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Abstract 
  The objective of this study is to examine the properties of Bayes 

estimators of the shape parameter of the Power Function Distribution (PFD-I), 

by using two different prior distributions for the parameter θ and different loss 

functions that were compared with the Maximum likelihood estimators. In many 

practical applications, we may have two different prior information about the 

prior distribution for the shape parameter of the Power Function Distribution, 

which influences to the parameter estimation. So, we used two different kind of 

the conjugate priors of shape parameter θ of the Power Function Distribution 

(PFD-I) to estimate it. The conjugate prior function of the shape parameter θ was 

considered as combination of two different prior distributions such gamma 

distribution with Erlang distribution and Erlang distribution with exponential 

distribution and Erlang distribution with non-informative distribution and 

exponential distribution with non-informative distribution. We derived Bayes 

estimators for shape parameter θ of the Power Function Distribution (PFD-I) 

according to different loss functions such as the squared error loss function 

(SELF), the weighted error loss function (WSELF) and modified linear 

exponential (MLINEX) loss function (MLF), with two different double priors. In 

addition to the classical estimation (maximum likelihood estimation). We used 

simulation to get results of this study, for different cases of the shape parameter 

) (θ of the Power Function Distribution used to generate data for different 

samples sizes. 

Paper type: Research paper.  

Keywords: The power function distribution (PFD-I), MLE, Bayes Estimation, 

SELF, WSELF, MLINEX. 
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1. Introduction 
      The power function distribution (PFD-I) is a member of continuous 

probability distributions. The power function distribution used in a wide range of 

fields such as physics, earth science, economics, social science and the electrical 

component reliability [4]. The power function distribution used in the analysis of 

lifetime data and in problems related to the modeling of failure processes. Also, 

the power function distribution is a flexible life time distribution model that may 

offer a good fit to some sets of failure data. Theoretically, Power function 

distribution is a special case of Pareto distribution. The power function 

distribution is the best distribution to check the reliability of any electrical 

component. We mention some of studies in a brief manner: 

Rahman et.al(2012)  [5] estimated the shape parameter θ  of the power function 

distribution (PFD-I) using  Bayes estimation  under different loss functions such 

as squared error loss function, quadratic loss function, modified linear 

exponential (MLINEX) loss function and non-linear exponential (NLINEX) loss 

function and along with maximum likelihood to identify the best estimation 

among all methods .They concluded that except for few cases Bayes estimator 

under NLINEX loss function and squared error loss function are better than 

other estimators in their study. 

      Kifayat et.al (2012) [3] used Bayesian analysis of The power function 

distribution under different priors, which are informative (gamma and Rayleigh) 

priors and non-informative (Jeffreys and uniform) priors. They derived the 

posterior distribution for the unknown parameter θ  of the power distribution. 

Also they derived prior predictive distribution under informative priors, which is 

used for the elicitation of hyper parameters. 

       Zaka and  Akhtar(2013)  [10]  used  various methods to estimate the shape 

parameter θ  of the power function distribution , such as the least squares method 

and relative least squares method and ridge regression method .They obtain the 

results by using simulation .They used total deviation (T.D) and mean square 

error (M.S.E) to identify the best estimation among all methods.  

     Sultan et.al (2014) [7] derived the posterior distribution of power function 

distribution under three double priors (gamma-exponential distribution, chi-

square-exponential distribution, gamma-chi-square distribution) and three type 

of single priors. Also they developed posterior predictive distributions under 

double priors. From the empirical results they determine the best method of 

estimation according to the smallest value of the posterior standard error and 

AIC and BIC values. They observed that in most cases, Bayesian estimator under 

the double prior gamma distribution with exponential distribution has the less 

posterior standard error and less AIC and BIC values. 

 Hanif et.al (2015) [2] estimated the shape parameter θ  of the power function 

distribution (PFD-I) using  Bayes estimation assuming  Weibull and Generalized 

Gamma distributions as priors for the unknown parameters .They derived 

posterior distribution for parameter θ under different priors. Then they derived 

Bayes estimator of the shape parameter θ under the  squared error loss function 

In addition to the classical estimation (maximum likelihood estimation) to 

identify the best estimation among all used methods. From the empirical results, 

they concluded for small sample sizes the Bayes estimator with weibull prior 

performed better as compared to other estimators. 
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     Ronak and Achyut  (2016) [6] estimated the shape parameter θ  of the power 

function distribution (PFD-I) using  Bayes estimation assuming  gamma and 

uniform priors, gamma and jeffrey’s priors, gamma and priors and only gamma 

prior distributions as priors for the unknown parameters .They derived posterior 

distribution for parameter θ under different priors.Then they derived Bayes 

estimator of the shape parameter θ under the  squared error loss function In 

addition to the  reliability at time t, and they constructed of equal tail credible 

interval for future observation by using simulation to compare the performance 

of the estimators under different double priors. According to the type-II censored 

sample from the power function distribution. 

          A few studies have examined the Bayes estimator of the parameter by 

considering a combination of two prior distribution, so we try in this study  to  

use Bayes estimator for the shape parameter θ  of the power function distribution 

by using the conjugate prior of the parameter θ is considered as combination of 

two prior distribution and by classical estimation (Maximum Likelihood 

Estimation).  

       So the aim of this study is examine the properties of Bayes estimators of the 

shape parameter of the Power Function Distribution (PFD-I), by using two 

different prior distributions for the parameter θ according to each of the 

posterior distributions for the parameter θ, and different loss functions, and 

compared these estimators with the Maximum likelihood estimators.  

Bayes estimation make under different double prior selection for continuous case 

and under different loss functions. We have assumed gamma with Erlang 

distribution and Erlang with exponential distribution and Erlang with non-

information distribution and exponential with non-information distribution as 

double priors. And we derive Bayes estimator of shape parameter θ  of the Power 

Function Distribution under different loss function such as the Squared Errors 

Loss Function (SELF) and Weighted Squared Errors Loss Function (WSELF) 

and Modified Linear Exponential (MLINEX) Loss Function . 

 

2. The Power Function Distribution (PFD-I) 

Let us consider nt, ... ,t,t 21 is a random sample of n independent 

observations from a Power Function Distribution (PFD-I) having the probability 

density function (pdf) with  the shape parameter θ as “Eqn (1)” [2]: 

) 1 (          0θ   ,    1 t 0     ,      tθ   ) θ ; t f(
) 1-θ ( 

  

and the cumulative distribution function (cdf) is ; 

) 2 (                       0θ   ,    1 t 0    ,    t ) θ ; t ( θ         

And the r
th

 moment about origin is 

) 3 (          ) (  ) r tE(
rθ

θ


  

Also, the mean and the variance are as follow 

) 4 (         ) (  ) t E(Mean
1θ

θ


  

) 5 (           ) ( (t) Variance
2

1)θ (  2)(θ

θ



  

http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Probability_density_function
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3. Estimation Methods  
In this section, we used several methods to estimate of shape parameter θ

of the Power Function Distribution (PFD-I), such classical estimation (Maximum 

Likelihood Estimation) and Bayes Estimation Methods as shown below. 

 

3.1 Maximum Likelihood Estimation (MLE)  
Here we obtain the MLE for the of θ  based on the density as given in “Eqn (1)” 

and we can define the  likelihood function as follows[1]: 

) 6 (         t
n

nθ   tθ 
n

  ) θ ; t f(
n

 ) L(θ
1)θ (

i

1)θ (

i

1i1i1i





  

We can rewrite it as follow: 

  ) 7 (          ] ) (tln [- exp ] ) (tln θ  [ expnθ  ) L(θ i

n

1ii

n

1i  
  

By taking the log likelihood function on both side in “Eqn (7)” as follows  

 ) 8 (       ) (tln   -) (tln θ  ) log(θn     ) L(θ log i

n

1ii

n

1i  
  

The MLE for θ  is  

) 9 (              
) 

i
(tln n

1i

n
  -    θMLE

^

 

  

 

3.2 Bayes Estimation Method  
We used different estimation methods to estimate of shape parameter θ  of the 

Power Function Distribution (PFD-I) . By assuming n..., 2, 1,i  ,t i  are (iid) from 

the Power Function Distribution (PFD-I) as in “Eqn (1)”and likelihood function 

in “Eqn (7)” from the Power Function Distribution pdf given in “Eqn (1)” can be 

written as follows[1]: 

  ) 7 (         ] ) (tln [- exp ] ) (tln θ  [ expnθ  ) L(θ i

n

1ii

n

1i  
  

 To derive the posterior distributions for the parameter θ, using a 

combination of two prior distributions such gamma distribution [8] with Erlang 

distribution [7] and Erlang distribution with exponential distribution [1],and 

Erlang distribution with non-informative distribution and exponential 

distribution with non-informative distribution.  

