is inconstant, we often find it in
cross section data .Weighted least squares (WLS) method is used in the process of
estimating the parameters of the linear regression model as a method of dealing
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with the problem of heteroscedastic by specifying weights (wi) that make the
variances of errors equal, which is calculated by the following formula:
Byis = X'WIX)"IX'w-1y (3)

This method is known as the Generalized Least Squares Method, because
of its dependence on weights (wi) it is known as the Weighted Least Squares
Method (WLYS).

The covariance matrix for the estimated parameters is computed in the following

var — cov(Byys) = a2(X'W™1X)! (4)

3- Estimation the parameters of the linear regression model

When there is a problem of heteroscedastic the weighted least squares
method is used to eliminate the effect of this problem, which requires finding a
matrix of weights in estimating the parameters of the linear regression model.
The presence of extreme outliers in the independent variable (HLPs) in addition
to the presence of the problem of heteroscedastic. We will obtain misleading
results due to the effect of these values when using the classical methods. These
weights were found by some adaptive methods that accommodate the two
approaches (diagnostic and robust), in order to reduce the swamping effects of
the robust methods when the extreme outliers are present in the independent
variables (HLPs) and reduce their effect when estimating the parameters of the
General linear regression model , the methods are :
3-1 Diagnostic Robust Generalized Potential Based on Minimum Volume
Ellipsoid (DRGP(MVE))

Classical diagnostic methods are affected by the effects of masking when
used in detecting outliers in the independent variables (HLPs), which makes them
an unrealistic method of identifying those values. The robust methods are
alternative methods as good and effective methods for identifying (HLPS)
correctly compared to the classical methods, but the robust methods have the
tendency to specify a greater number of outliers in the independent variables
(HLPs) which are not, this reflects the effects of swamping and this is also
undesirable. [5]

(Habshah) and others [6] proposed Diagnostic Robust Generalized
Potential Based on Minimum Volume Ellipsoid (DRGP(MVE)) which is an
adaptive method that accommodates the two approaches ,The robust approach is
used in the first stage in identifying suspicious observations as extreme outliers in
the independent variable (HLPs) Then the diagnostic methodology comes as a
second stage in confirming from all suspicious observations.

Actually finding the (MVE) estimators can be very difficult in practice by
the use of combination when sample size (n) and the variables number (p)
increase , because of increasing the required computational effort dramatically
which it takes a long time. Rousseeuw and Leroy [8] proposed an approximate
method to find the (MVE) estimators involving the use of a subsampling
algorithm through determine number of subsamples from among all the
subsamples That's drawn.[8 pp. 260]
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The Minimum Volume Ellipsoid estimators are used in the first stage by
applying robust Mahalanobis distance RMD (MVE) as a robust method for
detecting outliers in the independent variables (HLPs). it can be summarized in a
number of steps:
1.draw all possible subsamples J of size (P + 1) from observations according to
combinations:

(P:I) J=1,20 . P+1 (5)

2.Calculation of Mahalanobis distances for the observations of the estimators of
location and dispersion for each subsamples according to the following formula:

MD; = \/ (% - 1) () (- i) (6)
Where

f;  The position estimator, is the vector of the arithmetic mean for each
sugample

cv The dispersion estimator, is the variance and covariance matrix for each
subsample
3.Calculate the Minimum Volume Ellipsoid for all subsamples according to the
following formula :

volume = /det (m;% cv) = mP det(cv) (7)

where
m; The maximization factor that is used to maximize the subsample size to
contain approximately half of the observations

4.The subsample that has the Minimum Volume Ellipsoid from all the
subsamples according to Equation (7) is the Optimum subsample.

5.Calculate the robust Mahalanobis distances RMD (MCD) for all sample
observations by replace the mean estimator of the Minimum Volume Ellipsoid
and the covariance matrix estimator after multiplying it by a suitable factor
instead of the arithmetic mean and the covariance matrix in the classical
Mahalanobis distances formula.

