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Abstract:

The research dealt with a comparative study between some semi-
parametric estimation methods to the Partial linear Single Index Model using
simulation. There are two approaches to model estimation two-stage procedure
and MADE to estimate this model. Simulations were used to study the finite
sample performance of estimating methods based on different Single Index
models, error variances, and different sample sizes , and the mean average
squared errors were used as a comparison criterion between the methods were
used. The results showed a preference for the two-stage procedure depending on
all the cases that were used.
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1- Introduction:

Semi-parametric regression models have received wide attention recently,
due to their flexibility in combining traditional linear models with nonparametric
regression models. Although there are many advantages of both models, we note
that the nonparametric model suffers from the problem of the curse of
dimensionality. So, to avoid this problem, a Single Index Model can be used to
reduce dimensions, assuming that the effect of the explanatory variables X can be
combined into a single index X7 B by using an unknown link function g. "

In order to obtain accurate predictions for this model, it requires
estimation of both the vector of parameters 0, p and the link function g at the
same time in an iterative manner where the nonparametric part is estimated first
after making initial assumptions about the value of the unknown parameters 0, p
and then estimating the vector of the unknown parameters after estimating the
nonparametric part then the resultin? estimator according to this method is
called the semi parametric estimator. [

Further Wand and Carroll, 2003 studied the nonparametric components
that suffer from the curse of dimensionality and can only accommodate low
dimensional covariates X. So, to remedy this, a dimension reduction model which
assumes that the influence of the covariate X can be collapsed to a single index,
XTB, through a nonparametric link function g. "

Wang, Xue, Zhu & Chong, 2010 studied partial linear single-
index model estimation and they proposed a two-stage estimation to
estimate the link function and the parameters in the single index.

Su,L., and Zhang,Y, 2013 highlighted the recent developments on estimate
the variable selection for nonparametric and semi-parametric regression models;
they explained SCAD and LASSO methods. **!

Munaf Y. Hmood, 2015 studied the characteristics of the single index
model. Local linear regression and Nadaraya-Watson estimators were applied to
estimate the nonparametric part of this model, then he made a comparison
between those methods based on several selecting smoothing parameter methods
including the rule of the thumb and proposed golden ratio methods; his results
showed a preference for Local linear estimator with using ROT as a smoothing
Parameter selector as well as Nadaraya -Watson estimator but with using a new
proposal smoothing parameter method. ™**!

Munaf Y. Hmood & Tariq A. S., 2016, compared (MAVE, LASSO-
MAVE, and the proposed method Adaptive LASSO-MAVE). The results show
that the best method for estimating and variable selection of single-index model is
the proposed method (Adaptive LASSO-MAVE). 1!

Park, Petkova, Tarpey & Ogden, 2020 presented a single-index model
with multiple-links (SIMML) that estimate a single linear group of the covariates,
with nonparametric link functions. The approach assures a focus on the
treatment by covariates interaction effects on the treatment making optimal
treatment decisions. Asymptotic results for estimator are obtained under possible
model misspecification. A treatment decision rule based on the derived single-
index is defined, and it is compared to other methods. ™
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2- Partial Linear Single-Index Models (PLSIM)

This model was first proposed by Carroll, Fan, Gijbels and Wand, 1997 !,
This model has two parts, a linear part and a non-parametric part. Usually, its
variables are continuous, and these linear and non-linear variables affect the
response variable, and both parts are linked by an aggregate relationship. ™!

This model has many application fields like Economic, Medical and
Environment and can be written in the following form:

Y=2"T00+g(X"By) + & X € RPandZ € RY
. (D)

Where X and Z are covariates with dimensions p and q respectively.
g(.): an unknown link function for the single index.
g: isthe error term with Ee =0 and 0 < Var(g) < oo.
0: Unknown parameters vector of degree (gx1) for the parametric part.
B: Unknown parameters vector of degree (px1) for the nonparametric part.
We further assume that ||B]| = 1 and B4 > 0 for model identification. *”
3- Estimation methods:
3-1 A two-stage estimation for a partial linear single-index model

This method was proposed by Wang et al. in 2010 %7 to estimate the link
function and parameter vector of the single-index model. Constrained estimating
equation leads to an asymptotically more active estimator than found estimators
in the sense that it is of a smaller limiting variance, the estimator of the
nonparametric link function realizes best convergence rates and the structural
error variance is obtained.

In addition, the results ease the construction of confidence regions and

hypothesis testing for the unknown parameters. This method does not require
any repetition and some indicators are based on X to explain Z.
(Y) response variable, the observations are {( Xi,Z);i=1,2,..,n }a sequence
of independent and identically distributed. Samples from in equation (1), the
estimation process takes place in two stages, that is, Z can be obtained from one
indicator of X.