 

3.2.1 The Conjugate Priors and posterior distributions 

      To derive the posterior distributions for the parameter θ  ,we need to 

determine the prior distributions for θwith pdf , as gavin below: By assuming a 

gamma prior for θ  having pdf [9] 

(10)          0b a,  θ,   with   )  θ b exp(- 1aθ  
Γa

ab 
  ) θ (h  1   

And a Erlang prior for θ  having pdf [7] , 

(11)            0λθ,th              wi)  θ  λ exp(- θ   λ ) θ (h   
2

2   

And a exponential prior for θ  having pdf [1], 

(12)             0λ  θ,ith            )  θ  λ exp(- λ ) θ (h 1113   

And a non-informative prior for θ  having pdf  , 
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(13)             0  c θ,         with
c

θ

1
    ) θ (h 1

1
4  α   

 Here we define their conjugate prior of the parameter θ by combining two priors 

as follows: 

 If   ) λ  erlang() b ,  a gamma(  α  ) θ (P1   ,it means  ) θ (h ) θ (h  α  ) θ (P 211  then we have 

              (14)          0λ , b a,   , 0θfor         ) ) λ (b exp(-θθ  ] λ  
Γa

ab 
[ α   ) θ (P a2

1   

 If    )  λ  (    lexponentia) λ erlang(  α  ) θ (P 12   ,it means  ) θ (h ) θ (h   α  ) θ (P 322  then we 

have 

           (15)            0λ , λ   , 0θfor           ) ) λ (λ exp(-θ θ  ]λ   λ  [ α   ) θ (P 111

2

2   

 If  )  c (  einformativ-non) λ erlang(  α  ) θ (P 13   ,it means  ) θ (h  ) θ (h  α  ) θ (P 423  then 

we have 

      (16)         0c , λ   , 0θfor         λ) θ exp(- 
c-1

θ  λ   α   ) θ (P 1
12

3   

 If  )  c (  einformativ-non )  λ  (    lexponentia  α  ) θ (P 114   ,it means  

) θ (h ) θ (h α  ) θ (P 434  then we have 

       17) (         0c , λ   , 0θfor          )λ θ exp(- 
c-

θ  λ   α   ) θ (P 111
1

14   

  We obtain posterior distribution of the parameter θ for the given random 

sample t is given by [1]: 

) (18              
)dθ θ P(   ) L(θ

θ

) θ P(   ) L(θ
    t) \θ (


  

using “Eqn (7)”  and for each 1,2,3,4i ,  ) θ (Pi  as shown above in “Eqn (14)” to 

“Eqn (15)” in “Eqn (18)”, after simplified steps, we get  the posterior 

distributions for the parameter θ as follows: 

 

 for ) λ erlang(b) , gamma(a  α  ) θ (P1   ,we have the posterior distribution is 

(19)                0λ , b a,   , 0θwith                                                                            

    ))tln λ (b θ exp(- θ  
 1)nΓ(a

)
i

tln
n

λ (b

  t) \θ ( i

n

1i

1)1na(1i

1

1)n(a















  

            ~ t) \θ (1 gamma dist
n
. )) tln  λ (b b 1),n(aa ( i

n

1i

(new)(new) 


 

 

 for  )  λ  (    lexponentia) λ erlang(  α  ) θ (P 12  , we have the posterior distribution is 

(20)           0n ,λ , λ  and   0θfor                                                                        

  ))tln λ (λ  θ exp(-θ 
 )2Γ(n

)
i

tlnλ (λ 

  t) \θ (

1

n

1i
1

n

1i
1

2 i
1)2(n

)2(n











 



  

         ~t) \θ (2  gamma dist
n
. ) ) tln λ λ  ( b ,)2(na ( i

n

1i
1(new)(new) 


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 for  )  c (  einformativ-non)  λ  ( erlang  α  ) θ (P 13   ,we have the posterior distribution 

is 

(21)               0 cn, λ,  , 0θ ,                                                                         

))tlnθ(λ exp(- θ  
)c2Γ(n

) 
i

tln(λ 

 t) \θ (

 1

n

1i

1)1c2n(

1

1c2n
n

1i

3 i

)(

















  

               ~ t) \θ (3  gamma dist
n
. ) )tln(λ b ),c2(na ( i

n

1i

(new)1(new) 


 

 

 for  )  c (  einformativ-non )  λ  (    lexponentia  α  ) θ (P 114   ,we have the posterior 

distribution is 

(22)         )  1c , λ  n,,   0θ                                                                              

  ))tlnλ θ( exp(- θ   
)1cΓ(n

) 
i

tlnλ ( 

 t) \θ (

1

n

1i
1

1)11cn(

1

11cn
n

1i
1

4 i

)(

















  

            ~t) \θ (4  gamma dist
n
. ) )tlnλ ( b ),1c(na ( i

n

1i
1(new)1(new) 



 

3.2.2 Bayes' Estimators 

        Here we derive Bayes' estimators (
^

θ ) for the parameter θ according to 

different loss functions such as the squared error loss function (SELF), the 

weighted error loss function (WSELF) and modified linear exponential 

(MLINEX) loss function (MLF), with two different double priors as follows : 

we derive Bayes' estimators (
^

θ ) for the parameter θ according the squared error 

loss function (SELF) , by minimize the posterior expected loss, as follows : 

2

1 θ)  - θ  (θ)  , θ  (L
^^

   , the risk function is  t) \θ E(t) \θ E(θ2 θ θ)- θ R( 2
^

2
^^

 . 

 Let    0 θ)- θ R(
^

^

 θ 






 , we get Bayes estimator of θ  denoted by  θ

              ^

Bayes for the 

above prior as follows 

) (23        dθ t) \θ ( θt) \θ E(θ
0

        ^  

SE 


  

So, we derive Bayes' estimators (
^

θ ) for θ according to the squared error 

loss function (SELF) with different conjugate prior of the parameter as the mean 

of the posterior distribution as follows: 

 For   )t  \θ (1  when ) λ erlang(b) , gamma(a  α  ) θ (P1    , we have 

(24)       0λ  , b n,  a,     

 )
i

tln
n

1i

  λ (b 

  1)n(a
  θ

       ^

SE1 







  
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 For )t  \θ (2  when  )  λ  (    lexponentia) λ erlang(  α  ) θ (P 12    , we have 

(25)         0λ , λ  n,    

)) 
i

tln
n

1i

 λ λ   (

  2)(n
 θ 1

1

       ^

SE2 







  

 For )t  \θ (3  when  )  c (  einformativ-non)  λ  ( erlang  α  ) θ (P 13  , we have 

(26)              0λ, cn,    

 )
i

lnt
n

1i

λ  (

)c2(n
 θ 1

1
       ^

SE3 







  

 For )t  \θ (4  when  )  c (  einformativ-non )  λ  (    lexponentia  α  ) θ (P 114  ,we have 

(27)          0λ ,c,n    

 )
i

tlnλ (

    )1c(n
 θ 11

n

1i

1

1
       ^

SE4 








 

      Also, we derive Bayes' estimators (
^

θ ) for θ according to the weighted error 

loss function (WSELF) by minimize the posterior expected loss, as follows  

θ

θ)  - θ  (
θ)  , θ  (L

2

2

^
^

 , the risk function is 

 t) \θ E(θ2t) \
 θ

1
E(  θ )

θ

θ)  - θ  (
(R

^
2

^2
^

2   

Let    0 )
θ

θ)  - θ  (
 (R

2
^

2

 θ 
^






 , we get Bayes estimator of θ  denoted by

         ^

WSEθ for the 

above prior as follows: 

) (28          

  dθ t) \θ ( 
θ

1

1

t) \
θ

1
 E(

1
 θ

0

         ^

WSE




  

So, we derive Bayes' estimators (
^

θ ) for θ according to the weighted squared error 

loss function (WSELF) with different conjugate prior of the parameter as 

follows: 

 For   )t  \θ (1  when ) λ erlang(b) , gamma(a  α  ) θ (P1    , we have 

 (29)      0λ  , b n,  a,     

 )
i

lnt
n

1i

  λ (b 

  n)(a
 θ

            ^

WSE1 







  

 For )t  \θ (2  when  )  λ  (    lexponentia) λ erlang(  α  ) θ (P 12    ,  we have  