6.Determine the outliers by testing them with an appropriate cut-off point, on this
basis any robust Mahalanobis distances greater than the cut-off value is
considered an extreme outlier in the independent variable (HLP). The cut-off
point for robust Mahalanobis distances is defined as (cd) and is calculated as
follows : [7][9][10]

cd = median(RMD;) + 3MAD(RMD,) (8

Where

median(RMD;) : Median value of robust Mahalanobis distances

MAD(RMD;) : The median of absolute deviations Mahalanobis distances from
the median

MAD(RMD;) = median | (RMD,) — median(RMD)) | 9)
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Any observation whose value exceeds the cut-off value is considered to be
a suspicious value (HLP) and is placed in group D or what is also known as a
deleted set. The remaining group of observations represents group R (remaining
group), which It has observations size (n-d) .After identifying both groups (D)
and (R), the first stage ends and the diagnostic methodology begins to check all
observations of group D. Without losing generality, we assume that we have the
observations of the D group, which are the last rows of each of the variables X
and Y, to calculate the hat matrix we use the following formula:
H = X(X'X)"1x’ (10)
Depending on both the group of deleted observations (D) and the remaining
group (R), it is possible to find the elements of h,-("D) we use the following
formula:
hCP = x/(Xg'Xg) Lx; i=1,2 ., (11)
Where hi(_D) represents the diagonal elements of the observations in the matrix
X(Xg'Xp)~1X', it represents the diagonal elements of the hat matrix without a
group (D). Depending on the generalized potential equation, we find the potential
value of all observations in both group (R) and group (D), which is known as the
following: [5]

h_(—D)

————— for i€R

pi=11- h D (12)
h,-(_D), for ieD

Then the outliers in the independent variables (HLPs) are determined by
comparing the potential value p;* with the cut-off point :
Cdy = median (p;") + CMAD (p;") (13)

if all the values in group D are greater than the cut off point in equation
(13) then all those values will be declared outliers in the independent variables
(HLPs), but if all values are not greater than the cut-off point, those values will be
returned to the group R in sequence (the value with the lowest potential value p;*
is returned at the beginning), then the potential values p;* are calculated, this
process continues until all the values in the group (D) are (HLPS). [6]
The diagonal elements of the robust weights matrix can be found according to the
following formula:

, cdy
Wipy = min (1, — )
l
The values which detected as outliers in the independent variables (HLPs)

in the final group (D) will take the weight (Cd’" ), while the rest of the usual

—

L

(14)

observations take weight (1). [7]

3-2 Diagnostic Robust Generalized Potential Based on Minimum_ Covariance
Determinant (DRGP(MCD))

Diagnostic Robust Generalized Potential Based on Minimum Covariance
Determinant (DRGP(MCD)) is the second method that will be employed in
finding robust weights used in the formula for estimating the parameters of the
linear regression model according to the weighted least squares method when
presence problem of heteroscedastic and outliers in the independent variable
(HLPs) together. This method also works in two stages, as is the case in the
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(DRGP(MVE)) method . The first stage begins in detecting the values of (HLPS)
through the use Robust Mahalanobis Distance. Finding estimators (MCD) and
display the work of RMD (MCD) in detecting outliers observations in the
variables X can be summarized in the following Algorithm:

l.draw all possible subsamples J of size (h) from observations according to
combinations:

()= n = 1,2 h 15

h) = R (n—h)! J=12,......, (15)

Where h indicate to half the size of the data, which equal
n+p+1

h=——7— (16)

2.Finding the best subsample J, which is the subsample that has the Minimum
Covariance Determinant among all subsamples :

T= arg, min|cv| 17)

3.considered the estimators of the best subsample for each of the arithmetic mean
vector and the covariance matrix after multiplying them by suitable factor are
estimators (MCD) for the location and dispersion, then we work to find the
square Mahalanobis distances for all the sample observations based on those
estimators according to the following formula :

RMD;ycp® = (xi — 1 ) (cvmcep) ! (xi -1 > (18)
—MCD —MCD

4.To find outliers extreme (HLPS) we will test the computed robust Mahalanobis
distances according to the cut-off point used in the DRGP (MVE) method in
equation (8). Any robust distance greater than the cut-off value will be considered
an extreme outliers value (HLP), otherwise it is a normality observation. [10]

The values of the Robust Mahalanobis Distance that are exceed the cut-off point
value are known as the suspicious values as extreme outliers in the independent
variable (HLPs) and are placed in a group D, while the rest of the normality
values are placed in the R group, this ends the first stage. The second stage in the
(DRGP (MCD)) method is the same as the second stage in the (DRGP (MVE))
method, even in the cut-off point that plays the most prominent role in
determining the robust weights.