Z= Q(XTBZ) +1
. 2)
@ (.): is an unknown function form.
B, : is an orthogonal matrix, ||B,]| = 1, B, positive first component for model
identification
1 : has to mean zero and is independent of X with the resulting residuals, n; =
Z; - Q)(X;r Bz)

So, to estimate the link function, we need firstly to estimate 8, and then
estimate @ to get the residuals, B, is estimated using general least squares by
B; = XTVIX)~1XTV-1Z  V refers to variance matrix.

Also, the unknown link function in (2) can be estimated by using local linear
smoother, so that the resulting estimator is defined as: ™

6(XT’BZ) = Z Whi (XTﬁz)Zi
W Weights.l:1
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The residual ) hence becomes, §; = Z; — @(X[ B,), and it is possible to use the
least-squares approach to estimate 0.

0=(Z"2)"'7"Y

Where Y = Z — (X" B,) using the definition of residuals from equation (2).

The conditional expectation functions are as follows:

LetXTB, =t

g1(t) = E (YIX"Bp = 1), g2(t) = E(Z|IXTBy = 1).

so that 81(t Bo) = Xity Wai (€ Bo)Yi-

82(t Bo) = Zit1 Wai (t Bo)Zi.

We suppose that (@) is a solution to the weighted least square problem. &

~ ~ R WY
8(x) = a = Za W

Assuming that the parameter vector B is known, the nonparametric estimator
for the function W(t; B) is:
@y — Kn(XB=)[Sn2 (68— (X} B—t)Sn,1 (3 h)]
Wai (6 B) = Sn,0(G;B1)Sy 2 (63, 1)—-S2 ; (t;B,)

e (4)

K1 (X{ B=1)[(X{ B~)Sn,0(tBh1)~Sn1 (t8.1)]
Sn,0(6Bh1)Sy 2(6Bh1)—SZ 1 (B.h1)
. )
Spi(t; B ) =23, (XTB - ) Ku(XTB-1) , 1=0,12,
K: Kernel Function

The idea of local linear smoothing through smoothing ¥; — 278, versus X7 B,

.9(),9'C)
Respectively, are estimated according to the following formula:
8(tB,0) =Y Wy (t,B)(Yi — Z0)
... (6)
g'(tB,0) = XiL, Wy (t, B)(Yi — Z6)
e (D)
The idea of local linear smoothing to reduce the sum of squares error
im1[Yi— ZiT‘9 - g(XiT Boi ﬁo' 9)]2
~ . (8 ~
The estimate for B, is used to update the estimate of 8, and has been repeated
till reaches the desired extent. The resulting partial regression estimator is:
0, =Z"2H) 7"y~
. (9)
Y =Y;— §1(X] Bo; Bo). Z; = Z; - gz(xzﬁoi Bo)

After updating the estimated value of 6, and calculating the new residuals
(Y —ZT0*) the estimated value of Bj is updated, and the obtained
estimations®j, B, are used to update the estimate of the link function g according
to the following equation:

g ) =X Wt B)(Y: — Z]0)
... (10)

Wni (t B) =
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3-2 Minimum Average Deviance Estimation (MADE)

This method was suggested by Kofi P. Adragni et al, 2018 to estimate the
parameter vector and the link function at the same time. The MADE method
expanded the estimation method with the least rate of variation MAVE of Xia et
al (2002). 1

The regression of likelihood is used to know the shape of the regression
function from the data; the advantage of this method lies in estimating the
nonparametric link function to achieve better consistency for the parameter
estimator with the possibility of its application to a wide range of models with
fewer restrictions on the distribution covariates.

Whereas minimizing the deviations is equivalent to maximizing the
regression function, the basis on which the derivations are based on the
exponential family of their properties that make them distinct in the inference
domain.

The response variable (Y) is within the distributions of the exponential
family, where X € RP is covariate variable, so the distribution of (Y|X) belongs to
an exponential family, and the general formula for these distributions is: ™

f(Y[9(X)) = fo (Y, ®) exp {M}

a(9)
... (11)
fo(.,.),a(),b(.), refers to the functions.
@: Dispersion coefficient (or Scale Parameter).
b(.),fo(:.) : The functions on which the shape of the distribution will depend.
a(Q) : Scale parameter function.

9(X): The canonical parameter and it is related to the conditional mean E(Y | X)
through a link function g(.).
There is a general formula for finding the mean and variance of the single index
model, such that:
g(E(YIX)) = 9(X)
E(YIX) =p=b'(3X))
Var(Y|X) = a(@)b”"(3(X))
{(X;, Yy ,i=1,2,...,n}denote the independent and identical distributed random
variables. In equation (11), 9(X) is a continuous and smooth function. Thus, at
each point, X will have a first-order linear expansion admits.

