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Abstract

In this paper, we investigate the behavior of the bayes estimators, for the
scale parameter of the Gompertz distribution under two different loss functions
such as, the squared error loss function, the exponential loss function (proposed),
based different double prior distributions represented as erlang with inverse levy
prior, erlang with non-informative prior, inverse levy with non-informative prior
and erlang with chi-square prior.

The simulation method was fulfilled to obtain the results, including the
estimated values and the mean square error (MSE) for the scale parameter of the
Gompertz distribution, for different cases for the scale parameter of the Gompertz
distribution, with different samples sizes. The estimates have been compared in
terms of their mean-squared error (MSE).

The results of this paper show that bayes estimators of the scale parameter
(o) of the Gompertz distribution, under the exponential loss function (proposed)

are superior to the bayes estimators (o) under the squared error loss function ,
based on erlang-chi-square double prior with (k=1,b=2) for all samples sizes
and for all the true values of (), in terms of their mean-squared error (MSE).

Paper type: Research paper.
Keywords: The Gompertz distribution, bayes estimation, the square error loss
function, the exponential error loss function.
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1. Introduction

The Gompertz distribution is commonly used in many applied problems,
particularly in lifetime data analysis. Benzamin Gompertz (1825) [3] applied the
Gompertz distribution in the human mortality and actuarial, and has been applied
in various fields especially in reliability and life testing studies, actuarial science,
epidemiological and biomedical studies. Also, it is used in computer Science and
Marketing Science. The Gompertz distribution has an exponentially increasing
failure rate for the life of the systems and is often used to model highly negatively
skewed data for the analysis of survival.

Many authors have contributed to the studies of statistical methodology and
characterization of this distribution, and investigate the effects on Bayes estimation
for the parameters of Gompertz distribution based on different loss functions, and
prior distributions which represented by informative prior and non-informative
prior, we can mention some of them as:

Saracoglu et.al (2009) [8] studied different estimation procedures for the
reliability, R, when X and Y were two independent but not identically Gompertz
random variables, which were represented by the maximum likelihood estimator,
and the uniformly minimum variance unbiased estimator and the bayes estimator
based on the mean squared error loss function. They depended on simulation study
to compare the different estimators of R. They noted that the mean square error of
bayes was smaller than the mean square error for maximum likelihood, and the
minimum variance unbiased, except for small sample size.

Wang et.al (2016) [9] studied the statistical inference for the Gompertz
distribution under record values. They used the maximum likelihood and bayes
estimates for the parameters of the Gompertz distribution in addition to some
reliability performances such as survival and hazard rate functions. Also, they
developed the exact confidence interval/ region and approximate confidence
intervals for the Gompertz parameters.

Mohie EI-Din and Sharawy (2017) [7] discussed estimation for the
parameters of the Gompertz distribution (GD) based on general progressively type-
Il right censored order statistics. They derived bayes estimators based on squared
error loss function, Al-Bayyati loss function, linear-exponential loss function,
generalization of the entropy loss function, they applied these types in two cases,
first when the shape parameter was known and the second was unknown shape and
scale parameter. They performed a simulation study to investigate the behavior of
the bayes estimators. they concluded that the Al-Bayyati loss function was better
than others loss functions. Also, they concluded that Al-Bayyati loss function and
linear-exponential loss function were better than others loss functions.

