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Abstract: 
In this paper, the problem of resource allocation at Al-Raji Company for 

soft drinks and juices was studied. The company produces several types of tasks 

to produce juices and soft drinks, which need machines to accomplish these tasks, 

as it has 6 machines that want to allocate to 4 different tasks to accomplish these 

tasks. The machines assigned to each task are subject to failure, as these 

machines are repaired to participate again in the production process. From past 

records of the company, the probability of failure machines at each task was 

calculated depending on company data information. Also, the time required for 

each machine to complete each task was recorded. The aim of this paper is to 

determine the minimum expected time for the completion of all the machines 

assigned to perform their tasks in the company by using the dynamic 

optimization technique over finite and infinite horizons. By comparing the 

results, it was found that the first and second tasks were better than the third and 

the fourth tasks because the first task and the second one had completed their 

tasks in a shorter period than the others, they took 1379.2 hours and 1379.3 

respectively during     of horizons (stages), while the third task took 1379.4 

hours and the fourth task 1379.5 hours. A careful analysis of the situation 

revealed that the time it takes for each machine to complete its tasks has been 

reduced, from appropriate planning and quick and effective maintenance can 

enhance the capacity of the machines and thus reduce time and effort, which 

contributes to reducing the company's costs and thus maximizing the production 

capability to increase the company's profits. 

Keywords: Resource Allocation Problem, Dynamic Optimization, Finite and 

Infinite Horizon,    Value Iteration Algorithm. 
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1. Introduction: 
    There are many methods for solving mathematical models that are 

mainly designed to solving the problems and reach the optimal solution for a 

specific mathematical model, and they are used in many different fields, one these 

fields is Operation Research. In this section, we are defining our approach to 

build the model of resource allocation and solving it, using dynamic optimization 

technique and explaining the problem. There are many models in Operation 

Research such as (Resource Allocation, Game theory, et al...) which are solved by 

using many techniques and one of these techniques is Dynamic Programming.  

    Dynamic programming is a mathematical technique for solving 

problems that seeks the optimal solution for a multi- stage problems. The optimal 

solution may mean maximizing profits, minimizing costs or time to complete the 

task, which had to do with finding optimal decisions. Dynamic programming is 

used to create a series of interconnected decisions by diving the problem into 

several stages, in each stage there are many decisions and the best one is chosen. 

In order to solve any problem, it needs a decision to make, in which the time 

factor plays the primary role, and therefor the decision is made in multiple 

stages, where the problem is divided into multiple parts and each part represents 

a stage, and the decision is made at the end of each stage. Every decision that is 

made depends on the previous stage and affects the next stage to which it is 

related. This study includes solving the Resource Allocation problem using the 

dynamic optimization technique with using value iteration algorithm to find the 

optimal solution. We formulate the model and consider to allocate different 

machines to many different tasks in a production company. The production 

company have a limit number of machines and wants to allocate them to the tasks 

at the beginning of planning horizon. Where the company estimated the working 

times of each machines and their distribution to accomplish each task to be 

received in the first stage of the process. Also the probability of failure of each 

machine assigned to each task was calculated. The machines that got broken are 

to be repaired to participate in the production process, as it will be allocated at 

the beginning of the next period.  

   The problem is formulated as a dynamic optimization problem and 

based on previous studies. In (1969) Nemhauser & Ulmann give a study 

considering the discrete dynamic programming and capital allocation, where 

dynamic programming algorithms have been developed for optimal capital 

allocation according to budgetary constraints [7]. Abraham & Paul published a 

paper in (1985) that was about generalized polynomial approximations in 

Markovian decision processes; through this study they found that the structure of 

the value function in the process of making a Markovian decision through the 

linear superposition of the base function reduces the dimensional problem [18]. 

