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Abstract:

A mixture model is used to model data that come from more than one
component. In recent years, it became an effective tool in drawing inferences
about the complex data that we might come across in real life. Moreover, it can
represent a tremendous confirmatory tool in classification observations based on
similarities amongst them. In this paper, several mixture regression-based
methods were conducted under the assumption that the data come from a finite
number of components. A comparison of these methods has been made according
to their results in estimating component parameters. Also, observation
membership has been inferred and assessed for these methods. The results
showed that the flexible mixture model outperformed the others in most
simulation scenarios according to the integrated mean square error and
integrated classification error.
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1. Introduction:

Finite mixture models are considered as mathematical approaches for a
wide range of statistical models that have been used to model a variety of random
phenomena. The most common use of it can be seen in many statistical
applications that have been conducted in medicine, genetics, economics, biology,
and agriculture. One key advantage in these applications is the determination of
points membership when no information is available (B.G.Lindsay 1995, D.
Bbéhning 2000, G.J. McLachlan and D. Peel 2000)[12,3,14]. A mixture of linear
regression was proposed for the first time by (R. Quandt and J. Ramsey,1978)[19]
as a switching regression model in a general framework. Their idea was to
estimate the parameters of the model by employing a method of moments. With
the fast pace of technological revolution, data and phenomena become much
complicated to be analyzed statistically. This can be seen in the scenarios in which
the data cannot interpret one single model. One successful work was done by De
Veaux(1989)[23] to tackle complicated situations through developing an EM
algorithm approach to fit a two-component mixture of linear regression models.

Turner (2000)[22] applied a finite mixture model of linear regression to
different types of data by the use of an EM algorithm. One year later, another
problem was considered to determine the number of components investigated by
A.J. Stomberg (2001)[8], who used a likelihood-derived method based on the
complete data. Assigning a weight factor for each observation was proposed by
(Markatou 2000)[13] and (Shen et al., 2004)[20] as a robust method for mixture
models. The trimmed likelihood-based method has taken a good part in the
estimation mixture of linear regressions through a well-developed framework by
Filzmoser, Dimova, and Neytchev (2007)[17]. Other methods were proposed to
employ this model as required classification methods to cluster data to several
groups based on similarity amongst them by Gordaliza et al. (2010), Garc'a-
Escudero, et al. (2009-2010)[5,6], Hennig (2002, 2003)[9,10], Mueller et al.
(2005)[16]. A critical advance in researches involving mixture model was
modifying the standard EM algorithm as an alternative for paying attention to
the maximization of the function in estimating the parameters of a mixture model
of linear regression, which was an excellent robust method proposed by (Bai, X.
et al. 2012)[2]. Another robust method was developed by (Song W. et al.,
2014)[21] that assumed Laplace distribution for the error terms and then used
the EM algorithm to implement the estimation procedure considering the
Laplace distribution as a mixture of normal distribution. This research included
several sections. In the next section, we introduced the general form of a finite
mixture of linear regression models followed by the section of estimation model
parameters. The latter sections would described the simulation procedure and
discuss the results of the methods.
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2. Materials and Methods

Let X be a p-dimensional vector of independent variables, and Y be a
scalar response variable. To look into the relationship between Y and X, we use
the classical linear regression model. However, if the model has p components
(p>2) and (X', Y) that have the probability r;, where ,j = 1,2,...,p. We may use
the mixture linear regression

Yi=XBj+g, i=12.mj=12.,p ...(1)

where g; is a random error and distributed as N(0, azj), and 25;1 m; =1, for
j=12..,p.

Hence,
p

fx,B) = Z ¢ (¥; X' Bj, 07), .. .. (2)

j=1

where 2;;1 ip(y; x’ﬁ,-,af) is a density function of normal distribution. To
Eq(2), we define an indicator vector of observations’ memberships as follow:
Z;={1 ifithobservation (X;Y;)is from jth component 0 otherwise.