3-3 Diagnostic_Robust Generalized Potential Based on Index Set Equality
(DRGP(ISE))

Both the DRGP (MVE) method and the DRGP (MCD) method in the first
stage depend on the Robust Mahalanobis Distance based on each of the
estimators (MVE) (MCD) in detecting (HLPs), which requires a large
computational effort and takes a long time. (Lim and Midi) [5] They proposed to
use the Diagnostic Generalized potential method (DRGP) based on the Index Set
Equality (ISE) when finding the robust estimator of both location and dispersion.
Let's display the observations of the independent variables in the form of a row
vector as in the following formula:

Xi = (1, Xi1 ) Xi2 ) eer eer vuns .,xik) = (1'Rl) (19)
Where
Ri = (xil,xiz,...........,xik) (20)
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Then let us refer to the old indexing group (ISold), which are arranged in
ascending order as follows:
I.S'Old = {T[ozdl ,T[ozdz T ,T[Oldh} (21)

This index set corresponds to the elements of the half subset when the
squared Mahalanobis distance are arranged in ascending of the half subset.[5][7]
The first stage can be summarized in identifying the suspicious observations as
extreme outliers in the independent variable (HLPs) using RMD (ISE) according
to the following algorithm:
1.Selecting a subset denoted by the symbol H,,; and which contains h
observations.
2.Calculate the arithmetic mean vector and the covariance matrix of the subset
Houa
3.Calculate the square Mahalanobis distance for all observations in Hgy
according to the following formula:

2y — i (g g )
D old — (xl &Hold) (CvHold) (xl &Hold) (22)
4.Arrange the square Mahalanobis distance in equation (22) in ascending order
as shown below.

d% g4 ((1)) < d?4q ((2)) < - < d? gy (R(R)) (23)

5.Construct a new subset known as H,,.,, according to the following formula:
Hnew = {R‘r[(l) ) RT[(Z) Yy RT[(h) } (24)

This set corresponds to the elements of the new index set

ISpew = {1, WY, ..., T, (25)

6.1F (ISo1a # ISnew) 16t (Hypq := Hyey ) and work on the calculation of CVy(yew)
and let (CVy(oia):= CVhmew)) Then we calculate EHWW We also let that
(I =i ) Then repeat steps (3-7) to get (ISy1q = ISpew ) When this is
—H(old) —H(new)

achieved both of them fi; and CVy(new) are the estimators position and

—H(new)
scattering of the (ISE) method, substituting these estimators into the Mahalanobis
distances formula to find the robust Mahalanobis distances for all sample
observations.

To detect the extreme outliers in the independent variable (HLPs) in the
first stage will be depend on the cut-off point in equation (8). The robust
Mahalanobis distances that exceed the cut-off value are placed in a group (D),
while the rest of the normal values are placed in the group R, [7]

The second stage of the robust Diagnostic Generalized potential Method (DRGP
(ISE)) works to check from the extreme outliers (HLPs) in group D that were
detected in the first stage, which is the same steps of the second stage in the
DRGP (MVE) method. Except in the cut-off point, in this method we used
another cut-off point which is known as the following formula:

Cd; = median (p,) +3 Q,, (p,) (26)

Where

Q, it is a robust estimator that has a breakdown point of up to (50)% and
represents the pairwise order statistic for all distance, which increases the
accuracy of the cut-off point in determining (HLPs) is known as the following
formula:

220



Journal of Economics and Administrative Sciences Vol.27 (NO. 127) 2021, pp. 213-228

Q= {Clxi—x]i<i}, 27)
Where ¢ = 2.2219 this value will provides Qn a consistent estimator for Gaussian
data
k= (3) ~ (;)/4
Depending on each group(R, D) the process is repeated until it is realized that all

values in group D are extreme outliers (HLPs). The diagonal elements of the
robust weights matrix are calculated according to the following formula: [5]

, cd;
Wipr = min <1,T> (28)
l
observations corresponding to HLPs will take weight (Cpfd’“), the rest of the

normality values will take weight (1) .