(30)       0λ , λ  n,        

)) 
i

lnt
n

1i

 λ λ   (

  1)(n
 θ 1

1

            ^

WSE2 







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 For )t  \θ (3  when  )  c (  einformativ-non)  λ  ( erlang  α  ) θ (P 13  ,we have 

(31)      0λ, cn,             

 )
i

tln
n

1i

(λ

)c1(n
 θ 1

1
              ^

WSE3 







  

 For )t  \θ (4  when  )  c (  einformativ-non )  λ  (    lexponentia  α  ) θ (P 114  ,we have 

(32)        0λ ,cn,            

 )
i

lntλ (

    )c(n
 θ 11

n

1i

1

1
           ^

WSE4 





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   And, we derive Bayes' estimators (
^

θ ) for the parameter θ according to 

the Modified linear exponential (MLINEX) loss function (MLF), by minimize the 

posterior expected loss, as follows [5]: 

 0c 0,w,   ] 1)
θ

θ 
log( c)

θ

θ 
(  [ wθ)  , θ  (L

^^
^

C

3  , the risk function is 

   1-t) \θlog(E(  c )θlog( c  t)\θ E( θθ), θ(R
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3

c
^
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θ

c
  t)\θ E( θ c0θ), θ(R

^

C -
^

3

1-c
^

^

 θ 






Then we have the Bayes 

estimator of θ  denoted by
        ^

MLFθ for the above prior as follows 

(33)     0c       ,   ] dθ t) \θ ( θ [t)]\θ E(  [θ c

1

0

C -c

1

C -
          ^

MLF 





   

So, we derive Bayes' estimators (
^

θ ) for θ according the MLINEX loss 

function (MLF) with different conjugate prior of the parameter as follows : 

 For   )t  \θ (1  when ) λ erlang(b) , gamma(a  α  ) θ (P1    , we have 

(34)    0c , 0λ , b n, a,  )tln  λ (b ] 
  1)n  Γ(a 

   1)c-nΓ(a
[ θ 1-
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1i

c
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 For )t  \θ (2  when  )  λ  (    lexponentia) λ erlang(  α  ) θ (P 12    ,   we have 
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 For )t  \θ (3  when  )  c (  einformativ-non)  λ  ( erlang  α  ) θ (P 13  ,  we have 

(36)        0c ,  0λ, cn, ,)tlnλ (] 
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  )cc2Γ(n
[θ 1
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1i
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1

1
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 For )t  \θ (4  when  )  c (  einformativ-non )  λ  (    lexponentia  α  ) θ (P 114  , we have 

(37)    0c ,  0λ ,c,n  ,)tlnλ (] 
)1cΓ(n

 )1ccΓ(n
[ θ 11

1-
n

1i
1

c

1

1

1
          ^

MLF4 i 









 

 

 



 

 

 

 

 

Journal of Economics and Administrative Sciences Vol.27 (NO. 127) 2021, pp. 229-252 
   

  

237  

 

   

 

 

 

4. Simulation Study  
 For compare the quality of the Bayes estimators  with the  Maximum 

likelihood estimator for θ  according to the assumed loss functions and the values 

for the parameters of each of the posterior distributions for the parameter θ, to 

determine the best estimation among all these estimators , according to smallest 

value our criterion which are listed below. We used empirical study. So we have 

considered several steps to perform simulation study by taking  

1. The samples of sizes n = 25, 50, 75 and 100 which represented small, moderate 

and large sample size. 

2. Different values of the shape parameters were chosen as 1.5 1, , .50θ   for the 

Power Function Distribution (PFD-I). 

3. The generated random samples for all sizes ( iu  ) from uniform (0,1), then

) θ / (1
i i ut  is random sample from the Power Function Distribution (PFD-I). 

4. assuming values of the parameters of each the posterior distributions of the 

parameter θ  as different combinations to be compare listed below: 

  

)t  \θ (4  )t  \θ (3  )t  \θ (2  )t  \θ (1  

1c  1λ  1c  λ  
1λ  λ  λ  b a 

2 1 1 4 1 4 4 2 3 

2 2 2 4 2 4 6 2 3 

1 2 3 3 4 4 6 2 1 

1 3 3 2 4 6 6 1 2 

5. The experimental results were repeated ( 1000r  ) times for each sample size 

(n). 

     We obtained Bayes' estimators and the  Maximum likelihood 

estimator(MLE) of shape parameter θ of the Power Function Distribution (PFD-

I), by using MATLAB-R2018a program. Then computed the Mean Square 

Errors (MSE) and Mean Weighted Square Errors (MWSE) and Mean Modified 

Linear Exponential ( MLINEX) to determine the best estimation among all used 

methods, according to smallest value our criterion which are  

- The squared error loss function(SELF) 

      38) ( θ      )- )r  ( θ(
r

1
) θ MSE(

2
 ^^ 1000

1r




  

 

- The weighted error loss function (WSELF) 

    )  39 ( 
θ

θ)- )r  ( θ(
        

r

1
) θ MWSE(

2
^

1000

1r

^




  

- Modified linear exponential (MLINEX) loss function (MLF) calculated with 

w=1 and two value for c=1,2. 

    ) (40      0c 0,  w, )  ] 1)
θ

θ(r)  
log( c)

θ

θ(r) 
(  [ (w

            ^

C

^

1000

1r

^

r

1
) θ (MLINEX 



 

     The experimental results for this study were summarized and presented in 

tables, according to our aim to the study , to determine the best estimation for of 
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the parameter θ , according to smallest value our criterion under different loss 

functions ,under different  conjugate prior of  the parameter for all the true value 

of  1.5 1, 0.5,θ   that are assumed. 

     So the experimental results under the squared error loss function (SELF) are 

listed in tables (4-1) to (4-3). And the experimental results under the weighted 

error loss function (WSELF) are listed in tables (4-4) to (4-7). Also, the 

experimental results under Modified linear exponential (MLINEX) loss function 

(MLF) calculated with w=1 and two value for c=1, 2 are listed in tables (4-1) to 

(4-3).     

 

Table (4-1): Estimated value )θ(
        ^  

SE  and ) θ MSE(

^

of PFD-I, under the SELF, under 

different conjugate prior of the parameter for 0.5θ  . 

Method parameter 
Estimated value )θ(

        ^  

SE  ) θ MSE(

^

 

Sample Size(n) Sample Size(n) 

25 50 75 100 25 50 75 100 

MLE - - - 0.52269 0.51209 0.5082 0.50692 0.01202 0.00531 0.00355 0.00259 

Bayes a b λ  for   )t  \θ (1  when ) λ erlang(b) , gamma(a  α  ) θ (P1   

 3 2 4 0.53653 0.52049 0.51413 0.51149 0.01070 0.00512 0.00347 0.00257 

 3 2 6 0.51681 0.51048 0.50744 0.50647 0.00832 0.00445 0.00316 0.00238 

 1 2 6 0.48116 0.49157 0.49459 0.49673 0.00732 0.00409 0.00298 0.00226 

 2 1 6 0.50832 0.50589 0.5043 0.50407 0.00815 0.00438 0.00313 0.00236 

Bayes - λ  
1λ  for )t  \θ (2  when  )  λ  (    lexponentia) λ erlang(  α  ) θ (P 12   

 - 4 1 0.50926 0.50617 0.50443 0.50416 0.00887 0.00457 0.00322 0.00241 

 - 4 2 0.49953 0.50121 0.50111 0.50166 0.00811 0.00436 0.00311 0.00235 

 - 4 4 0.48116 0.49157 0.49459 0.49673 0.00732 0.00409 0.00298 0.00226 

 - 6 4 0.46414 0.48230 0.48825 0.49189 0.00730 0.00403 0.00294 0.00223 

Bayes - λ  
1c  for )t  \θ (3  when  )  c (  einformativ-non)  λ  ( erlang  α  ) θ (P 13   

 - 4 1 0.50016 0.50141 0.50121 0.50172 0.00883 0.00454 0.00320 0.00240 

 - 4 2 0.48092 0.49157 0.49461 0.49675 0.00853 0.00444 0.00314 0.00236 

 - 3 3 0.47107 0.48662 0.49130 0.49427 0.00901 0.00455 0.00319 0.00238 

 - 2 3 0.48087 0.49159 0.49463 0.49677 0.00926 0.00463 0.00323 0.00241 

Bayes 

- 
1λ  

1c  
for )t  \θ (4  when 

 )  c (  einformativ-non )  λ  (    lexponentia  α  ) θ (P 114   

 - 1 2 0.49109 0.49667 0.49800 0.49930 0.00978 0.00476 0.00330 0.00245 

 - 2 2 0.48087 0.49159 0.49463 0.49677 0.00926 0.00463 0.00323 0.00241 

 - 2 1 0.5009 0.50162 0.50131   0.50179 0.00965 0.00475 0.00329 0.00245 

 - 3 1 0.4907 0.49655 0.49794 0.49926 0.00895 0.00456 0.00321 0.00239 
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Table (4-2): Estimated value )θ(
        ^  

SE  and ) θ MSE(

^

of PFD-I, under the SELF, under 

different conjugate prior of the parameter for 1θ  . 