Dey et.al (2018) [2] delt with the different methods of estimation of the
unknown parameters of Gompertz distribution. They derived the maximum
likelihood estimator and bayes estimators and posterior risk under different loss
functions of the unknown parameters of Gompertz distribution. Also, they studied
various mathematical and statistical properties of the Gompertz distribution (such
as quantiles, moments, moment generating function, hazard rate, mean residual
lifetime, mean past lifetime, stochasic ordering, stressstrength parameter, various
entropies, Bonferroni and Lorenz curves and order statistics).
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Moala and Dey (2018) [6] used maximum likelihood estimation to derive the
approximate confidence intervals of the parameters of the Gompertz distribution.
Also, they derived Bayes estimators of unknown parameter of the Gompertz
distribution under different priors, they supposed that the parameters had the
independent gamma prior distributions, Jeffrey ’s prior, maximal data information
prior (MDIP), singpurwalla’s prior and elicited prior. They used a simulation
study to investigate the behavior of the proposed methods. They depended on the
average biases and the mean squared errors to compare the Bayes estimators with
different priors and MLE.

leren et. al (2019) [4] discussed another extension of the Gompertz
distribution using the power transformation approach to introduce a three-
parameter probability distribution which was known as Power Gompertz
distribution(PGD). They derived, studied and discussed some properties of the
PGD. They estimated the three parameters of the new model using the method of
maximum likelihood estimation. They used a real life dataset, its descriptive
statistics, graphical summary and applications. They compared the fits of the
Power Gompertz Distribution (PGD) and Gompertz Distribution (GD) using a
dataset on the remission times of a random sample of 128 bladder cancer patients.

Lee and Seo (2020) [5] proposed different approaches based on the weighted
regression framework and pivotal quantity to estimate unknown parameters of the
Gompertz distribution under the progressive Type-lIl censoring scheme. They
performed Simulation Study to evaluation and comparison, the mean squared
errors (MSEs) and biases of the provided estimators. They have proved that the
pivot-based estimators were superior to the MLEs and weighted least-square
estimators in terms of the MSE and bias.

The objective of this study is to derive the bayes estimators for a scale
parameter of Gompertz distribution. The Posterior distributions of scale
parameter are derived under erlang- inverse levy prior, erlang-non-informative
prior, inverse levy -non informative prior, and erlang-chi-square prior
distributions. Bayes estimators are derived by using two loss functions represented
by square error loss function and exponential error loss function under the three
double priors and posterior distributions respectively. The performance of these
estimators have assessed on the basis of their mean square errors (MSE).

2.The Gompertz distribution
The random variable x follows the Gompertz distribution with the shape
and scale parameters as y>0 and ®>0 respectively, if it has the following

probability density function (pdf) [1]:

(9 1
f(X;y,co)zmeYXe(y)(exp(YX)) , x>0, v>0, >0 (1)

The corresponding (cdf) of the Gompertz distribution is given by

-(2) (X))
F(xy,0)=1-¢ , X>0, v>0, >0 (2)

for the shape parameter equals toy =1, the probability density function of the
distribution reduces to [5,7].

F(x w)=meXe @)D o w0 (3)
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And the cumulative distribution function will be as the following
F(x @):1_e'(”(exp (x)1) , x>0, o>0 (4)

3. Bayesian Estimation

The Bayes estimators for the unknown parameter o of the Gompertz
distribution have been derived under the squared error loss function and the
exponential error loss function based on different double priors. The respective
expressions have been presented in the following:

3.1 Posterior distribution
Posterior distribution for the unknown parameter o of the Gompertz distribution
based on the below considerations has been derived.

(a). For erlang- inverse levy distributions
We choose the random variables for mto follow erlang distribution with hyper
parameter (k) [13]as

v(@)=K o ep(-kaw) with @,k >0 (5)
and inverse levy distribution with hyper parameter (v) [11]as
1
(@)=~ @2 (-~ w) with o,v>0 (6)
21 2

be independent random variables for o,then the double prior for the parameter
o , and their density functions will be v ,(®) =v,(®) xv,(®) , i.e.