4- Robust Heteroscedastic Consistent Covariance Matrix Estimate for Estimate
of the Regression linear model parameters (RHCCM)

The HC, estimator proposed by white [11] is the first consistent estimator
for the covariance matrix under both cases of homoscedastic and heteroscedastic
of unknown form, which is based on the OLS estimates when there is a problem
of heteroscedastic. estimators HC;, HC,, HC3, are proposed and then proposed
another new estimator known as HC4 by (Cribari Neto) [3] which depend on the
estimator HC3, except that The HC, takes into account the ratio between the
measurement of the (hi) and its mean . The HC5 estimator is another proposal by
Cribari-Neto and others [2], this estimator takes into account the maximum
leverage (hi) in addition to the features of the estimator HC4. Presence of the
problem of heteroscedastic and extreme outliers (HLPs) together makes estimates
of OLS parameters biased, thus the inference becomes unrealistic. (Furno) [4]
suggested the Robust Heteroscedastic Consistent Covariance Matrix (RHCCM)
in the case of heteroscedastic and presence the extreme outliers in the
independent variable (HLPs), Weighted least square residuals (WLS) is adopted
instead of residuals OLS in estimators HCCM. [7]
this paper depend on both the estimators HC; and HC,4, because they take into
account the presence of extreme outliers in the independent variable (HLPs) and
based on Furno's method in computing the Robust Heteroscedastic Consistent
Covariance Matrix For the parameters of the estimated model according to the
following formulas and Respectively:

HCyy = X'WX) " IX'W{,, WX X'WX)! (29)
where W is a diagonal square matrix with diagonal elements wi
- é;”
e = diag {m myy )8‘}
h;” _ h;
6i=min{4,_—l} ,h*=z :
h* n
HCsy = X'WX) IX'Wy5,, WX (X'WX) 1 (30)
N é;*
llls = dlag{l—*} i= 1,2,.......n
V@ = h)"
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. , hi* { kh*max}
al = min{—,maxi4d, ——
h* h*

h" = VW x; X'WX) " 1x,/ VW
h;" : the diagonal elements of the weighted hat matrix
Hy = VWX X'WX)"IX'VW (31)
It is adopted as being equal to (0.7). [2] where kis a constant (0 < k<1)
5- Experimental section

The experimental section included generating data that was written in the
programming language (R) using the simulation method (Monte Carlo) with
iterations (10,000) for each experiment, that each experiment is a random process
independent of any other experiment, for sample sizes (n = 60, n = 100, n = 160)
and with different values of the degree Heteroscedastic and with percentage of
outliers (HLPs) equal to (t = 10%, T = 30%), compared were among methods
DRGP (MVE) , DRGP (MCD) and (DRGP (ISE)) in estimating the model
parameters according to the criterion of standard errors (SE) through the Robust
Heteroscedastic Consistent Covariance Matrix (RHCCM) and for each of the
estimators (HC4y) (HCspy).
The simulation involved a number of steps in generating the data, which are :
1.Generate the independent variables (x (1), X (2), X (3), x (4)) according to the
standard normal distribution and according to the following formula :
X~N(0,1)
2.Assuming the parameters of the original model are equal to the following value