Method parameter 
Estimated value )θ(

        ^  

SE  ) θ MSE(

^

 

Sample Size(n) Sample Size(n) 

25 50 75 100 25 50 75 100 

MLE - - - 1.03580 1.01840 1.01550 1.01410 0.04866 0.02182 0.01446 0.01129 

Bayes a b λ  for   )t  \θ (1  when ) λ erlang(b) , gamma(a  α  ) θ (P1   

 3 2 4 0.95577 0.97816 0.98831   0.99361 0.02667 0.01603 0.01161 0.00946 

 3 2 6 0.89527 0.94344 0.96392 0.97481 0.02990 0.01663 0.01168 0.00935 

 1 2 6 0.83353 0.90850 0.93952 0.95606 0.04412 0.02083 0.01351 0.01032 

 2 1 6 0.89263 0.94270 0.96361 0.97466 0.03164 0.01720 0.01196 0.00953 

Bayes - λ  
1λ  for )t  \θ (2  when  )  λ  (    lexponentia) λ erlang(  α  ) θ (P 12   

 - 4 1 0.92107 0.95960 0.97564 0.98400 0.03090 0.01718 0.01206 0.00968 

 - 4 2 0.88986 0.94193 0.96329 0.97450 0.03356 0.01779 0.01225 0.00971 

 - 4 4 0.83353 0.90850 0.93952 0.95606 0.04412 0.02083 0.01351 0.01032 

 - 6 4 0.78404 0.87740 0.91690 0.93832 0.05943 0.02585 0.01584 0.01158 

Bayes - λ  
1c  for )t  \θ (3  when  )  c (  einformativ-non)  λ  ( erlang  α  ) θ (P 13   

 - 4 1 0.91926 0.95915 0.97548 0.98393 0.03302 0.01782 0.01237 0.00987 

 - 4 2 0.88390 0.94035 0.96265 0.97419 0.03798 0.01909 0.01286 0.01009 

 - 3 3 0.88070 0.93952 0.96232 0.97403 0.04056 0.01979 0.01318 0.01029 

 - 2 3 0.91548 0.95824 0.97516 0.98381 0.03805 0.01922 0.01303 0.01027 

Bayes 

- 
1λ  

1c  
for )t  \θ (4  when 

 )  c (  einformativ-non )  λ  (    lexponentia  α  ) θ (P 114   

 - 1 2 0.95325 0.97773 0.98836 0.99379 0.03876 0.01947 0.01324 0.01047 

 - 2 2 0.91548 0.95824 0.97516 0.98381 0.03805 0.01922 0.01303 0.01027 

 - 2 1 0.95363 0.97780 0.98834 0.99375 0.03569 0.01869 0.01288 0.01025 

 - 3 1 0.91740 0.95870 0.94932 0.98387 0.03539 0.01850 0.01402 0.01007 

Table (4-3): Estimated value )θ(
        ^  

SE  and ) θ MSE(

^

of PFD-I, under the SELF, under 

different conjugate prior of the parameter for 5.1θ  . 

Method parameter 
Estimated value )θ(

        ^  

SE  ) θ MSE(

^

 

Sample Size(n) Sample Size(n) 

25 50 75 100 25 50 75 100 

MLE - - - 1.55380 1.52760 1.52320 1.52120 0.10950 0.04910 0.03254 0.02540 

Bayes a b λ  for   )t  \θ (1  when ) λ erlang(b) , gamma(a  α  ) θ (P1   

 3 2 4 1.30180 1.39050 1.42830 1.44850 0.07683 0.04015 0.02737 0.02154 

 3 2 6 1.19260 1.32150 1.37790 1.40890 0.12085 0.05478 0.03414 0.02519 

 1 2 6 1.11030 1.27260 1.34300 1.38180 0.17468 0.07299 0.04292 0.03021 

 2 1 6 1.20180 1.33000 1.38490 1.41470 0.11810 0.05333 0.03340 0.02479 

Bayes - λ  
1λ  for )t  \θ (2  when  )  λ  (    lexponentia) λ erlang(  α  ) θ (P 12   

 - 4 1 1.27040 1.37490 1.41800 1.44090 0.09213 0.04471 0.02946 0.02273 

 - 4 2 1.21200 1.33900 1.39210 1.42070 0.11548 0.05203 0.03275 0.02447 

 - 4 4 1.11030 1.27260 1.34300 1.38180 0.17468 0.07299 0.04292 0.03021 

 - 6 4 1.02460 1.21250 1.2973 1.34510 0.24250 0.10016 0.05698 0.03857 

Bayes - λ  
1c  for )t  \θ (3  when  )  c (  einformativ-non)  λ  ( erlang  α  ) θ (P 13   

 - 4 1 1.28540 1.38570 1.42620 1.44740 0.09078 0.04428 0.02934 0.02276 

 - 4 2 1.23590 1.35860 1.40740 1.43310 0.11108 0.05002 0.03184 0.02408 
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 - 3 3 1.25000 1.36920 1.41550 1.43960 0.10966 0.04939 0.03161 0.02403 

 - 2 3 1.32110 1.4093 1.44350 1.46110 0.09126 0.04453 0.02967 0.02315 

Bayes 

- 1λ  

1c  
for )t  \θ (4  when 

 )  c (  einformativ-non )  λ  (    lexponentia  α  ) θ (P 114   

 - 1 2 1.40100 1.45180 1.47260 1.48320 0.08539 0.04329 0.02945 0.02327 

 - 2 2 1.32110 1.40930 1.44350 1.46110 0.09126 0.04453 0.02967 0.02315 

 - 2 1 1.37610 1.43800 1.46300 1.47580 0.07963 0.04163 0.02857 0.02266 

 - 3 1 1.30210 1.39720 1.43470 1.45410 0.09034 0.04420 0.02941 0.02289 

Table (4-4): Estimated value )θ(
           ^  

WSE  and ) θ MWSE(

^

of PFD-I, under the WSELF, 

under different conjugate prior of the parameter for 0.5θ  . 

Method parameter 
Estimated value )θ(

           ^  

WSE  ) θ MWSE(

^

 

Sample Size(n) Sample Size(n) 

25 50 75 100 25 50 75 100 

MLE - - - 0.52269 0.51209 0.5082 0.50692 0.02405 0.01062 0.00710 0.00519 

Bayes a b λ  for   )t  \θ (1  when ) λ erlang(b) , gamma(a  α  ) θ (P1   

 3 2 4 0.51803 0.51085 0.50762 0.50658 0.01811 0.00929 0.00651 0.00487 

 3 2 6 0.49898 0.50102 0.50102 0.50160 0.01499 0.00836 0.00606 0.00460 

 1 2 6 0.46334 0.48212 0.48817 0.49186 0.01561 0.00838 0.00603 0.00455 

 2 1 6 0.49017 0.49634 0.49783 0.49918 0.01522 0.00840 0.00607 0.00460 

Bayes - λ  
1λ  for )t  \θ (2  when  )  λ  (    lexponentia) λ erlang(  α  ) θ (P 12   

 - 4 1 0.49040 0.49644 0.49788 0.49922 0.01648 0.00875 0.00624 0.00470 

 - 4 2 0.48102 0.49157 0.49460 0.49674 0.01577 0.00852 0.00613 0.00462 

 - 4 4 0.46334 0.48212 0.48817 0.49186 0.01561 0.00838 0.00603 0.00455 

 - 6 4 0.44695 0.47303 0.48191 0.48707 0.01679 0.00862 0.00611 0.00458 

Bayes - λ  
1c  for )t  \θ (3  when  )  c (  einformativ-non)  λ  ( erlang  α  ) θ (P 13   

 - 4 1 0.48092 0.49157 0.49461 0.49675 0.01706 0.00888 0.00629 0.00472 

 - 4 2 0.46168 0.48174 0.48802 0.49179 0.01799 0.00906 0.00636 0.00474 

 - 3 3 0.45145 0.47668 0.48466 0.48927 0.01973 0.00948 0.00654 0.00483 

 - 2 3 0.46083 0.48156 0.48794 0.49175 0.01941 0.00943 0.00653 0.00483 

Bayes 

- 
1λ  

1c  
for )t  \θ (4  when 

 )  c (  einformativ-non )  λ  (    lexponentia  α  ) θ (P 114   

 - 1 2 0.47063 0.48653 0.49127 0.49426 0.01955 0.00949 0.00657 0.00486 

 - 2 2 0.46083 0.48156 0.48794 0.49175 0.01941 0.00943 0.00653 0.00483 

 - 2 1 0.48087 0.49159 0.49463 0.49677 0.01853 0.00926 0.00647 0.00482 

 - 3 1 0.47107 0.48662 0.49130 0.49427 0.01802 0.00910 0.00639 0.00476 

 

Table (4-5): Estimated value )θ(
           ^  

WSE  and ) θ MWSE(

^

of PFD-I, under the WSELF, 

under different conjugate prior of the parameter for 1θ  . 