X)) = 9(X) + [VIX]"(X; —x)

.. (12)

Assuming that 9(X) = a + BTX, this is similar in form to the general linear
model
So, to estimate the parameters in equation (1), we depend on the following
relationship: %

B = arg min E{E[Y — E(Y|B™X)]?|BTX}
.. (13)
We calculate an initial estimate of the parameters vector B using general least
squares (GLS).
a=9X) , Yy = VI(X)
Such that aj,y; € R**! for j=1,..,n , BeRP
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For the distribution (11), we find that the logarithm of the likelihood function is:

Lx(@7,B) = ) Wo; (logf (Yila+y"B"(X; - X))
=1

e o) ofes )
= z Wo; (X) a,(0)
i1

+log fo(Y;, 0)

Kp(X; — X)
1 Kn(X; — X)
The weights Wy (X), ..., W, (X) represent the effect of each observation on the
model Ly(a,y, B), while a;(®) does not depend on X.
Q(a; 14 B) = 2;l=1 LXj(a]" y]’ B)
... (14)

Woi(X) =

Maximize the likelihood function
) Z": Z": o, |F (a; + vIBT(X: - X;)) — b (; + ¥]B"(X; - X;))
B ! a;(9)

+ log fo(Y;, 0)
Kn(B"(X; — X))
T K BT, X)

1 pa—
K(w) = (2m)7 exp(")
h was selected by using Rule of Thumb. !

W, = W;(BTX) =

hopt = C(K)

o2 [ Wx)d(X) r/ >
=1 (M (X)) ?W(x)
C(K): A constant value that depends on the type of function used.
We can use Newton-Raphson approach based on Hessian matrix to estimate the
parameters(a;, y;) € R%*1,j=1,..,n,.
Leté=(a,yDNTZ, =1, X, - X)"B),Z = (Z,,..,Z,)T W = diag(wy, ..., wy,)
We find the estimator of the likelihood according to the following equation.
n Y. ZT&§—b(Z7%)
Ly(a,y,B) = Z Wi[ +logfo(Y: @)
i=1 a;(9)
The first derivative at ¢ is then

9 _yn Yi-b(Z{§) , _ T
s lx(ay,B) =YL W == 707, = ZITWH(3)
... (15)

H() = [Y; - b(Z[§)]/ay(@) for i=1,..,n
H: Hessian Matrix is the matrix of the second derivatives of the logarithm of the
likelihood functions with respect to ().
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0 [¥,-BEZlD)] 1 (V@I - (@)
T = (a_;, W) ) ' | '

H(&):Fromnx (d+1)
After finding the values of the estimator (a;, v;),j = 1,...,n, B is estimated by
the formula:

n n 1
Q(B) = Xj-12iz1 Wi(BTXj)W{Yi(aj + v;"BT(X; — X;) — b(a; +

v;"BT(X; — X;))} ... (16)

Using the Stiefel manifolds ® algorithm, we get the final estimate for MADE.
Whereas, G(.)is another weight function that controls the contribution of
(Xj,Z;,Y;) to the estimation of (8,8).
4-Simulation

In this section, our purpose is to compare the methods of estimating the
partial linear single-index model, for purpose of describing simulation
experiments; it should be noted that the assumptions were made as follows:
a- Sample size: n=50, 150,200.
b- X;,X,, X3 areindependent U~(0,1).
c- &~N(0,0?), Three error variance values have been assumed (0.5, 1, 1.5).
d- The values of the initial parameter vector are assumed to be equal to:

1
=(—) (1,1, 1T, with the condition =1
Bo = ()@ 1D 1Bl

e- Iterations of the experiment were 400 repetitions (for faster arithmetic).
f- different link functions were assumed:
g:(X"g) = 3.2(X"B)T(X"B) — 1. ¥
g2(X"B) = sin(X"B) + exp(X"p).
gs(X") = {1 + X"B)TX"B)} exp{~(X"B)"(X"B)} . "

g- The Gaussian Kernel function used

b"(ZrTzf)Zm - b" (Zrlf)zn,d+1

2
K()= %exp (— “7) (The best function compared to the residue). ™

B __KLB™) g
Y 2P=1KE,1(BTXi) .
o2 [ Wx)d(x) l”s

hopt = C(K) inzl(lzﬁu(xl))zw(x)
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The results in the Tables (1, 2, 3) respectively indicate the values of the model
by changing the functions and sample sizes.