Mulvey & Valdimirou published a paper in (1992) and they discussed stochastic 

network programming for several financial planning problems that are posed as 

dynamic programming with stochastic parameters [13]. And in (1997) Bertsekas 

& et al. discussed an application of neuro-dynamic programming technique to the 

optimization of retailer inventory system they compared the performance of 

solutions generated by using Neuro-dynamic programming algorithms [27].  
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In (2002) Godfrey & Powell proposed a study that addressed an adaptive 

dynamic programming algorithm for dynamic fleet management, I: Single period 

travel times. They considered that the problem is a random version of the 

dynamic resource allocation problem, and they were solved the problem by using 

an adaptive dynamic programming algorithm that uses nonlinear function 

approximations that yield resource values in the future [8]. Van Roy & Farias 

published a paper in (2003) about the linear programming approach to 

approximate dynamic programming; they developed error limits that provide 

performance guarantees and also guide the selection of each of the fundamental 

functions that affect approximation quality [4]. Then in (2003) Guestrin & et al.’s 

paper was efficient algorithms for factored MDPs; the paper addressed the 

problem of planning under uncertainty in large Markov Decision Processes they 

provide experimental results on problems with large state space [9]. In (2004), 

Powell & Spivey studied the dynamic assignment problem; they proposed a 

hierarchical aggregation strategy for problems where the attributes spaces are 

too large to be enumerated [24]. In (2005) Osman & el al. proposed a study that 

deal with an effective genetic algorithm approach to multi-objective resource 

allocation problems (MORAPs); through this study, they used genetic algorithm 

to solve a multi-objective resource allocation problems. Also, this approach is 

developed to deal with both multi-objective problems and single problems [17]. In 

(2005), Powell & et al. published a paper about approximate dynamic 

programming for high dimensional resource allocation problems [22]. Topaloglu 

& Kunnumkal in (2006) published a paper about approximate dynamic 

programming methods for an inventory allocation problem under uncertainty 

[25]. After that, Samuel & et al. presented general method to solve infinite-time 

horizon problems in (2006) through the exhaustive description of an algorithm 

that they implement to determine the optimal strategy. From this study, their 

model yields two predictions. First, spiders reduce their web size as they are 

gaining weight due to body mass dependent cost of web building. Second, this 

reduction in web size starts at lower weight under higher ferocity risk [28]. Then, 

Powell & Topaloglu in (2006) proposed a study about Dynamic-programming 

approximations for stochastic time-stage integer multi-commodity flow problems 

[26]. Then in (2012), Nwozo & Nkeki published a paper about a dynamic 

optimization technique for resource allocation problems in a Production 

Company [16]. Noor & Doucette published a paper in (2012) about an 

applications of infinite horizon stochastic dynamic programming in multi-stage 

project investment decision-making [15]. Later, Ajofoyinbo & Orolu made a 

study in (2012) about optimal allocation of radio resource in cellular LTE 

downlink based on truncated dynamic programming under uncertainty [1]. Then 

came Hauskrecht & Singliar in (2012) to make a study had concern Monte-Carlo 

optimizations for resource allocation problems in stochastic network systems 

[10]. Then in (2013),Nkeki offered a study in connection with Dynamic 

optimization technique for distribution of Goods with Stochastic shortage [14]. A 

paper was published in (2017) by Amuji & et al.; they made a case study in 

Nigerian university and the paper’s address was the usefulness of dynamic 

programming in course allocation in the Nigerian university [3].  
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After that, Hoang & et al. published a paper in (2017) about Infinite-

horizon proactive dynamic DCOPs [12]. In (2017), Zhongkai & et al. made a 

study about dynamic optimization Two Dimension Reduction Methods for Multi-

Dimensional Dynamic Programming and Its Application in Cascade Reservoirs 

Operation Optimization and they used two methods to solve Multi-dimensional 

dynamic programming in china [29]. This paper is organized and detailed in the 

following parts. Section (2) will describe the problem and our target of using this 

type of methods. In Section (3), the probabilistic dynamic programming will be 

defined. The formulation of the resource allocation problem and defining the 

notations will be explained in section (4). While in section (5), the computational 

results will be discussed. And conclusion follows in section (6). 

2. Problem description: 
   While there are many shapes that used in allocation decision problem 

can take. This paper describes one type of these shapes and will describe it in a 

more high-level form to set stage. A company has a number of tasks and wants to 

allocate machines at each. These machines are expected to get failed due to the 

uncertainty of the number of machines that fail, then we suppose that the states 

are random; the company should know the number of machines that would be 

available for the next period and before making a decision on how to allocate the 

remaining machines for each task. The number of machines to be participate into 

operation in the next period depends on the number of machines that failed at the 

end of previous period. The aim of this paper is to determine minimum expected 

time for the completion of all the machines that assigned to perform their tasks in 

the company by using dynamic optimization technique which is the optimal 

solution at each stage and then link all solutions to reach a final solution of the 

problem over H horizon of study.  