80:1.5, BIZB4:1, 32:0.6, B3:O4
3.Generating random errors according to the normal distribution according to
the following formula :
€~(0,0%) ,i=1,2,..,n
Where
0?; = exp{c * x;; }
Where (o?;) represents generating the Heteroscedastic function. The degree
(severity) of the Heteroscedastic depends on the value of the perturbation
constant (C). If the value of (C=0), this leads to homoscedastic, with an increase
in the value of (C) the severity of the Heteroscedastic is increases.in this paper
will be two severity of the Heteroscedastic is low and high depending on the value
of (C). When we adopt the value of (C = 0.20) we obtain a (low A), but if the value
of (C = 0.40) we obtain a ( high 4). The severity of the Heteroscedastic is
calculated according to the following:

max(c?)) _

= ,(i=1,2...,n (32)

min(o?;)
4.calculate the response variable by multiplying the matrix of independent
variables with vector the parameters, adding the value of the random error
5.In order to obtain (HLPs) in the data, some observations in the independent
variables were randomly replaced with extreme outliers (HLPs) values with
specific percentage (30%, 10%) of the total sample size, these values follow the
normal distribution according to the formula The following:
X~N(15,1)
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5-1 Results of the Simulation Experiments

The results of the simulation experiments included a number of tables:

Table (1) shows the estimates of the parameters of the general linear regression
model for the robust weighted methods and standard error (SE) for the
estimators (HC4y) (HCsy) When (n = 60) and the percentage of extreme outliers

values in the independent variable (HLPs = 10%, HLPs = 30%)

HLP Method (lowa) (high 1)
Estimate | Se.HCw4 Se.HCws Estimate | Se.HCw. Se.HCws
b0.DRGP(MVE) | 1.499268 | 0.136275* | 0.134079 | 1.500738 | 0.141205* | 0.138902
bl.DRGP(MVE) | 1.000135 | 0.150945* | 0.14495 | 0.998447 | 0.166513* | 0.161455
b2.DRGP(MVE) | 0.599795 | 0.064458 | 0.050103 | 0.600595 | 0.066205* | 0.054799
b3.DRGP(MVE) | 0.39819 | 0.153991* | 0.147817 | 0.396743 | 0.140628* | 0.135057
b4.DRGP(MVE) | 0.999647 | 0.057976 | 0.046977 | 1.000208 | 0.053934 | 0.045093
10% | b0.DRGP(MCD) | 1.49925 | 0.136312 | 0.134072 | 1.500829 | 0.141409 | 0.139086
b1.DRGP(MCD) | 1.000087 | 0.151505 | 0.145199 | 0.998504 | 0.166522 | 0.161361
b2.DRGP(MCD) | 0.599796 | 0.064449* | 0.050107 | 0.600582 | 0.066359 | 0.054857
b3.DRGP(MCD) | 0.398218 | 0.154271 | 0.148035 | 0.396641 | 0.141148 | 0.135493
b4. DRGP(MCD) | 0.99965 | 0.057968* | 0.04698 | 1.000204 | 0.053935 | 0.045094
b0.DRGP(ISE) | 1.499246 | 0.136315 | 0.134008* | 1.500757 | 0.141387 | 0.138857*
b1.DRGP(ISE) | 1.000101 | 0.151447 | 0.144711* | 0.998603 | 0.167212 | 0.161097*
b2.DRGP(ISE) | 0.599791 | 0.065019 | 0.049475* | 0.600533 | 0.06766 | 0.054422*
b3.DRGP(ISE) | 0.398255 | 0.15442 | 0.147163* | 0.396788 | 0.141277 | 0.134578*
b4.DRGP(ISE) | 0.999663 | 0.058495 | 0.046513* | 1.000185 | 0.053601* | 0.043614*
b0.DRGP(MVE) | 1.501132 | 0.156819 | 0.154127* | 1.49968 | 0.160042 | 0.158145
bl.DRGP(MVE) | 1.00166 | 0.132927 | 0.126552* | 1.000692 | 0.142489* | 0.137946*
b2.DRGP(MVE) | 0.599703 | 0.034526 | 0.030267* | 0.600211 | 0.035937* | 0.032084
b3.DRGP(MVE) | 0.400021 | 0.034509 | 0.030481* | 0.399904 | 0.032791 | 0.030375
b4.DRGP(MVE) | 0.999979 | 0.030219 | 0.027424* | 0.999775 | 0.032482* | 0.029096
30% | b0.DRGP(MCD) | 1.501132 | 0.156819 | 0.154127* | 1.49968 | 0.160042 | 0.158145
b1.DRGP(MCD) | 1.00166 | 0.132927 | 0.126552* | 1.000692 | 0.142489* | 0.137946*
b2.DRGP(MCD) | 0.599703 | 0.034526 | 0.030267* | 0.600211 | 0.035937* | 0.032084
b3.DRGP(MCD) | 0.400021 | 0.034509 | 0.030481* | 0.399904 | 0.032791 | 0.030375
b4.DRGP(MCD) | 0.999979 | 0.030219 | 0.027424* | 0.999775 | 0.032482* | 0.029096
b0.DRGP(ISE) | 1.501129 | 0.156175* | 0.154435 | 1.499755 | 0.15993* | 0.157954*
b1.DRGP(ISE) | 1.001767 | 0.130608* | 0.126582 | 1.00086 | 0.143515 | 0.13799
b2.DRGP(ISE) | 0.599718 | 0.034119* | 0.0303 | 0.600196 | 0.035995 | 0.03184*
b3.DRGP(ISE) | 0.400004 | 0.034235* | 0.030987 | 0.399885 | 0.03279* | 0.030294*
b4.DRGP(ISE) | 1.000011 | 0.030077* | 0.027583 | 0.999788 | 0.032505 | 0.028846*