Tablel: refer to the MASE values of the model g; (XTB)

n o MADE Two- stage | Best Method
0.5 16.63 1.83 Two- stage
50 1 16.16 1.12 Two- stage
1.5 15.4 1.74 Two- stage
0.5 0.1175 0.0139 Two- stage
150 1 0.1172 0.0132 Two- stage
1.5 0.1164 0.0128 Two- stage
0.5 0.1161 0.0020 Two- stage
200 1 0.1174 0.0023 Two- stage
1.5 0.1185 0.0036 Two- stage

Table2: refer to the MASE values of the model g, (XTB)

n o MADE Two- stage | Best Method
0.5 7.791 1.419 Two- stage
50 1 9.274 1.213 Two- stage
1.5 10.322 0.308 Two- stage
0.5 0.0445 0.0002 Two- stage
150 1 0.0496 0.00011 Two- stage
1.5 0.0532 0.00049 Two- stage
0.5 0.0181 0.00048 Two- stage
200 1 0.0183 0.00039 Two- stage
1.5 0.0193 0.00029 Two- stage

Table3: refer to the MASE values of the model g5 (X"g)

n 0—2 MADE Two- stage | Best Method
0.5 50.54 4.39 Two- stage
50 1 54.49 3.84 Two- stage
1.5 56.83 1.72 Two- stage
0.5 0.286 0.0047 Two- stage
150 1 0.297 0.0073 Two- stage
1.5 0.303 0.0092 Two- stage
0.5 0.162 0.0039 Two- stage
200 1 0.159 0.0035 Two- stage
1.5 0.157 0.0032 Two- stage
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Figures for semi-parametric single-index models and estimators for different
methods explained as follows:

Model 1 (n=50 & 6 = 0.5)

2
15 / 4
Y \ AV A \ \ [}
AN JRNE [ A \
\ / N NV L U W Ly
0.5 Al ” [ —
0
1 3 5 7 911131517 19212325272931333537394143454749
sample size
— Y| MADE two Stage

Figure 1: Refers to a partial linear single-index model with methods estimation
(m=50,0=0.5,g,X"B)).

Model 1 (n=50& 6 =1)

2.5

=AS
Y ) f\‘\\/\/ : V / /—

0.5 N

13579 1113151719212?25272931333537394143454749
Sample size

—Y | MADE two Stage

Figure 2: Refers to a partial linear single-index model with methods estimation
(n=50 ,6=1,g,X"B)).
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Model 1 (n=50 & 6 =1.5)

2.5

A A
1.2 AN =\ /-\ \/\\\/A V) X
Y 1\:/ \\V/“\\v \/V/\AV\_J/\W/A

1 3 5 7 9111315171921 2325272931333537394143454749
Sample size

0.5

s \| e \| ADE two Stage

Figure 3: Refers to a partial linear single-index model with methods estimation
(m=50,6=1.5,g,(X"B)).

Model 2 (n=50 & 6 = 0.5)

2.5

L
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1 3 5 7 91113151719212325272931333537394143454749
Sample size
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Figure 4: Refers to a partial linear single-index model with methods estimation
(m=50,0=0.5,g,(XTB)).
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Model 2 (n=50& 6 =1)
25
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1 3 5 7 9 1113151719212325272931333537394143454749
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0
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Figure 5: Refers to a partial linear single-index model with methods estimation
(m=50 ,6=1,g,X"B)).

Model 2 (n=50 & 6 = 1.5)
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Figure 6: Refers to a partial linear single-index model with methods estimation
(mn=50,6=1.5,g,(X"B)).
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Model 3 (n=50& 6 =0.5)

1.8
1.6
1.4
1.2
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0.6
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1 3 5 7 911131517 19212325272931333537394143454749
Sample size

Y| em—\|ADE two Stage

Figure 7: Refers to a partial linear single-index model with methods estimation
(m=50,0=0.5,g;(X"B)).

Model 3 (n=50& 6 =1)

3
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Figure 8: Refers to a partial linear single-index model with methods estimation
(m=50,6=1,g;X"B)).
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Model 3 (n=50 & 6 = 1.5)

25
2 8 A
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Figure 9: Refers to a partial linear single-index model with methods estimation
(n=50 ,6=1.5,g;(X"B)).

5- Conclusions:
From the tables and figures presented, we find the following:

Through Tables 1-2-3, the results indicated that the (two-stage) method is
the best estimation method for the model because it gives the lowest value for the
mean squared error (MASE) for different simulation experiments and at
different sample sizes and error variances. The results also showed that the mean
squares mean values the error decreases with increasing sample size and
increasing the variance value.

Through the figures, it is clear that the estimated values of the vector y using
the two-stage method is almost identical, smoother, and have less dispersion due
to the small value of the mean error squares, and this proves that the two-stage
method is better than the (MADE) method in estimating the model.
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