3. Probabilistic Dynamic Programming: 
   In the previous section, the dynamic programming is defined as a 

mathematical method that aims find the optimal solution to a specific problem to 

make an interrelated sequence of decisions after dividing the problem into many 

parts, where each part represents as a stage and linking these stages with each 

other by a mathematical relationship, and each stage of the problem contains a 

set of states. 

 Dynamic programming is used to solve many cases, whether these cases 

are deterministic or non-deterministic. Probabilistic dynamic programming 

differs from the deterministic in that the states in the next stage is indefinite and 

known from the states in the current stage, where the states in this model are 

random. Therefor, this type of dynamic programming is more difficult and 

complicated than the deterministic type [11]. 

   The dynamic programming model can be considered as a probabilistic 

model if the following conditions are met: 

 If the contributions that are related to the states are uncertain on unknown. 

 If the resulting states in each of the stages are random and uncertain. 

when the above conditions are available, this means that the system can be 

defined under uncertainty, and in this case the expectation taken to find the 

optimal solution for the model; equation (1) is called as the recurrence equation 

or Bellman’s equation.  
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 *  (     )

     (    )+                                                                          ( ) 
Where, 

  (     )  The returns obtained are represented by state (S) when event (a) 

occurs at stage (h). 

  (  ): The value function of state (s) at stage (h) [19].  

 

4. Formulate the Allocation Problem and Optimality Equation: 
     The allocation problem requires the existence of sources and receivers. 

Sources mean the parts that need to allocate to a recipient or an outfall, and it is 

represented by the allocation of machines, employees, or … etc. As for the 

recipients, it means the task to which the source is allocated. We have taken into 

consideration in the study of this problem, which is the allocation of a certain 

number of machines to a certain number of tasks at the beginning of each period 

of time. The assigned machines for each task are subject to failure. Thus, we 

expect some machines to breakdown at the end of each period, which leads to the 

uncertainty in the number of machines that will be failed at the end of the period. 

For this reason the states of the machines are random. The production company 

must know the number of machines that will be available in the next period 

before it makes any decision regarding assigning tasks to the functioning 

machines. The number of machines that will participate in the production 

process for the next period depends on the number of machines that failed at the 

end of each previous period. The goal is to determine the expected times for each 

machine to complete each task assigned during certain time periods. If the time 

accomplished for the machines, which resulted from allocating m of tasks to the 

machines during a period h is   
 , and the states of machines is Sh. Then, the 

number of machines assigned to the production process for each task in each 

period is according to the policy π is   
  , and the number of machines that failed 

is   , the returns that will be achieved for the company over H horizons is given 

by: 

∑∑  
 (  

  (    ( )))

 

   

 

   

 

The minimum expected time accomplished for the company’s machines under the 

policy π as in the following equation:  

  
 (  )

  [    
    (  )

∑∑    
 (  

  (    ( )))

 

   

 

   

 ]                                                        ( ) 

Subject to 
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  (    ( ))
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Where 

 : is the discount factor      . 
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S: the state space i.e. the set of all machines. 

H: the set of stages in the planning Horizon. 

π: the policy of  the system which is the rule of an action chosen based on current 

state. 

  
  : Number of machines that allocated to task k at stage h under policy π,   
,   -.  
  : Number of available machines at period h;   ,   -     . 

 : Number of machines who failed at period h.  

  
 (    ( )): Number of available machines to be allocated in the next period. 

 (  ): It represents the set of possible solutions to the problem,    . 

  
 : The expected returns (contributions) from task k at stage h,   ,   -. 

Π: the set of all policies, π   Π. 

  : The initial number of machines available at the beginning of planning 

horizon. 

  (  ): The objective function,   ,   -.  
Problem (3) minimizing the expected times over  (  ) 

  
 (  )   {    

    ( )
∑ ∑     

 .   
 (     ( ))/

 

   

 

    

      }                                  ( ) 

Subject to 

∑  
  (    ( ))

 

   

                

  
  (    ( ))                        

If we accumulate the returns of the first H-stage and add to it terminal returns.  