1
1)12(0))=k2 w exXp(-ko ) x ,l w 2 exp(-! )
27 2

—2 |V : v
vp(0) =Ky o—) @ eptoi+k) (1)
T 2
Then, the posterior distribution of ® is given by [1] :
L0\ X, Xy 00y X ) V(@)
\X) = 172 n 12 8
BN = X, k) v )
(O]
Where /(o\X,,X,,...,X, ) be the likelihood function for the (X, X,,....,X,)
observations is defined by [1]:

((0\x ) =TT(x ;) =0 oI X 0Tl @)D g

Substituting “Eqn (9)” and “Eqn (7)” in “Eqn (8)”, yields the posterior probability
density function of the shape parameter ® as the following:

n Zi=1 %] e'mzin=1 (ex'o(xi)'l)[(kz\/Z) ? exp(-co(%+k)]

0 €

2 |V % Y
OJ? wn EZP:]' Xi e'COZinzl (eXp(XI )'1) [(k \/;) ) eXp( 0)(2+k)]
0

G (0\X) =

do
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oN+05 e-co(s+k+0.5v)
9 (0\X) = (10)
! 0
n+0.5 e-(D(S+k+O.5V) do

| ®

0
Where s=3", (exp(X,)-1) .Rewrite ©"*° =" and by multiplying the
integral in “Eqn (10)” by the quantity which is equal to

(n +1.5)
((s+k+0.5v) ) ( [n+15) ),where I'(.)is a gamma function , it
I'(n+1.5) (s+k+05v)"+19)
yields
0 (0\X) = (s+k+0.5)" 19 (HL5)HL -0 (s-+k+0.5v) Where
! ['(n+1.5)A(X o) '
0 (n+15)
A o) = | (5+k+05v) LT gm0 G+A05) 4 1 pe the integral of

0 I'(n+15)

the pdf of gamma distribution [7]. The posterior distribution of (0) is gamma
distribution [10] as

X) = (s+k+ O.SV)(n +19) (L5 -0 +k+0.57)

\ . ©>0,k,v,n>0 (11
(e I'(n+1.5v) @ vin >0 (1)
e (o\X) gamma((n +1.5),(s+k+0.5v))  with posterior mean 5
E(w\X) =Mand posterior variance is var(w\Xx) = (n+15) .

(s+k+0.5v) (s+k+0.5v)?

(b). For erlang distribution-non-informative prior
We used erlang distribution with hyper parameter (k) as defined in “Eqn (5)”,

and non-informative with hyper parameter (c,)as follows

1)3(a))=i ® ,c, >0 (12)

!
be independent random variables for ® ,then the double prior for the parameter
o, and their density functions will be v,,(®) =v,(®) xv;(®),i.€.

v(@)=k?> @ ep(-ko ) x o

1) =Ko “exp(-ko ) (13)

Then, the posterior distribution of ® is given by substituting “Eqn (9)” and
“Eqn (13)” in “Eqn (8)”, yields the posterior probability density function of the
shape parameter o as the following:

0 Zio1 X SoZg @) DK o ep(ka )]

| OR @0g) ) Ko entkae)]
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mn+1—c1 e-co(s+k)
q(w\X) = (14)
2 00

i Cl)n+1—cl e-m(s+k) do

0
: 1- ).
Where s =", (exp(x,)-1).Rewrite o T ="

integral in “Eqn (14)” by the quantity which is equal to
s+k)FD  rmi2-c)
I'n+2-c,) (s+k )(n+2_cl)

(n+2—c1)
q,(w\X) = (s+k) oIME e oo+ \Where
I'h+2- C)Al(X'oo)
—C)
AL(X 0) = f k) o2 -0(+k)
0 F( +2-¢C,)

gamma distribution [7]. The posterior distribution of (o) is gamma distribution
[10] as

and by multiplying the

) ,where T'(.)is a gamma function, it yields

do =1,be the integral of the pdf of

2
(s+k )(th Y (D(n+2—cl)-l e-co(s +k)

g,(0w\X) = Tn+2-c) , ®>0,c,,k,n>0 (15)

i.e.(o\x) gagmma((n +2-c,),(s+k)) with posterior mean is

E(w\X) = Mand posterior variance is var(w \ x) :M.
(s+k) (s+k)?