The incomplete log-likelihood function can be written in the following form:

Ix) =L, log X}, mo(;x'Buop),  ..(3)
where 8 = (B,w,a*)T

And the complete log-likelihood function is written as
I(x) = Xizq 2?:1 zi log [m;¢p(yj; X' Bj, 67)] . (4)

Note that finding the estimators of eq. (4) is quite tricky analytically.
Therefore, many methods have been found to tackle such issues. In this research,
a comparison of three critical methods would be conducted to show the best
performance.

3. Estimation Methods

Several methods are being discussed in terms of their frameworks in
estimating the mixture of linear regressions. In this study, we are interested in
applying three important methods in this study.

3.1 EM Algorithm as Flexible Fitting of Finite Mixture Models

One classical method that is widely used with the mixture model is the EM
algorithm. It is an iterative method designed to find the solution to the maximum
likelihood (Lindsay, B. G., 1995)[12]. The E and M steps of the EM algorithm can
be summarized as follow:

E-step: In this step, we calculate the function Q(8,8™) Which represents the
expectation of the log-likelihood function.
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Q(6,6) =E(1(6]X,Y,2))
n p

:Z Z 2; [log (m;) + log ((D,-(y,-;xi’Bj, o7 )],----(5)
-1 =1

where
n]r@](y], xi'B]-, 0']Z
- ~'B. o7 ()
; 9;(y;; xi'Bj, o
Here, iij(r) is the estimated probability of the i*" the object comes from the jt*
component of the mixture model after r iteration.

5. () _
17 14
j=1

M_step: This is an updating step of the estimator @*+V that maximizes the Q-
20Q(0,6M)

function by letting —a = 0 and solve it for 6. We then get:
. n L Zi]_(r)
ar+ = .
ﬂ;r ):]T (]:1,,p)(7)

(41 , -1, .
BV = (Xxwix)” XYWy (j=1,..,p),....(8)
where X is a matrix which has n rows and p + 1 columns, and W; is a matrix of

D, thatiswi)’ = diag (2;).

n x n elements, say w;;

n A (r) ,’\(T+1) 2
(1 ie1 2y (yi—xi'B; ) ]
a}ﬁ” ) = — / G=1,..,p) ....(9)
A Z..
]:1 7]

These two steps are repeated until the convergence criterion is achieved.
3.2 Laplace Distribution Method for Mixture Model

This method was proposed by Weixing Song, Weixin Yao and Yanru
Xing (2014)[21]. It assumes a Laplace distribution with mean 0 and scale

parameter % as a distribution for g;’s. To this end, we set G={(X;,Y;,Z;;)} to be

the full observable data, i =1,2,...,n;j = 1,2,...p. Therefore, the function of
the complete log-likelihood can be written as
log log L(6; G)

n 14
i=1  j=1 \/Ea]-
V2 |Y; — X\B:
exp exp <— | la lﬁ]l) ...... (10)
J

From the point of view of both (Andrews and Mallows, 1974)[1], the
random variable that follows Laplace distribution is a mixture of two random
variables of which one is distributed as a normal distribution and the other as an
exponential distribution. Denote M;, coupled with (X;, Y;), to be latent scale
variable and let V ={X;Y;,M;Z;}, where i=1,2,..,n;,j=1,2,..,p. The
complete log-likelihood function then is written as:
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log log L(6;V)

i Z Z, log | M,
= i. 0 0 n._
. . j 109 109 ]\/EO']-

MiZ(Yi_X;ﬁj)Z 1 1
expexp | — o_z mexp exp _W
i i
n p !
=), 2. G
i=1  j=1
N2
log log |m; M exp exp —M%(Yi_xiﬁj) i
N o M3
1
exp exp YTy
n p l n p
=z Z Zl]loglognj+z Z Z
i=1  j=1 i=1  j=1
n p 2 n p
MA(Y; — X,B;
—z z Z;j l( l 2 lﬁj) +z z Zijloglog —
o
=1 j=1 J i=1  j=1 i
n p 1
DIDNEAC
i=1 j=1
n p 1 n 14
=z z Zi]-loglogn]-—i Zilog log mjo;
i=1  j=1 i=1  j=1
p
N M; (Y; — X;B)*
) g
i=1  j=1 J
n p n p
2 Z;
—z Z Zijlog log M; —Z Z W....(l.ll)
i=1  j=1 i=1  j=1 i