The sign (*) denotes the lowest value of the standard error (SE) of the estimated
parameter compared to its counterparts from other methods.
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Table (2) shows the estimates of the parameters of the general linear regression
model for the robust weighted methods and standard error (SE) for the
estimators (HC4y,) (HCsy) When (n = 100) and the percentage of extreme outliers

values in the independent variable (HLPs = 10%, HLPs = 30%)

HLP Method (low 1) (high 4)
Estimate | Se.HCyua Se.HCws Estimate | Se.HCwa Se.HCys
b0.DRGP(MVE) | 1.500966 | 0.114725* | 0.113489 | 1.254365 | 0.098899 | 0.097484
bl.DRGP(MVE) | 1.000899 | 0.112125 | 0.110333 | 0.836151 | 0.098534 | 0.096065
b2.DRGP(MVE) | 0.600014 | 0.034522 | 0.030852 | 0.501163 | 0.032301 | 0.028012*
b3.DRGP(MVE) | 0.398611 | 0.11267 | 0.110746 | 0.333996 | 0.085537* | 0.08343*
b4. DRGP(MVE) | 1.000275 | 0.038671 | 0.034307 | 0.83542 | 0.033598 | 0.029163*
10% | b0.DRGP(MCD) | 1.500965 | 0.114734 | 0.11348* | 1.254365 | 0.098899 | 0.097484
b1.DRGP(MCD) | 1.000913 | 0.112029* | 0.110297* | 0.836151 | 0.098534 | 0.096065
b2.DRGP(MCD) | 0.600013 | 0.034524 | 0.030854 | 0.501163 | 0.032301 | 0.028012*
b3.DRGP(MCD) | 0.398628 | 0.112608* | 0.110666 | 0.333996 | 0.085537* | 0.08343*
b4. DRGP(MCD) | 1.000276 | 0.038665 | 0.034294 | 0.83542 | 0.033598 | 0.029163*
b0.DRGP(ISE) | 1.50097 | 0.114779 | 0.113495 | 1.254366 | 0.098854* | 0.09745*
b1.DRGP(ISE) | 1.000891 | 0.112383 | 0.110476 | 0.83616 | 0.098386* | 0.095989*
b2.DRGP(ISE) | 0.600036 | 0.034303* | 0.030191* | 0.501166 | 0.032237* | 0.028141
b3.DRGP(ISE) | 0.398614 | 0.112713 | 0.110635* | 0.334017 | 0.085698 | 0.083698
b4.DRGP(ISE) | 1.000262 | 0.038627* | 0.033772* | 0.835422 | 0.033521* | 0.029248
b0.DRGP(MVE) | 1.500478 | 0.115961 | 0.115323 | 1.500928 | 0.120273* | 0.119456*
b1.DRGP(MVE) | 1.000873 | 0.102757 | 0.101268 | 1.001498 | 0.116977 | 0.115102
b2.DRGP(MVE) | 0.5998 0.024204 | 0.022907 | 0.600365 | 0.023411 | 0.02205
b3.DRGP(MVE) | 0.399993 | 0.025419 | 0.023957 0.3998 0.022833 | 0.021724
b4.DRGP(MVE) | 0.999897 | 0.02194 | 0.021059 | 1.000047 | 0.023106 | 0.02194
30% | b0.DRGP(MCD) | 1.500478 | 0.115961 | 0.115323 | 1.500928 | 0.120273* | 0.119456*
b1.DRGP(MCD) | 1.000873 | 0.102757 | 0.101268 | 1.001498 | 0.116977 | 0.115102
b2.DRGP(MCD) | 0.5998 0.024204 | 0.022907 | 0.600365 | 0.023411 | 0.02205
b3.DRGP(MCD) | 0.399993 | 0.025419 | 0.023957 0.3998 0.022833 | 0.021724
b4. DRGP(MCD) | 0.999897 | 0.02194 | 0.021059 | 1.000047 | 0.023106 | 0.02194
b0.DRGP(ISE) | 1.500473 | 0.11579* | 0.115129* | 1.50093 | 0.120494 | 0.119607
b1.DRGP(ISE) | 1.000921 | 0.10184* | 0.100125* | 1.001409 | 0.116544* | 0.114416*
b2.DRGP(ISE) | 0.599797 | 0.024021* | 0.022629* | 0.600368 | 0.023343* | 0.021927*
b3.DRGP(ISE) | 0.400016 | 0.025266* | 0.023702* | 0.399788 | 0.022821* | 0.021676*
b4. DRGP(ISE) | 0.999903 | 0.021824* | 0.020895* | 1.000051 | 0.023044* | 0.021816*