(c). For inverse levy distribution-non-informative prior

We used inverse levy distribution with hyper parameter (v)as defined in
“Eqn (6)”,and non-informative with hyper parameter (c,) as defined in “Eqn
(12)”, be independent random variables for o ,then the double prior for the
parameter o, and their density functions will be v,,(®) =v,(®) xv,(®),i.e.

Uys(@) = \/7 a)2 exp(-—a))xa) “
WOE \F o7 o> ) (16)

Then, the posterior dlstrlbution of o is given by substituting “Eqn (9)” and
“Eqn (16)” in “Eqn (8)”, yields the posterior probability density function of the
shape parameter o as the following:

n g x 'ODZi”:l (eXp(Xi)'l)[\/Z m‘°'5‘clexp(_\2/w)]
0;(0\X) = w €
3 - n _ v -05-¢; v
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n-0.5¢; e'wzinzl (s+0.5vV)
(@) =—> (17)

© oY s+0.5v
i mnO.S—cl o ooZ,:l ( )doo

0
. -0.5-
Where s =37, (exp(X,)-1) .Rewrite o 1
the integral in “Eqn (17)” by the quantity which is equals to
0.5-
(s+0.5v )(n+ L ) ( I'n+05-c,)
I'n+05-c,) (s+ k)(n+0.5—c
yields

_ (D(n+0.5—cl)—1

and by multiplying

)) ,where I'(.) is a gamma function , it
1

n+0.5-c
) = (s+0.5v )( ’ v (D(n+0.5—cl)-l o~ @ (E+0.5V)

\X) =
9 (0 [(n+0.5-c¢,)A2(x; )
(n+0.5—c1)

.Where

o0

A2 ) = | (s+0.5v)
0 I'(n+05-c,)

the pdf of gamma distribution [7]. Then the posterior distribution of () is gamma

distribution [10] as

@05 o-06+05) 41 he the integral of

(n+0.5-¢;)
0, (w\X) = (s+0.5v ) 05T o605 (g ,C,,V,n >0 (18)
I'nh+0.5—-c,)
ie. (o\X gamma((n +0.5-c,),(s+0.5v))  with posterior mean is
E(w\x) = (n+05-¢,) and posterior variance is var(w \ x) =w.
(5+0.5v) (s+0.5v)2

(d). For erlang- chi-square distributions
We use erlang distribution with hyper parameter (k) as defined in “Eqn

(5)”,and chi-square distribution with hyper parameter (b) [1,12] as

1 b
b
22\/3
2

be independent random variables for  ,then the double prior for the parameter
o , and their density functions will be v,,(®) =v,(®) xv,(®), i.e.

2 exp(-%a)) with @ b>0  (19)

(@)=

b
v, ©) =K% @ ep(ko) x—— o2 exp(—%a))
52 [P
2
1 b
() =K =) 02exp (-0 (k+05) (20)
02 [P
2
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Then, the posterior distribution of ® is given by substituting “Eqn (9)”
and “Eqn (20)” in “Eqn (8)”, yields the posterior probability density function of the
shape parameter  as the following:

1
0¥y @(x)-DIK

b

) x0? exp (-o(k+05)]

> b
n 02 [
0, (0\x) = wnezi=1 Xie 2
‘ B b
1 i
-0 Xy @0(x,)-1) [(K* =) xo? ep(-o(k+05)]
0 S0 x 2 0
JoMe 1=1"e 2 0o
0
(Dn+0.5b e-co(s+k+0.5)
q4(03\x)=oo (21)
Imn+0.5b e-(o(s+k+0.5) do
0

Where s=37, (&p(X;)-1) .Rewrite "% =" and by multiplying the

integral in “Eqn (21)” by the quantity which is equals to

(ke 0.5)(n+0:50+1) ) (__T+05b+1)
I'n+0.5b+1) (S+k+0.5)(n +0.5b+1)