Method parameter 
Estimated value )θ(

           ^  

WSE  ) θ MWSE(

^

 

Sample Size(n) Sample Size(n) 

25 50 75 100 25 50 75 100 

MLE - - - 1.03580 1.01840 1.01550 1.01410 0.04866 0.02182 0.01446 0.01129 

Bayes a b λ  for   )t  \θ (1  when ) λ erlang(b) , gamma(a  α  ) θ (P1   

 3 2 4 0.92282 0.96004 0.97580 0.98406 0.02900 0.01658 0.01177 0.00949 

 3 2 6 0.86440 0.92597 0.95172 0.96544 0.03603 0.01842 0.01244 0.00975 

 1 2 6 0.80266 0.89103 0.92731 0.94669 0.05416 0.02386 0.01488 0.01107 
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 2 1 6 0.86075 0.92491 0.95125 0.96520 0.03809 0.01903 0.01274 0.00993 

Bayes - λ  
1λ  for )t  \θ (2  when  )  λ  (    lexponentia) λ erlang(  α  ) θ (P 12   

 - 4 1 0.88695 0.94115 0.96297 0.97435 0.03566 0.01842 0.01255 0.00990 

 - 4 2 0.85690 0.92382 0.95078 0.96495 0.04034 0.01968 0.01304 0.01011 

 - 4 4 0.80266 0.89103 0.92731 0.94669 0.05416 0.02386 0.01488 0.01107 

 - 6 4 0.75501 0.86052 0.90499 0.92912 0.07189 0.02986 0.01773 0.01265 

Bayes - λ  
1c  for )t  \θ (3  when  )  c (  einformativ-non)  λ  ( erlang  α  ) θ (P 13   

 - 4 1 0.88390 0.94035 0.96265 0.97419 0.03798 0.01909 0.01286 0.01009 

 - 4 2 0.84855 0.92154 0.94981 0.96445 0.04552 0.02107 0.01368 0.01050 

 - 3 3 0.84401 0.92035 0.94932 0.96420 0.04851 0.02182 0.01402 0.01070 

 - 2 3 0.87734 0.93868 0.96199 0.97388 0.04343 0.02053 0.01352 0.01049 

Bayes 

- 1λ  

1c  
for )t  \θ (4  when 

 )  c (  einformativ-non )  λ  (    lexponentia  α  ) θ (P 114   

 - 1 2 0.91353 0.95778 0.97501 0.98375 0.04107 0.01999 0.01338 0.01048 

 - 2 2 0.87734 0.93868 0.96199 0.97388 0.04343 0.02053 0.01352 0.01049 

 - 2 1 0.91548 0.95824 0.97516 0.98381 0.03805 0.01922 0.01303 0.01027 

 - 3 1 0.88070 0.93952 0.96232 0.97403 0.04056 0.01979 0.01318 0.01029 

 

Table (4-6): Estimated value )θ(
           ^  

WSE  and ) θ MWSE(

^

of PFD-I, under the WSELF, 

under different conjugate prior of the parameter for 1.5θ  . 

Method parameter 
Estimated value )θ(

           ^  

WSE  ) θ MWSE(

^

 

Sample Size(n) Sample Size(n) 

25 50 75 100 25 50 75 100 

MLE - - - 1.55380 1.52760 1.52320 1.52120 0.07300 0.03273 0.02169 0.01693 

Bayes a b λ  for   )t  \θ (1  when ) λ erlang(b) , gamma(a  α  ) θ (P1   

 3 2 4 1.25690 1.36480 1.41020 1.43460 0.06273 0.03028 0.01982 0.01520 

 3 2 6 1.15140 1.29700 1.36050 1.39540 0.09736 0.04218 0.02548 0.01834 

 1 2 6 1.06920   1.24810 1.32560 1.36830 0.13784 0.05594 0.03215 0.02219 

 2 1 6 1.15890 1.30490 1.36710 1.40100 0.09566 0.04105 0.02486 0.01799 

Bayes - λ  
1λ  for )t  \θ (2  when  )  λ  (    lexponentia) λ erlang(  α  ) θ (P 12   

 - 4 1 1.22330 1.34850 1.39960 1.42680 0.07539 0.03394 0.02149 0.01615 

 - 4 2 1.16710 1.31330 1.37400 1.40670    0.09398 0.03999 0.02429 0.01768 

 - 4 4 1.06920 1.24810 1.32560 1.36830 0.13784 0.05594 0.03215 0.02219 

 - 6 4 0.98666 1.18920 1.28050 1.3319 0.18588 0.07563 0.04245 0.02836 

Bayes - λ  
1c  for )t  \θ (3  when  )  c (  einformativ-non)  λ  ( erlang  α  ) θ (P 13   

 - 4 1 1.23590 1.35860 1.40740 1.43310 0.07405 0.03334 0.02123 0.01605 

 - 4 2 1.18650 1.33140 1.38860 1.41880 0.09092 0.03817 0.02337 0.01721 

 - 3 3 1.19800 1.34130 1.39640 1.42510 0.08970 0.03745 0.02303 0.01705 

 - 2 3 1.26600 1.38050 1.42400 1.44630 0.07277 0.03274 0.02103 0.01605 

Bayes 

- 
1λ  

1c  
for )t  \θ (4  when 

 )  c (  einformativ-non )  λ  (    lexponentia  α  ) θ (P 114   

 - 1 2 1.34260 1.42220 1.45270 1.46820 0.06279 0.03024 0.02011 0.01569 

 - 2 2 1.26600 1.38050 1.42400 1.44630 0.07277 0.03274 0.02103 0.01605 

 - 2 1 1.32110 1.40930 1.44350 1.46110 0.06084 0.02968 0.01978 0.01543 

 - 3 1 1.25000 1.36920 1.41550 1.43960 0.07310 0.03293 0.02107 0.01602 

Table (4-7): Estimated value )  θ (

          ^

MLF  and ) θ (

^

MLINEX  of PFD-I, under the 

MLINEX ,under different conjugate prior of the parameter for 0.5θ  and w=1 

and c=1. 
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Method parameter 
Estimated value )  θ (

          ^

MLF  ) θ (

^

MLINEX  

Sample Size(n) Sample Size(n) 

25 50 75 100 25 50 75 100 

MLE - - - 0.52269 0.51209 0.5082 0.50692 0.02126 0.00985 0.00672 0.00497 

Bayes a b λ  for   )t  \θ (1  when ) λ erlang(b) , gamma(a  α  ) θ (P1   

 3 2 4 0.51803 0.51085 0.50762 0.50658 0.01652 0.00869 0.00619 0.00467 

 3 2 6 0.49898 0.50102 0.50102 0.50160 0.01475 0.00813 0.00592 0.00450 

 1 2 6 0.46334 0.48212 0.48817 0.49186 0.01758 0.00879 0.00620 0.00463 

 2 1 6 0.49017 0.49634 0.49783 0.49918 0.01550 0.00832 0.00600 0.00454 

Bayes - λ  
1λ  for )t  \θ (2  when  )  λ  (    lexponentia) λ erlang(  α  ) θ (P 12   