To this end, applying EM algorithm involves calculating the conditional
expectation of [L(6; V)| H, 0] where

00 = (pg"%ai“’%ng"), ;0),05(0),1t§,°)), where 8@ is the initial values that of
which the algorithm starts. What is significant about the last two terms in (11) is
the fact that they are free of the unknown regression parameters so that they can
be ignored in this study. Therefore, to calculate E[L(0; V)| H, 8(®], we just need

to evaluate
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1
loglogL(6;V) ==X, X7, Zjloglogm;— 7 2i=1 v Zy
MA(¥i-xip)”
log log mjo; — Y1y X7, Zij%
Imply,
= E[H,0], =E[H,09,Z; =1].....(12)
The latter equation implies
0 10 B | /7y
Tii(l) g 0)_-1(0) O 2(0) +--(13)
=1 T 0 |/

Phillips (2002) defined a thread to calculate g;;

® 01('0) (14)
Qi]' = — 0 e
2 ﬁ( )|
Concerning m;, B; and o 2 the foIIowmg term has to be maximized

n

p 1 n p
z 2 ;i log log m; — 3 Z Z 1, log log o}
=1 -1 =1

i=1
n

p
;0 (Y; — XiB)*
) T’Q’(az B as
i=1 J

j=1

To maximize (15), we use the EM algorithm, as explained in the next section.

3.2.1 Applying EM algorithm under the assumption of Laplace distribution
The EM algorithm can be used in the following two steps:

1- Choose an initial value for 8 = (B4, 6%, 14, ....., By, 025, T,).
2- In the E-step, once have reached (r+ 1)™ iteration, 7;"*" and g;;"*"
should be calculated from equations (13) and (14) after replacing the initial
values 8 with 6™,
3- In the M-step, we maximize (15) using the following formulas:

n

1
n§r+1) - _ Z Ti]'(r+1) ....(16)

J n
i=1

1 A1
(r+ ) _ (Z Tij(r+1)9ij(r+1)xi X ) (Z?=1 ,l.i]_(r+1)Qij(r+1)Xi Yi): v (17)
And
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j Zz L T (r+1)

a(r+1) _\/ZZ a Tl](r+1)e (r+1) (Y Xﬁ(r+1))

These steps should be repeated until the convergence is reached.

To this end, the minor absolute deviation (LAD) is adopted in the EM
algorithm to make it a robust method in estimating the model parameters.

3.3 Trimmed Maximum Likelihood Method
The definition of weighted trimmed likelihood estimator (WTLE) is
mentioned in (Hadi and Lucefio, 1997)[7] and (Vandev and Neykov, 1998)[23] in

the following formula:
h

§WTLE = argmineegp z tu(i) l(yu(i); 9), (20)

i=1

where (Y1) 0) = Uy @), 0 is the vector of all parameters and
l(y;;0) = —logf(y;;0) , and y; e RT , for i=1,2,....,n are independently
identically distributed with the density f(y|x;, @), which depends on an unknown
parameter 6 € @9 c R? , U = (u(1),u(2),..,u(n)) is the corresponding
modification of the indices that depends on 6. Here, the parameter of trimming
the high leverage points is denoted by h, and the weights t,,;) = 0 for i=1,2,...,n
are increasing function of l(yu(i);e) such that ¢,y > 0. Note that removing h
high leverage points would be highly unlikely to occur if the fitted model was
true, reflecting the underlying trimming in (20).
With that, the combinational procedure of the weighted trimmed likelihood
estimator (WTLE) can be emphasized by

h h
mingegr 2 tuiyl(Yu@y; 0) = mingegr mingey, Z tuiy)l(yi; 0)
i-1 . il

= min,e,hminge@pz tupyl(yi; 0) .......(21)
iel
The set of all combinational subsets is denoted by I,and equal to ( ) Which

have to be fitted by the MLE, and the partition that results in the smallest
negative log-likelihood would be WTLE.