The sign (*) denotes the lowest value of the standard error (SE) of the estimated
parameter compared to its counterparts from other methods.
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Table (3) shows the estimates of the parameters of the general linear regression

model for the robust weighted methods and

standard error (SE) for the

estimators (HC4y,) (HCsy) When (n = 160) and the percentage of extreme outliers

values in the independent variable (HLPs = 10%, HLPs = 30%)

HLP Method (low 1) (high 1)

Estimate | Se.HCyua Se.HCws Estimate | Se.HCwa Se.HCys

b0.DRGP(MVE) | 1501635 | 0.085173 | 0.084624* | 1.500037 | 0.085303 0.084856
b1.DRGP(MVE) | 1.001859 | 0.080521 0.079286 | 0.999535 | 0.096145 0.094864
b2.DRGP(MVE) | 0.599636 | 0.027233* | 0.024217* | 0.599889 | 0.026797 0.025077

b3.DRGP(MVE) | 0.399786 | 0.080766 | 0.078012* | 0.400109 | 0.087108 0.08621
b4.DRGP(MVE) | 0.999547 | 0.028542* 0.0253* 0.999683 | 0.029841 0.027673
10% b0.DRGP(MCD) | 1.501635 | 0.085173 | 0.084624* | 1.500038 | 0.085299* | 0.084854
b1.DRGP(MCD) | 1.001859 | 0.080521 0.079286 0.99954 0.095947 0.094693
b2.DRGP(MCD) | 0.599636 | 0.027233* | 0.024217* | 0.59989 0.026778 0.025057
b3.DRGP(MCD) | 0.399786 | 0.080766 | 0.078012* | 0.400111 | 0.087089 0.086194
b4.DRGP(MCD) | 0.999547 | 0.028542* 0.0253* 0.999683 | 0.029836 0.027667
b0.DRGP(ISE) | 1.501587 | 0.085149* | 0.084656 | 1.500028 0.0853 0.084848*
b1.DRGP(ISE) | 1.001831 | 0.079938* | 0.079083* | 0.99953 0.09583* | 0.094543*
b2.DRGP(ISE) 0.59962 0.027365 0.025174 | 0.599887 | 0.026651* | 0.02486*
b3.DRGP(ISE) | 0.399631 | 0.080072* | 0.079137 | 0.400092 | 0.086889* | 0.085954*
b4.DRGP(ISE) | 0.999267 | 0.031422 0.028453 | 0.999694 | 0.029754* | 0.02751*
b0.DRGP(MVE) | 1.498911 | 0.090919* | 0.090534* | 1.500836 | 0.093829 0.093457
b1.DRGP(MVE) | 0.99934 0.08161* | 0.079977* | 1.00096 0.093732 0.09271
b2.DRGP(MVE) | 0.600191 | 0.017759* | 0.017034* | 0.600198 | 0.018515 0.017843
b3.DRGP(MVE) | 0.400161 | 0.018546* | 0.017654* | 0.400094 | 0.018972 0.018441
b4.DRGP(MVE) | 1.000017 | 0.018793* | 0.017939* | 0.999922 | 0.018182 0.017594
30% b0.DRGP(MCD) | 1.498911 | 0.090919* | 0.090534* | 1.500836 | 0.093829 0.093457
b1.DRGP(MCD) | 0.99934 0.08161* | 0.079977* | 1.00096 0.093732 0.09271
b2.DRGP(MCD) | 0.600191 | 0.017759* | 0.017034* | 0.600198 | 0.018515 0.017843
b3.DRGP(MCD) | 0.400161 | 0.018546* | 0.017654* | 0.400094 | 0.018972 0.018441
b4.DRGP(MCD) | 1.000017 | 0.018793* | 0.017939* | 0.999922 | 0.018182 0.017594
b0.DRGP(ISE) | 1.498935 | 0.091046 0.090734 | 1.500851 | 0.09378* | 0.093388*
b1.DRGP(ISE) | 0.999266 | 0.083912 0.082953 | 1.001062 | 0.093386* | 0.09219*