 - 4 1 0.49040 0.49644 0.49788 0.49922 0.01669 0.00865 0.00616 0.00463 

 - 4 2 0.48102 0.49157 0.49460 0.49674 0.01663 0.00860 0.00613 0.00461 

 - 4 4 0.46334 0.48212 0.48817 0.49186 0.01758 0.00879 0.00620 0.00463 

 - 6 4 0.44695 0.47303 0.48191 0.48707 0.01980 0.00933 0.00643 0.00475 

Bayes - λ  
1c  for )t  \θ (3  when  )  c (  einformativ-non)  λ  ( erlang  α  ) θ (P 13   

 - 4 1 0.48092 0.49157 0.49461 0.49675 0.01791 0.00894 0.00630 0.00470 

 - 4 2 0.46168 0.48174 0.48802 0.49179 0.02026 0.00948 0.00653 0.00482 

 - 3 3 0.45145 0.47668 0.48466 0.48927 0.02291 0.01010 0.00680 0.00496 

 - 2 3 0.46083 0.48156 0.48794 0.49175 0.02185 0.00986 0.00671 0.00491 

Bayes 

- 
1λ  

1c  
for )t  \θ (4  when 

 )  c (  einformativ-non )  λ  (    lexponentia  α  ) θ (P 114   

 - 1 2 0.47063 0.48653 0.49127 0.49426 0.02121 0.00973 0.00665 0.00489 

 - 2 2 0.46083 0.48156 0.48794 0.49175 0.02185 0.00986 0.00671 0.00491 

 - 2 1 0.48087 0.49159 0.49463 0.49677 0.01936 0.00931 0.00647 0.00480 

 - 3 1 0.47107 0.48662 0.49130 0.49427 0.01961 0.00935 0.00648 0.00479 
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Table (4-8): Estimated value )  θ (

          ^

MLF  and ) θ (

^

MLINEX  of PFD-I, under the 

MLINEX ,under different conjugate prior of the parameter for 1θ  and w=1 and 

c=1. 

Method parameter 
Estimated value )  θ (

          ^

MLF  ) θ (

^

MLINEX  

Sample Size(n) Sample Size(n) 

25 50 75 100 25 50 75 100 

MLE - - - 1.03580 1.01840 1.01550 1.01410 0.02155 0.01028 0.00694 0.00541 

Bayes a b λ  for   )t  \θ (1  when ) λ erlang(b) , gamma(a  α  ) θ (P1   

 3 2 4 0.92282 0.96004 0.97580 0.98406 0.01636 0.00882 0.00613 0.00484 

 3 2 6 0.86440 0.92597 0.95172 0.96544 0.02173 0.01032 0.00675 0.00514 

 1 2 6 0.80266 0.89103 0.92731 0.94669 0.03409 0.01385 0.00832 0.00601 

 2 1 6 0.86075 0.92491 0.95125 0.96520 0.02307 0.01068 0.00691 0.00524 

Bayes - λ  
1λ  for )t  \θ (2  when  )  λ  (    lexponentia) λ erlang(  α  ) θ (P 12   

 - 4 1 0.88695 0.94115 0.96297 0.97435 0.02108 0.01010 0.00668 0.00514 

 - 4 2 0.85690 0.92382 0.95078 0.96495 0.02455 0.01106 0.00708 0.00534 

 - 4 4 0.80266 0.89103 0.92731 0.94669 0.03409 0.01385 0.00832 0.00601 

 - 6 4 0.75501 0.86052 0.90499 0.92912 0.04631 0.01768 0.01011 0.00700 

Bayes - λ  
1c  for )t  \θ (3  when  )  c (  einformativ-non)  λ  ( erlang  α  ) θ (P 13   

 - 4 1 0.88390 0.94035 0.96265 0.97419 0.02252 0.01047 0.00685 0.00524 

 - 4 2 0.84855 0.92154 0.94981 0.96445 0.02799 0.01187 0.00744 0.00554 

 - 3 3 0.84401 0.92035 0.94932 0.96420 0.02999 0.01231 0.00763 0.00565 

 - 2 3 0.87734 0.93868 0.96199 0.97388 0.02591 0.01128 0.00721 0.00544 

Bayes 

- 
1λ  

1c  
for )t  \θ (4  when 

 )  c (  einformativ-non )  λ  (    lexponentia  α  ) θ (P 114   

 - 1 2 0.91353 0.95778 0.97501 0.98375 0.02318 0.01062 0.00696 0.00533 

 - 2 2 0.87734 0.93868 0.96199 0.97388 0.02591 0.01128 0.00721 0.00544 

 - 2 1 0.91548 0.95824 0.97516 0.98381 0.02150 0.01022 0.00678 0.00523 

 - 3 1 0.88070 0.93952 0.96232 0.97403 0.02412 0.01087 0.00703 0.00534 

Table (4-9): Estimated value )  θ (

          ^

MLF  and ) θ (

^

MLINEX  of PFD-I, under the 

MLINEX ,under different conjugate prior of the parameter for 5.1θ  and w=1 

and c=1. 

Method parameter 
Estimated value )  θ (

          ^

MLF  ) θ (

^

MLINEX  

Sample Size(n) Sample Size(n) 

25 50 75 100 25 50 75 100 

MLE - - - 1.55380 1.52760 1.52320 1.52120 0.02155 0.01028 0.00694 0.00541 

Bayes a b λ  for   )t  \θ (1  when ) λ erlang(b) , gamma(a  α  ) θ (P1   

 3 2 4 1.25690 1.36480 1.41020 1.43460 0.02566 0.01151 0.00728 0.00543 

 3 2 6 1.15140 1.29700 1.36050 1.39540 0.04125 0.01656 0.00965 0.00676 

 1 2 6 1.06920 1.24810 1.32560 1.36830 0.06053 0.02240 0.01237 0.00830 

 2 1 6 1.15890 1.30490 1.36710 1.40100 0.04058 0.01609 0.00939 0.00660 

Bayes - λ  
1λ  for )t  \θ (2  when  )  λ  (    lexponentia) λ erlang(  α  ) θ (P 12   

 - 4 1 1.22330 1.34850 1.39960   1.42680 0.03142 0.01305 0.00796 0.00581 

 - 4 2 1.16710 1.31330 1.37400 1.40670 0.03992 0.01564 0.00915 0.00646 

 - 4 4 1.06920 1.24810 1.32560 1.36830 0.06053 0.02240 0.01237 0.00830 

 - 6 4 0.98666 1.18920 1.28050 1.33190 0.08449 0.03088 0.01659 0.01078 

Bayes - λ  
1c  for )t  \θ (3  when  )  c (  einformativ-non)  λ  ( erlang  α  ) θ (P 13   
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 - 4 1 1.23590 1.35860 1.40740 1.43310 0.03082 0.01274 0.00782 0.00573 

 - 4 2 1.18650 1.33140 1.38860 1.41880 0.03868 0.01483 0.00873 0.00623 

 - 3 3 1.19800 1.34130 1.39640 1.42510 0.03816 0.01449 0.00856 0.00614 

 - 2 3 1.26600 1.38050 1.42400 1.44630 0.02999 0.01231 0.00763 0.00565 

Bayes 

- 1λ  

1c  
for )t  \θ (4  when 

 )  c (  einformativ-non )  λ  (    lexponentia  α  ) θ (P 114   

 - 1 2 1.34260 1.42220 1.45270 1.46820 0.02436 0.01091 0.00706 0.00538 

 - 2 2 1.26600 1.38050 1.42400 1.44630 0.02999 0.01231 0.00763 0.00565 

 - 2 1 1.32110 1.40930 1.44350 1.46110 0.02412 0.01087 0.00703 0.00534 

 - 3 1 1.25000 1.36920 1.41550 1.43960 0.03032 0.01250 0.00770 0.00568 

Table (4-10): Estimated value )  θ (

          ^

MLF  and ) θ (

^

MLINEX  of PFD-I, under the 

MLINEX ,under different conjugate prior of the parameter for 0.5θ  and w=1 

and c=2. 