3.3.1 Applying EM algorithm through Trimmed Maximum Likelihood Method

To apply TLE to solve Eq. (4) we need to formulate the Q function.

Q(0;00) = Z Z 7j(yi; xi, 0V){log log mr; +

i=1 Jj=
log log ¢ (i x:,6)) } . (22)

where ;(yi; xi, ) = w0 ¢;(yi; % 6,0)/ 21, 7 ;(vis x;: 6,V)
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The Q function represents the probability that the i*" observation belongs
to j®* mixture component. Q function aims to minimize the logL(®), i.e.,
Q(0;00) <logL(0W)and Q(0;0V) =log log L(O@D). In the maximization
step, the function Q(@; @®) It is minimized concerning @ at the iteration (I + 1),
which yields the new estimator for @. What is necessary to pay attention to is that
the above two steps should be repeated until the stopping condition has been met.
At the final iteration, the prior probability r; have to be updated by the formula

n Ti(yi x5, @(D
,,}<,1+1> _ Ziz1 ’(:‘ ) ... (23)
and the expression for 6; is maximized,
n 14
maxg, g, z z 7j(yi; x;,00) log log ¢;(yi; x5 6;) ....(24)
i=1  j=1

considering the posterior probabilities r,-(yi; X, <D(’)) As prior calculated weights.
Since ; (for j = 1,...,p) are distinct prior probability densities. Hence, (24) is
maximized for every single component by

n
maxg, 2 7j(yi; x,00) log log ¢;(yi;x50;),  forj=1,..,p ...(25)
i=1
where n; is the jth cluster sample size andn, + n, + -+ n; = n. Indeed, object

function (25) is a K-means algorithm that satisfies the convergence in a finite
number of iterations.

4. Simulation
We applied the three methods to generate data in order to compare their
results. The comparison was conducted based on mean square error (MSE;) of
the fitted model for each m generated sample (Wackerly et al.,2008)[24].
Afterward, we average all calculated MSE;, as in the following formulas:
n 5\ 2
=1 Vi—¥)

MSE]- = o JJorj=1,2,....m

™,  MSE;
AMSE = MSE = =————

We also used another measure which is called classification accuracy(CA)
as it is proposed by (Kassambara 2017)[11] and take the average of all calculated
CA’s over m replications as it is shown below:

ACA = 1 i Number of truely classified items in j**sample
T m - n

J
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If the ACA value is close to 1, that means the classification technique is adequate.
Data was generated according to the below steps:

1-We set @ = (n, 1y, 01,03, B1, B2), Where B1 = (P11, P12, P13), B2 =
(P21, P22, P23)

2- We generate X;~N(0,1), X,~N(0,1)

3- We then generate Y;~N (X, ajz), where X = (X{, X;) depending on
membership of observation i.

We choose three different scenarios for 6. All these values are chosen randomly
without restriction.

Scenario 1: 64 = [70,0.2,0.8,0.8,(7,5,4),(1,2,3)]

Scenario 2: 8, = [100,0.3,1, ,( ,3,2),(2,1.5,1)]

Scenario 3: 63 = [120,0.4,1.2,1.2,(9,7,5),(3,2,1)]

Several R packages are available to apply these methods. In this study, we
used RobMixReg and flex mix to analyze the generated data. These packages are
designed to choose the initial values of EM algorithms randomly and get them
updated iteration by iteration.

Note that for simplicity, we consider the case of having a two components
mixture model. However, one can follow the same steps mentioned in this paper
to consider a high number of components. We plotted the scatters of Y and X of
each scenario for the three methods. The tables and the graphs of the results are
shown in the next section.