b2.DRGP(ISE) | 0.600177 | 0.017993 0.017369 | 0.600198 | 0.018413* | 0.017702*
b3.DRGP(ISE) | 0.400157 | 0.019018 0.018261 | 0.400098 | 0.018894* | 0.018332*
b4.DRGP(ISE) | 1.000079 | 0.019134 0.018408 | 0.999924 | 0.018058* | 0.017439*

The sign (*) denotes the lowest value of the standard error (SE) of the estimated
parameter compared to its counterparts from other methods.

5-2 Discuss the results of the simulation experiments

Through the results of simulation experiments in Tables (1) (2) (3), we note the

following:

1.When the percentage of (HLPs = 10%) and with the different severity of the
Heteroscedastic and in all sample sizes (n = 60, n = 100, n = 160), the DRGP (ISE)
method is considered the best in estimating the model parameters according to
the standard error (SE) of the estimators (HCy4yy) and (HCgy).
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2.When the percentage of (HLPs = 30%), we find that the (DRGP (ISE)) method
is the best in estimating the model parameters according to the standard error
criterion (SE) of the estimators (HC4y) and (HCgy,) in the sample sizes (n = 60, n
= 100), but when it is (n = 160) we find that all methods have the same preference.
3.Through all the simulation results, it was found that the DRGP (ISE) method is
the best in detecting extreme outliers (HLPs) and reducing its effect on estimating
the parameters of the general linear regression model with different sample sizes,
percentage (HLPs), and severity of the Heteroscedastic .

6- Conclusions:

1. The DRGP (ISE) method is the more efficient in estimating the parameters of
the linear regression model because it achieved the lowest standard error (SE) of
estimators (HC4y) and (HCgy) in sample sizes (n = 60, n = 100) , in different
percentage of extreme outliers values (HLPs) in the data , and severity difference
of Heteroscedastic.

2. We conclude from simulation experiments that all DRGP methods have the
same preference to reduce the influence of extreme outliers values (HLPS) in
estimating the parameters of the linear regression model when increase the
sample size (n = 160) and the contamination percentage (HLPs=30%).

7- Further Work

1.Using the DRGP (ISE) method in estimating the parameters of the regression
model when there are extreme outliers in the independent variable (HLPS).

2.We recommend the adoption of (DRGP (ISE)) method in determining the
weights, for both the estimator (HC4y) and (HCsy), for different sample sizes,
with difference the percentage of the extreme outliers (HLPs) in the data and
severity of the Heteroscedastic .
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