Method parameter 
Estimated value )  θ (

          ^

MLF  ) θ (

^

MLINEX  

Sample Size(n) Sample Size(n) 

25 50 75 100 25 50 75 100 

MLE - - - 0.52269 0.51209 0.50820 0.50692 0.09065 0.04095 0.02766 0.02035 

Bayes a b λ  for   )t  \θ (1  when ) λ erlang(b) , gamma(a  α  ) θ (P1   

 3 2 4 0.50869 0.50600 0.50435 0.50411 0.06606 0.03498 0.02493 0.01880 

 3 2 6 0.48999 0.49627 0.49780 0.49916 0.05922 0.03280 0.02385 0.01812 

 1 2 6 0.45435 0.47737 0.48495 0.48942 0.07158 0.03562 0.02503 0.01866 

 2 1 6 0.48100 0.49155 0.49459 0.49673 0.06248 0.03360 0.02421 0.01829 

Bayes - λ  
1λ  for )t  \θ (2  when  )  λ  (    lexponentia) λ erlang(  α  ) θ (P 12   

 - 4 1 0.48088 0.49155 0.49460 0.49674 0.06732 0.03495 0.02486 0.01866 

 - 4 2 0.47168 0.48673 0.49134 0.49427 0.06728 0.03478 0.02474 0.01856 

 - 4 4 0.45435 0.47737 0.48495 0.48942 0.07158 0.03562 0.02503 0.01866 

 - 6 4 0.43827 0.46837 0.47873 0.48465 0.08081 0.03789 0.02598 0.01915 

Bayes - λ  
1c  for )t  \θ (3  when  )  c (  einformativ-non)  λ  ( erlang  α  ) θ (P 13   

 - 4 1 0.47120 0.48663 0.49131 0.49426 0.07246 0.03618 0.02541 0.01894 

 - 4 2 0.45196 0.47680 0.48471 0.48930 0.08229 0.03843 0.02636 0.01941 

 - 3 3 0.44152 0.47169 0.48133 0.48677 0.09299 0.04094 0.02746 0.02000 

 - 2 3 0.45070 0.47651 0.48459 0.48924 0.08863 0.03996 0.02707 0.01980 

Bayes 

- 
1λ  

1c  
for )t  \θ (4  when 

 )  c (  einformativ-non )  λ  (    lexponentia  α  ) θ (P 114   

 - 1 2 0.46029 0.48144 0.48789 0.49173 0.08591 0.03939 0.02685 0.01971 

 - 2 2 0.45070 0.47651 0.48459 0.48924 0.08863 0.03996 0.02707 0.01980 

 - 2 1 0.47074 0.48655 0.49127 0.49425 0.07833 0.03767 0.02610 0.01933 

 - 3 1 0.46116 0.48162 0.48797 0.49176 0.07948 0.03784 0.02614 0.01932 
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Table (4-11): Estimated value )  θ (

          ^

MLF  and ) θ (

^

MLINEX  of PFD-I, under the 

MLINEX ,under different conjugate prior of the parameter for 1θ  and w=1 and 

c=2. 

Method parameter 
Estimated value )  θ (

          ^

MLF  ) θ (

^

MLINEX  

Sample Size(n) Sample Size(n) 

25 50 75 100 25 50 75 100 

MLE - - - 1.03580 1.01840 1.01550 1.01410 0.09177 0.04239 0.02836 0.02211 

Bayes a b λ  for   )t  \θ (1  when ) λ erlang(b) , gamma(a  α  ) θ (P1   

 3 2 4 0.90619 0.95094 0.96953 0.97927 0.06686 0.03560 0.02459 0.01944 

 3 2 6 0.84882 0.91720 0.94560 0.96074 0.08855 0.04170 0.02712 0.02067 

 1 2 6 0.78707 0.88225 0.92119 0.94199 0.13621 0.05556 0.03335 0.02408 

 2 1 6 0.84466 0.91597 0.94506 0.96045 0.09386 0.04311 0.02776 0.02105 

Bayes - λ  
1λ  for )t  \θ (2  when  )  λ  (    lexponentia) λ erlang(  α  ) θ (P 12   

 - 4 1 0.86973 0.93187 0.95662 0.96951 0.08591 0.04078 0.02682 0.02064 

 - 4 2 0.84026 0.91471 0.94451 0.96016 0.09968 0.04459 0.02842 0.02144 

 - 4 4 0.78707 0.88225 0.92119 0.94199 0.13621 0.05556 0.03335 0.02408 

 - 6 4 0.74034 0.85205 0.89902 0.92451 0.18137 0.07030 0.04031 0.02799 

Bayes - λ  
1c  for )t  \θ (3  when  )  c (  einformativ-non)  λ  ( erlang  α  ) θ (P 13   

 - 4 1 0.86605 0.93089 0.95621   0.96931 0.09162 0.04225 0.02749 0.02104 

 - 4 2 0.83068 0.91209 0.94337 0.95957 0.11312 0.04780 0.02983 0.02226 

 - 3 3 0.82545 0.91071 0.94279 0.95926 0.12093 0.04954 0.03057 0.02269 

 - 2 3 0.85806 0.92886 0.95537 0.96889 0.10502 0.04545 0.02890 0.02187 

Bayes 

- 
1λ  

1c  
for )t  \θ (4  when 

 )  c (  einformativ-non )  λ  (    lexponentia  α  ) θ (P 114   

 - 1 2 0.89345 0.94775 0.96830 0.97872 0.09414 0.04281 0.02790 0.02144 

 - 2 2 0.85806 0.92886 0.95537 0.96889 0.10502 0.04545 0.02890 0.02187 

 - 2 1 0.89621 0.94841 0.96855 0.97883 0.08740 0.04119 0.02718 0.02101 

 - 3 1 0.86216 0.92989 0.9558 0.96910 0.09796 0.04381 0.02818 0.02145 

Table (4-12): Estimated value )  θ (

          ^

MLF  and ) θ (

^

MLINEX  of PFD-I, under the 

MLINEX ,under different conjugate prior of the parameter for 5.1θ  and w=1 

and c=2. 

Method parameter 
Estimated value )  θ (

          ^

MLF  ) θ (

^

MLINEX  

Sample Size(n) Sample Size(n) 

25 50 75 100 25 50 75 100 

MLE - - - 1.55380 1.52760 1.52320 1.52120 0.09177 0.04239 0.02836 0.02211 

Bayes a b λ  for   )t  \θ (1  when ) λ erlang(b) , gamma(a  α  ) θ (P1   

 3 2 4 1.23430 1.35180 1.40110 1.42760 0.10388 0.04641 0.02923 0.02179 

 3 2 6 1.13070 1.28470 1.35170 1.38860 0.16234 0.06601 0.03855 0.02703 

 1 2 6 1.04840 1.23580 1.31680 1.36150 0.23227 0.08814 0.04905 0.03305 

 2 1 6 1.13720 1.29230 1.35820 1.39410 0.16012 0.06422 0.03754 0.02643 

Bayes - λ  
1λ  for )t  \θ (2  when  )  λ  (    lexponentia) λ erlang(  α  ) θ (P 12   

 - 4 1 1.19960 1.33520 1.39040 1.41970 0.12613 0.05244 0.03191 0.02330 

 - 4 2 1.14450 1.30030 1.36500 1.39980 0.15792 0.06251 0.03659 0.02588 

 - 4 4 1.04840 1.23580 1.31680 1.36150 0.23227 0.08814 0.04905 0.03305 

 - 6 4 0.96750 1.17740 1.27200 1.32530 0.31523 0.11953 0.06505 0.04255 

Bayes - λ  
1c  for )t  \θ (3  when  )  c (  einformativ-non)  λ  ( erlang  α  ) θ (P 13   



 

 

 

 

 

Journal of Economics and Administrative Sciences Vol.27 (NO. 127) 2021, pp. 229-252 
   

  

246  

 

   

 

 

 

 - 4 1 1.21090 1.34490 1.39800 1.42590 0.12394 0.05125 0.03134 0.02301 

 - 4 2 1.16150 1.31770 1.37920 1.41160 0.15378 0.05940 0.03493 0.02497 

 - 3 3 1.17160 1.32720 1.38680 1.41780 0.15201 0.05806 0.03425 0.02461 

 - 2 3 1.23820 1.36610 1.41420 1.43890 0.12093 0.04954 0.03057 0.02269 

Bayes 

- 1λ  

1c  
for )t  \θ (4  when 

 )  c (  einformativ-non )  λ  (    lexponentia  α  ) θ (P 114   

 - 1 2 1.31310 1.40730 1.44270 1.46070 0.09887 0.04394 0.02831 0.02160 

 - 2 2 1.23820 1.36610 1.41420 1.43890 0.12093 0.04954 0.03057 0.02269 

 - 2 1 1.29320 1.39480 1.43370 1.45370 0.09796 0.04381 0.02818 0.02145 

 - 3 1 1.22370 1.35520 1.40590 1.43230 0.12214 0.05027 0.03089 0.02281 

 

 

6. Discussion 
       From empirical results in tables (4 -1) to (4-3),corresponding to the smallest 

values of  MSE  , we listed the best estimators using  Bayes estimation , under the 

squared error loss function (SELF) , under different conjugate prior of the 

parameter for all the true value of 1.5 ,1, 0.5θ  .We see Bayes estimators under 

different double prior selection are too close the true values 1.5 ,1, 0.5θ  ,and the 

values of  MSE for all sample size .Bayes estimation gave the best estimation  

according to the to the smallest values of  MSE comparative with the values of  

MSE of MLE.As shown below in Table-A. 