  (  )  ∑  
 (  )

 

   

 

Then (3) will be 

  
 (  )   [{    

    ( )
∑ ∑     

 .   
 (     ( ))/

 

   

   

    

}      (  )   

     ]          ( ) 

Subject to 

∑  
  (    ( ))

 

   

              

  
  (    ( ))                        

    Since the states (s) are random, by using    as the state variable at stage 

h and S as the state space. We can formulate this problem as a dynamic 

programming, the number failed machines for task k at stage h is     
 , where 

   the probability of failure machines at each task k. The total number of failure 

machines for all tasks is as given: 
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Assume that    be the number of machines to be allocated at stage h, and   be 

the percentage of breakdown machines that are expected to join the functional 

machines in the next period [16]. 

         ((   )  ∑    
               

 

   

) 

By substitute   in place of (   ) then the equation will becomes. 

          ∑    
                                                                            ( )

 

   

 

And using equation (6) we can compute R. 

 ( )    
 

   
  

     

   
                                                                                        ( ) 

For more details see [5], after that we used the Reliability of the system [6]. 

 ( )  ∏  ( ) 
                                                                                                        (7) 

   In this case we can find the optimal policy and computing the value function 

through the optimization problem which is given by 

  
 (  )     

    (  )
,∑  

 (  
  (    ( )))

 

   

 ( *  (  )+      )-                       ( ) 

Subject to 

  ∑  
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And equivalently  

∑  
  (    ( )) 

 

   

                       

  
  (    ( ))                             

     Since all the working and available machines to be allocated in the next 

stage are less than the machines that must be allocated to reduce the time 

required to complete each machines there each task, in addition we have     , 

       
Lemma 4-1: let    be a state variable and let   (    ) be a function who 

measured at some point h
’
 ≥ h+1 conditional the random variable   . Then 

 * (        )   +
  *      +                                                                                                 ( ) 

By this lemma and for more detail about the proof see [21]. 

Theorem 4-1-1: now we suppose that   
 (  ) is a solution of (7), then   

 (  )  
  
 (  ) and to show that at first, we use a standard dynamic programming 

through this relation 

  
 (  )    

 (  )    (  ) And it holds for h+1, h+2… H to see details [20]. 

That will leads to: 
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And  

  
 (  )     
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Then the optimality equation becomes see [16]: 

  (  )     
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[∑  
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 (    ( ))/

 

   

     (       ∑    
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]            (  ) 

    Now by using the equation (10) to show that for any    , exists     

And satisfies the condition: 

  
 (  )  (   ) 

   (  )                                                                                              (  ) 
    The result of equation (11) proves that solving the optimality equation also 

gives the optimal value function [16]. 

    To solve equation (10), we used the value iteration algorithm for finite and 

infinite stage by using forward dynamic programming [28], and as follows: 

 

Step 1: Initialization 

 

               ( )                    
   

   Step 2: Iterative process 

        
For each         ( ) 
         For each      calculate: 

    (  )     
    (  )

[∑  
 .  

 (  ( ))/

 

   

   (       ∑    
 )

 

   

] 

  ( )            (   ) 

  ( )    (    ( )) 

      Step 3:  if     (   ( )    )      

 

  ( )    
   We found the optimal strategy and stop. If not, back to step 2 and 

resolve the equation with new iteration.  

    Value iteration algorithm is a method for determining the optimal strategy 

over finite and infinite – time horizon. At first iteration, we have h=0, all values of 

any state are initialized to 0. After that, the successive iteration are run by 

increasing one iteration. In each state (s) and for each action (x), the value of 

F(s,x) is calculated as the sum of all values that are associated with any next state 

in the future s
’ 

computed at the previous iteration (h-1).     ( 
 )  Equals to 

  (    ( )).   ( ) Refers to the strategy that is selected within the iteration i. 

successive iterations are run forward until the resulting strategy converges 

toward an optimal solution. That is, when the difference between values from one 

iteration to the values of previous iteration for each states is equal or less than  . 

And that refers to the optimal strategy      
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5. Computational Result: 
The study was made at Al-Raji Group companies and it is one of the 

popular companies in Iraq for the production of soft drinks, juices, energy drinks 

and healthy water. Our focus was on production process and superintendence 

machines. The company had (6) number of machines and wants to allocate the 

machines to (4) number tasks, these machines are subject to fail and breakdown. 