) ,where T(.) is a gamma

function , it yields

(s+k+05)0n+050+1) (10501 -0 (5 +k+0.5)

,Where
I'(n+0.5b +1)A3(X; ®)

qs(@\X) =

o0 (n+0.5b+1)
A3 ) = | (s+k+05) o MF05bH)L

0 I'(n+0.5b+1)
of the pdf of gamma distribution [7]. The posterior distribution of (o) is gamma
distribution [10] as

(s+k+0.5)(n +05b+1) oN+0.50+)L - (s +k+0.5)
['(n+0.5b+1) ’
ie.  (o\x) gamma((n +0.5b+1),(s+k+0.5)) with posterior  mean IS

X) = (n+05b +1) and posterior variance is var(w \ x) _(n+05b+1) _
(s+k+0.5) (s+k+0.5)2

- (s +k+0.5) do =1,be the integral

q,(0\x) = »>0,k,b,n >0 (22)

E(w\

3.2 Bayes Estimation under Square Error Loss Function

Bayes estimators and posterior risk for o under different double priors
which are used to derive the posterior distributions as in section 3.1.We can derive
bayes estimators using the square error loss function based on the posterior
distributions. The risk function has been defined as

AN AN AN

R,( @, ) =E[L,( - ®)?], Rl(a)-a)):c:)z—Zc:)E(a)\X)+E(a)2\X).
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The value of @ minimizes the risk function under square error loss function which

N

- . . 0 .
satisfies the following condltlon—AR(a)-a)):O ,we have bayes estimators of @
0w

denoted byc:)
w:E(w\x):ja;q(w\x)dw (23)
0

i.e., ®=E(w\X) isequal to the posterior mean for different double priors
informative and non-informative priors as derived in section 3.1.

3.3 Bayes Estimation under the exponential Loss Function

Bayes estimator and posterior risk for o under different double priors such
as defined in previous section using the exponential loss function (proposed). Then,
the risk function has been defined as
R, (@, w)=E[L,(exp(0)-ep 0)°],
R,(w,0)=exp(2w)—2exp(w)E(exp(w) \t)+ E@E@p(2w)\t) .The value of o
minimizes the risk function under the proposed loss function which satisfies the

N A

: . 0 .
following condition ——R(w-®) =0, we have bayes estimator of » denoted by

0w
for the above prior as follows:

cAo:InE(exp(co)\x)=In(Tem(w)q(w\x)dw) (24)

The bayes estimators and corresponding risks under other double priors can be
derived in the similar manner.

(A). For erlang- inverse levy distributions
Substituting “Eqn (11)” in “Eqn (24)”, yields bayes estimator of the shape
parameter o as the following:

We have aA)z INE(exp(w) \X) = In(Texp(a;)qu\x) do) (24)

)(s+k+0.5v)(n+1'5) oL g0 Hi05) gy
(n+1.5v)

(;:In(Texp(w

n

@ = In(

OF (S+k+0.5v)(n+1'5) Cl)(n+1.3-1 o @ (s +k+0.5v1)
I'(n+1.5v)
0

By multiplying the integral in “Eqn (25)” by the quantity which is equals to
_1y(n+15) A (n+1.5)

(s+k+0.5v-1) Lityield o= In( (s+k+0.5v)

(s+k+05v—1)"+19) (s+k+05v-1)"+19)

do) (25)

B(x, ®)) where
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B(x o) :OF (s+ k+0.5V—1)(n +1.9) m(n+1.5)—1 e.m(s +k+0.5v-1) do
0 I'(n+1.5v)
integral of the pdf of gamma distribution [10], i.e.
s+k+05v ((+15)
s+k+0.5v-1

=1 , be the

o =In( (26)

(B). For erlang distribution-non-informative prior
Substituting “Eqn (15)” in “Eqn (24)”, yields bayes estimator of the shape
parameter o as the following:

We have c:)= INE(exp(w)\X) = In(]gexp(a))qz(a)\x) dw) (24)