 

Table-A:  The estimation of MLE and the best estimators of Bayes estimation  for 

θ under the squared error loss function (SELF). 
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And for empirical results in tables (4-4) to (4-7) , corresponding to the 

smallest values of  MWSE ,we listed the best estimators using Bayes estimation , 

under the weighted error loss function (WSELF), under different conjugate prior 

of the parameter for all the true value of 1.5 ,1, 0.5θ  . We see Bayes estimators 

under different double prior selection are too close the true values 1.5 ,1, 0.5θ  , 

and the values of MWSE for all sample size. Bayes estimation gave the best 

estimation according to the to the smallest values of  MWSE comparative with 

the values of  MWSE of MLE.As shown below in Table-B. 

 

Table-B: The estimation of MLE and the best estimators of Bayes estimation for 

under the weighted error loss function (WSELF). 

 
 

Also for empirical results in tables (4-8) to (4-11), corresponding to the smallest 

values of  ) θ (

^

MLINEX  ,we listed the best estimators using Bayes estimation , 

under modified linear exponential (MLINEX) loss function (MLF)with w=1 and 

c=1, under different conjugate prior of the parameter for all the true value of 

1.5 ,1, 0.5θ  . We see Bayes estimators under different double prior selection are 

too close the true values 1.5 ,1, 0.5θ  , and the values of ) θ (

^

MLINEX  for all 

sample size .Bayes estimation gave the best estimation according to the to the 

smallest values of  ) θ (

^

MLINEX  comparative with the values of  ) θ (

^

MLINEX  of 

MLE.As shown below in Table-C. 
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Table-C: The estimation of MLE and the best estimators of Bayes estimation for 

under modified linear exponential (MLINEX) loss function (MLF)with w=1 and 

c=1. 

 
Finally, for empirical results in tables (7 -1) to (7-3) , corresponding to the 

smallest values of  ) θ (

^

MLINEX  ,we listed the best estimators using Bayes 

estimation , under modified linear exponential (MLINEX) loss function 

(MLF)with w=1 and c=2, under different conjugate prior of the parameter for all 

the true value of 1.5 ,1, 0.5θ  . We see Bayes estimators under different double 

prior selection are too close the true values 1.5 ,1, 0.5θ  , and the values of 

) θ (

^

MLINEX  for all sample size .Bayes estimation gave the best estimation 

according to the to the smallest values of  ) θ (

^

MLINEX  comparative with the 

values of  ) θ (

^

MLINEX  of MLE.As shown below in Table-D. 
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Table-D: The estimation of MLE and the best estimators of Bayes estimation for 

under modified linear exponential (MLINEX) loss function (MLF)with w=1 and 

c=2. 

 
 

          In general, the parameter estimates using Bayes estimation methods are 

close to the true values comparative to the other estimated values using maximum 

likelihood estimation, at certain values for the parameters of the conjugate prior 

of the parameter θ was considered as combination for the two different prior 

distribution. 

 

5. Conclusions 

        When we compared the estimated values for the shape parameter )θ(
 ^

 of the 

Power Function  Distribution (PFD-I) by using the methods in this study .We can 

conclude that Bayes' estimators for the unknown shape parameter θ was 

considered , under various double priors at certain values for the parameters of 

the double prior distribution and under the squared error loss function and the 

weighted error loss function and modified linear exponential (MLINEX) loss 

function with w=1 and c=1,2 , for all the true value of θ  and for all samples sizes 

(n) are better than other estimators by using maximum likelihood estimation. 

we find that best estimation  under the squared error loss function (SELF)  for 

each of the value of 0.5,1,1.5θ  , according to the smallest values of MSE, by 

using  the conjugate prior of the parameter θ  was considered as 
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 ))4λ l(exponentia6)  λ 1(erlang(  distribution for all samples, when the true 

value 0.5θ   .  

 ))4λ erlang()2b3,(gamma(a  distribution and  for all samples except 

n=100,  when the true value 1θ   and 1.5θ  .  

 

And we find that best estimation under the weighted error loss function 

(WSELF)for each of the value of 0.5,1,1.5θ  , according to the smallest values of 

MWSE, by using  the conjugate prior of the parameter θ  was considered as 

 ))6λ erlang()2b3,(gamma(a  distribution for all samples, when the true 

value 0.5θ  .  

 ))4λ erlang()2b3,(gamma(a  distribution and  for all samples except 

n=100,  when the true value 1θ  .  

 )) einformativ-non )2λ ( lexponentia 1(c( 11  distribution and  for all samples 

except n=100,  when the true value 1.5θ  .  

 

Also we find that best estimation under modified linear exponential (MLINEX) 

loss function (MLF) with w=1 and (c=1, 2) ,for each of the value of 0.5,1,1.5θ  , 

according to the smallest values of ) θ (

^

MLINEX , by using  the conjugate prior of 

the parameter θ  was considered as 

 ))6λ erlang()2b3,(gamma(a  distribution for all samples, when the true 

value 0.5θ  .  

 ))4λ erlang()2b3,(gamma(a  distribution and  for all samples,  when the 

true value 1θ  .  

 )) einformativ-non )2λ ( lexponentia 1(c( 11  distribution and  for all samples, 

when the true value 1.5θ  .  
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 البحث مستخلص
فٍ هذا انثحس، َخرثز خصائص يقذراخ تُش نًؼهًح انشكم نرىسَغ دانح انقىي يٍ انُىع الأول تاسرؼًال       

َىػٍُ يٍ انرىسَؼاخ أونُح ، واسرؼًال دوال خسارج يخرهفح ، ويقارَرها يغ يقذراخ الإيكاٌ الأػظى . فٍ 

رتًا َكىٌ نذَُا يؼهىيرٍُ يخرهفح حىل انرىسَغ الاونٍ نًؼهًح انشكم نرىسَغ دانح  انؼذَذ يٍ انرطثُقاخ انؼًهُح،

نذا فقذ اسرؼًهُا َىػٍُ يخرهفٍُ يٍ  انقىي يٍ انُىع الأول، انذٌ َكىٌ نه ذأشُز ػهً ذقذَز يؼهًح انشكم.

( نرقذَزها . افرزضد PFD-Iدانح انقىي يٍ انُىع الأول )نرىسَغ  θ) (انشكم انذوال الأونُح انًزافقح  نًؼهًح 

يٍ ذىسَؼٍُ أونُح يخرهفح، كرىسَغ كايا يغ ذىسَغ ارنُك كرىنُفح  θ) (انشكم انذانح انًزافقح الأونُح نًؼهًح 

 ذفق يؼهىياذٍ.وذىسَغ ارنُك يغ الاسٍ وذىسَغ ارنُك يغ ذىسَغ غُز يؼهىياذٍ وذىسَغ الاسٍ يغ  ذىسَغ غُز 

تاسرؼًال شلاز أَىاع نذانح انخسارج  نرىسَغ دانح انقىي يٍ انُىع الأول نًؼهًح انشكمذى اشرقاق يقذراخ تُش 

كذانح انخسارج انرزتُؼُح ودانح انخسارج انرزتُؼُح انًىسوَح ودانح انخسارج الاسُح انخطُح انًحىرج. تالإضافح 

اسرؼًهُا أسهىب انًحاكاج نهحصىل ػهً . تطزَقح ذقذَز الايكاٌ الاػظىانً طزَقح انرقذَز انكلاسُكُح انًرًصهح 

اسرؼًهد  (PFD-I)دانح انقىي يٍ انُىع الأول نرىسَغ  θ) (انشكم نًؼهًح  يخرهفح حالاخَرائج هذا انثحس ن

 .يخرهفح يٍ انؼُُاخ لأحجاو نرىنُذ انثُاَاخ و

 

 

 : ورقح تحصُح.َىع انثحس

ذقذَز الإيكاٌ الأػظى، ذقذَز تُش، دانح  ،الأولدانح انقىي يٍ انُىع ذىسَغ  ت الرئيسة للبحث:المصطلحا

  انخسارج انرزتُؼُح، ودانح انخسارج انرزتُؼُح انًىسوَح، ودانح انخسارج الاسُح انخطُح انًحىرج.
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