The company had estimated that 0.95 of breakdown machines would join to the 

functional ones at each period. This paper aims to determine the minimum 

expected time for the completion of all the machines assigned to perform their 

tasks in the company by using the dynamic optimization technique during the H 

period of study. After calculating the probability of failure for all tasks from 

equation (6) and equation (7) which is denote to R(s) that is after recording the 

running times until failure occurs we obtain the results in the table below (1). 

 

Table (1). Represents the probability that each task will fail 

4 3 2 1 
Task 

R(i) 

1 1 1 1  (  ) 

0.8 0.8571 0.8333 0.8571  (  ) 

0.6 0.7143 0.6667 0.7143  (  ) 

0.4 0.5714 0.5 0.5714  (  ) 

0.2 0.4286 0.3333 0.4286  (  ) 

 0.2857 0.1667 0.2857  (  ) 

 0.1429  0.1429  (  ) 

0.0384 0.0061 0.0154 0.0061 R(S) 

 

 

      And Table (2) gives detailed information of the expected initial completion 

times (in hours) for the machines to complete their tasks assigned to with the 

probability of failure for each task. The goal is to determine the minimum 

expected time for the completion of all the machines assigned to perform their 

tasks for each product in the company using the dynamic optimization method.  
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Table (2). The expected initial completion times of the machines in hours and the 

probability of failure machines 

Tasks 

Machines 
            

1 1.0667 1.1429 1.2 1.3714 

2 1.0667 1.1429 1.2 1.3714 

3 1 1 1 1 

4 0.8772 0.8772 0.9524 1.1905 

5 1.0033 1.0033 1.0033 1.0033 

6 1.2 1.2973 1.2 1.3714 

Probability of 

failure (  ) 
0.0061 0.0154 0.0061 0.0384 

    

   Assuming sh represents machines number to be allocated at the next 

period, that means      
 (    ( )). Let s0 be the number of machines at the 

beginning of the planning horizon. The number breakdown machines for all 

tasks  (∑     
 ) 

   . And expected to join the functional machines in the next 

period of process is (     ∑     
  ) 

   . We have the state of machines that,  

         ((    )  ∑    
               

 

   

)                                       (  ) 

   Which is our transformation equation and is a stochastic variable. We can 

express our expected return function as follows: 

  
 (  )   [    

    (  )
∑∑    

 (  
  (    ( )))

 

   

 

   

 ]                                         (  ) 

Subject to 

∑  
  (    ( ))

 

   

                      

The company cannot allocate negative resource to any one task, so we write  

  
  (    ( ))                        . Of course equation (13) is the 

same as  

  (    )      
    (  )

[∑  
 .  

 (    ( ))/   *    (  )+
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∑  
 (    ( ))

 

   

        

  
  (    ( ))                          

    We have 4 tasks and 6 machines in our problem. Hence, m = 4. n = 6, by setting 

𝜀 = 0.001. 

    Which is parametric linear programming problem with 4 variables. To solve 

(13), we used MATLAB program, the results obtained. At the end, we obtained 

the following results,  which are shown in Table (3) below: 

 

Table (3). Represents the results obtained and for several iterations using the 

value iteration algorithm which are solved by using MATLAB program. 

  
 (  )  

Task 4 Task 3 Task 2 Task 1 n.o. mach. n.o. iter. 

44.0394 43.8680 43.8109 43.7347 1 

4
1

 

44.0394 43.8680 43.8109 43.7347 2 

41 41 41 41 3 

36.2785 36.0404 35.9652 35.9652 4 

41.1353 41.1353 41.1353 41.1353 5 

49.3714 49.2 49.2973 49.2 6 

  
 (  )  

Task 4 Task 3 Task 2 Task 1 n.o. mach. n.o. iter. 

144.3092 144.1378 144.0807 144.0045 1 

1
3
5

 

144.3092 144.1378 144.0807 144.0045 2 

135 135 135 135 3 

118.7353 118.4972 118.4220 118.4220 4 

135.4455 135.4455 135.4455 135.4455 5 

  
 (  )  

Task 4 Task 3 Task 2 Task 1 n.o. mach. n.o. iter. 

320.3147 320.1433 320.0862 320.0100 1 

3
0

0
 

320.3147 320.1433 320.0862 320.0100 2 

300 300 300 300 3 

  
 (  )  

Task 4 Task 3 Task 2 Task 1 n.o. mach. n.o. iter. 