5. Results and Discussion

After applying the three methods to the generated data and replicating the
process for m=500 for the three scenarios, we end up with the mean of estimators
and the value of AMSE and ACA. The results are summarized in the below tables
and figures. It can be seen from Table 1 and Figure 1 that the flexbox method
outperformed the others in terms of AMSE and ACA under all the considered
scenarios. In the plots above, the empty circles are for component 1, and the filled
circles are for component 2. Whereas the blue color refers to the true values of Y
and the red color refers to the estimated values of Y according to the estimated
parameters. From the tables, it can be seen that the mean of estimators over all
the replications is close to the true values of the parameters that have been used
in the simulations. The value of AMSE is smaller in the FlexMix method than the
others, and the value of ACA is higher in the FlexMix method. From the figures,
it can be seen that how the estimated response variable values are close to the real
ones that we generated under the three scenarios.
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Table 1: The mean of estimators for 500 replications with AMSE and ACE for
data generated from 6.

LS 01 Pi1 Pz P13 P21 P2z P23 AMSE
ACA
FlexM | 0.189 0.67 0.806 6.938 5.08 3.89 0.974
IX 1.966 2.94 0.3411 0.943
MixT |0.172 0.58 0.73 6.958 5.056 3.87 0.980
LE 1.967 2.93 0.3442 0.910
MixL |0.199 1.44 0.90 6.314 4,988 3.76 0.995
P 1.931 2.92 0.3433 0.90

Figure 1: Represents the scatters of ¥ with respect to X; ,X, in blue color and Y
with respect to X; ,X,in red color of the methods FlexMix, MixTLE, MixLP
from left to right for data generated from scenario 1.

Table 2: The mean of estimators for 500 replications with AMSE and ACA for
data generated from 6,.

Ty 01 01 P11 P12 P13 D21 P22 P23 AMSE ACA
0276 0910 0995  4.887 3.125 2022 2010 1452
FlexM | 1025 0239 0948
IX 0.293 0644 0905 4.807 3169 2.030 2.044  1.442
MIXT 11034 0269 0932
LE 0.334 1.018 1.150 4.582 3171 1999 2070  1.479

'F\)’“XL 1022 0247 0917
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Figure 2: Represents the scatters of ¥ concerning X; ,X, in blue color and Y
concerning X; ,X,in the red color of FlexMix, MixTLE, MixLP from left to right
for data generated from scenario 2.

Table 3: The mean of estimators for 500 replications with AMSE and ACA for
data generated from 6;.

LS 01 01 P11 P12 P13 P21 P2z D23 AMSE ACA
0372 1172 1209 9.057 6.950 4.998  2.982
FlexM | 2028 1036 0.138 0.970

IX 0.385 0953  1.073 9111 6931 4993  3.023
MIXtU | 2033  1.020 0.156  0.947

re 0.397  1.309 1.358  9.035 6.960 4.981 2.964
g’“x'— 2000 1067 0151 0.928

Figure 3: Represents the scatters of ¥ concerning X, ,X, in blue color and Y
concerning X; ,X,in the red color of FlexMix, MixTLE, MixLP from left to right
for data generated from scenario 3.
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6. Conclusion

In this research, we compared three essential methods used in fitting the
mixture of regression models. The methods were built under different procedures
that can result in different results. The FlexMix was fitted through maximum
likelihood and EM algorithm. The mixture was fitted by the use of trimmed
likelihood after removing h of the high leverage values. MixLP was fitted under
the assumption that the error follows Laplace distribution. The results of all
methods are seen to be acceptable as far as accuracy is concerned. It is essential
here to mention that the flexbox method showed relatively better results than the
others. It can be seen that the FlexMix result in less AMSE than the others in all
scenarios. The classification technique was accurate enough to classify
observation into two groups, as shown in the graphs. The key advantage of the
classification procedure is to help researchers in clustering data into several
components based on similarities amongst them.
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