1227 1226.8 1226.8 1226.7 1 1150 

  
 (  )  

Task 4 Task 3 Task 2 Task 1 n.o. mach. n.o. iter. 

1379.5 1379.4 1379.3 1379.2 1 ∞ 
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      In order to solve the problem and obtain the optimal policy and through the 

successive iteration. At the beginning of the study, all the values of the function 

and for all states are considered the initial value function F0 (s) = 0. And after 

solving the problem using the forward method by repeating the successive 

iterative operations, the value function F(s) is an incremental function and as we 

proceed forward by repeating the process of iterations, the initial values will be 

accumulated at each stage. We note from the results that we obtained which are 

mentioned in the table (3) that in the 41
st
 iteration, the first and second machines 

for the first task took about 43.7 hours, while for the second task they took about 

43.8 hours. As for the third task, they took about 43.9 hours, and finally for the 

fourth task they took about 44 hours. The third and fifth machines had equal 

completion times for all tasks, for the third machine it took 41 hours and for all 

tasks, and for the fifth machine it took approximately 41.1 hours for all tasks. 

The completion time for the fourth machine and for the first, second and third 

tasks was approximately 36 hours, while they took about 36.3 hours for the 

fourth task. Finally, for the sixth machine, the time for completing the first and 

third tasks was equally same completion; it took approximately 49 hours, and it 

took 49.3 hours for the second task. As for the fourth task, it took about 49.4 

hours. Figure (1) shows the results that we obtained at the 41 iteration. 

 
 

Fig (1). The expected time and the optimal policies that accrued at 41
st
 iteration  

   

   After moving forward and by repeating the iterative operations, in the 

iteration 135 from Table (3), we notice that the number of machines became 5 

machines, and in the iteration 300 the number of machines became 3because, 

according to the equation (12), sh is decreasing. By the failure rate β = 0.05 and 

the probability of failure for each task R(s). As for the first task of 300 

repetitions, the first and second machines took about 320 hours, and the third 

machine took 300 hours. For the second and third task, the first and second 

machines took about 320.1 hours, and the third machine took 300 hours, while 

the first and second machines took about 320.3 hours for the fourth task, and the 

third machine took about 300 hours. Also Figure (2) below shows the results at 

iteration 300.  
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 Fig (2). The expected time and optimal policies that accrued at iteration 300.  

      

 In the 1150 repetition, we notice that the first machine was taken for the first 

task, as it took about 1226.7 hours, and about 1226.8 hours for the second and 

third tasks, and about 1227 hours for the fourth task, as is shown in Figure (3) 

 

 
 

Fig (3). The expected time and optimal policies that accrued at iteration 1150. 

And Figure (4) shows the results at the infinite of repetitions; the optimal 

solution has been stopped. The first and second tasks were equal in completing 

their tasks and took about 1379.2 hours and 1379.3 hours respectively, while the 

third task took about 1379.4 hours, and the fourth task took about 1379.5 hours.  
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Fig (4). The expected time and optimal policies that accrued at iteration ∞. 

 

6. Conclusion: 
      Many production companies have been allocating resources to different 

tasks without taking into account some of the factors that may hinder the 

achievement of their goals. This paper dealt with allocating machines to different 

tasks and comparing them with each other in order to reduce the time of 

completion of the machines for the tasks assigned to them and over a finite and 

infinite horizon. Through these results, we found in the previous section, we 

noticed that the period of completion of the machines became close to each other 

after it stopped at      , because the company could not allocate negative 

machines. The first task took a few minutes shorter than the other tasks, and this 

means that the best policy that can be followed is for the first task and the second 

one. A careful analysis of the situation reveals that adequate planning and quick 

and effective maintenance can enhance the capability of the machines and thus 

reduce the time and effort, which contribute to reducing the company's costs and 

thus maximizing the production capability to increase the company's profits. 
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ُّصَّف ٘زا اٌؼًّ ِشخص ذسد اذفال١ح اٌّشاع الاتذاػٟ                   1.1اٌؼِّٟٛ اٌذٌٟٚ  اٌرشخ١ص  -غ١ش ذداسٞ  -َٔسة اٌ

NC 4.0)-(CC BY NonCommercial 4.0 International-Attribution                                      
  
 

 المستخلص:

ذّد دساسح ِشىٍح ذخص١ص اٌّٛاسد فٟ ششوح اٌشاخٟ ٌٍّششٚتاخ اٌغاص٠ح ٚاٌؼصائش.  ,فٟ ٘زا اٌثسث

اٌششوح ٌذ٠ٙا ػذج ِٙاَ ذسراج لإٔداص٘ا ٌرٕرح ػذج أٔٛاع ِٓ اٌؼصائش ٚ اٌّششٚتاخ اٌغاص٠ح ٚ اٌرٟ ذسراج اٌٝ 

اص ٘زٖ اٌّٙاَ. ِٙاَ ِخرٍفح لإٔد 1ِىائٓ ذشغة ترخص١صٙا ػٍٝ  1ِىائٓ ٌرٕدض ٘زٖ اٌّٙاَ, إر ٌذ٠ٙا ػذد 

اٌّىائٓ اٌّخصصح ٌىً ِّٙح ذىْٛ ِؼشضح ٌٍفشً, إر ٠رُ ذص١ٍر ٘زٖ اٌّىائٓ ٌرشرشن ِشج أخشٜ فٟ اٌؼ١ٍّح 

الإٔراخ١ح. ِٓ اٌسدلاخ اٌساتمح ٌٍششوح ، ذُ زساب ازرّاي فشً اٌّىائٓ فٟ وً ِّٙح تالإػرّاد ػٍٝ ت١أاخ 

ٗ وً ِاوٕح لأداص وً ِّٙح. اٌٙذف ِٓ ٘زا اٌثسث ٘ٛ ٚ وزٌه ذُ ذسد١ً اٌٛلد اٌزٞ ذرطٍث .ِؼٍِٛاخ اٌششوح

ذسذ٠ذ اٌسذ الأدٔٝ ِٓ اٌٛلد اٌّرٛلغ لإوّاي خ١ّغ اٌّىائٓ اٌّخصصح لأٔداص ِٙاُِٙ فٟ اٌششوح تاسرخذاَ 

. ِٓ خلاي ِماسٔح إٌرائح فمذ ذث١ٓ أْ اٌّّٙر١ٓ أسٍٛب الاِث١ٍح اٌذ٠ٕا١ِىٟ ػثش آفاق ِسذٚدج ٚغ١ش ِسذٚدج

١ٔح وأرا أفضً ِٓ اٌّّٙر١ٓ اٌثاٌثح ٚاٌشاتؼح لأْ اٌّّٙح الأٌٚٝ ٚاٌثا١ٔح أوٍّد ِٙاِّٙا فٟ فرشج الأٌٚٝ ٚاٌثا

ذمش٠ثا خلاي ساػح ػٍٝ اٌرٛاٌٟ  4111.1ٚ ساػح  1379.2اٌّّٙر١ٓ اٌثاٌثح ٚ اٌشاتؼح, فمذ اسرغشلرا ألصش ِٓ 

ساػح ٚ اٌّّٙح اٌشاتؼح  4111.1ِٓ ا٢فاق )اٌّشازً(, فٟ ز١ٓ أْ اٌّّٙح اٌثاٌثح اخزخ ٚلد     

ساػح. وشف اٌرس١ًٍ اٌذل١ك ٌٍٛضغ أٔٗ ذُ ذخف١ض اٌّذج اٌرٟ ذسرغشلٙا وً ِاوٕح لإٔداص ِٙاِٙا ٚ أْ  4111.5

اٌرخط١ط إٌّاسة ٚاٌص١أح اٌسش٠ؼح ٚاٌفؼاٌح ٠ّىٓ أْ ذؼضص لذسج اٌّىائٓ ٚتاٌراٌٟ ذمًٍ اٌٛلد ٚاٌدٙذ، ِّا 

 ٚتاٌراٌٟ ذؼظ١ُ اٌمذسج الإٔراخ١ح ٌض٠ادج أستاذ اٌششوح. ٠ساُ٘ فٟ ذم١ًٍ ذىا١ٌف اٌششوح

 

ِشىٍح ذخص١ص اٌّٛاسد, الأِث١ٍح اٌذ٠ٕا١ِى١ح, الافك إٌٙائٟ ٚ اٌلأٙائٟ,  /المصطلخات الرئيسة للبخث

 .خٛاسص١ِح ذىشاس اٌم١ّح
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