K )(n+2—cl)
I'm+2-c,)

;) In (jexp( ) (s (D(n+2—cl)-1 - @ (5+k) do)
0

c 2 sk )Y

oMM gro6kd) dw) (27)

By multiplying the integral in “Eqn (27)” by the quantity which is equals to
(S+k_1)(n+2—cl)
(s+k-1)F2=¢)

N (n+2-c,)
o= In( (s+k) 1
(s+k-1)" 27

ityield

B1(x, w)) where

» (n+2—c1)
Bl()(,a)):j (s+k-1) (D(n+2—cl)—l o
3 I'n+2-c,)
the pdf of gamma distribution [10], i.e.
n S + k (n + 2 - Cl)
= 28
o=In( s+k-1 ) (28)

"o6S+D) 4u=1 be the integral of

(C). For inverse levy distribution-non-informative prior
Substituting “Eqn (18)” in “Eqn (24)”, yields bayes estimator of the shape
parameter o as the following:

We have cAo: INE(exp(w)\X) = In(jexp(w)q3(w\x) dw) (24)
0
(n+0.5-¢,)
(s+0.5v ) 1 o 1705C)1 -0 (+05Y) de)
I'n+0.5-c,)
(n+0.5-c,)

o= In(Texp(a))

aA):In(J' (s+0.5v) 0)(n+0.5—c1)-1 o (5+0.5v-1) do) (29)
0

T(n+05-c,)
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By multiplying the integral in “Eqn (29)” by the quantity which is equals to

_43(h+05-c,) N (n+05-c,)
(s+05v-1) o tyield = In (5+05v) . B2(x, )) ,where
(s+05v-1)05-c) (s+05v-1)"*05-¢)
© (s+0.5v )(n+0.5—c1) (n+0.5-c)-1 _-o(s+0.5v-1)
B2(x, a)):I F(l 05c) ° TR @m0 0V g —1be the integral
. n+05-c,

of the pdf of gamma distribution [10], i.e.

(n+05-c¢,)
o= |n(ﬂ) ! (30)
s+0.5v-1

(D). For erlang- chi-square distributions
Substituting “Eqn (22)” in “Eqn (24)”, yields bayes estimator of the shape
parameter o as the following:

We have cAo: INE(exp(w)\X) = In(Texp(a))qA(a)\x) dw) (24)

k+0'5)(n+0.5b+1)
I'n+0.5b+1)
aA) In(T (S+k+0.5)(n +0.5b+1)

5 I'n+0.5b+1)

By multiplying the integral in “Eqn (31 )” by the quantity which is equals to
(s+k—0 5)(n+0.5b+l) )(n+0.5b+1)

(s+k-05 )(n+0.5b+l)
k—05)(n +0.5b+1)

I'(n+0.5b+1)
integral of the pdf of gamma distribution [10], i.e.

= in([exp( ) (s+ OB -0 (s +ki05) 4 )
0

(n+0.5b+1)-1 e-w(s +k-0.5) do) (31)

In( (s+k+0.5

ityield o = (s+Kk_05 (056D

B3(x, w)) , where

oMt0S0H)L (-0 +k-05) y 1 pe  the

B3(x, w)=T 5+

A n+0.5b+1
mzln(s+k+0.5)( ) (32)
s+k-05
4. Simulation Study
We used simulation method by using MATLAB-R2018a program ,under 5000
replications is considered , to generate random samples of sizes n = (15, 25, 50, 100)

from Gompertz distribution using the quantile function from “Eqn (4 )” as
X, :In(l—lln(l-Fi )), where F =U, is a uniform distribution with (0,1) , for
0)

different cases for the scale parameter of the Gompertz model have been
represented by  =0.02,0.5,1,2 ,for small and medium and large values of scale
parameter of the Gompertz model ,with selected different values for the hyper
parameters k,v,c,, and b are known of the double prior distributions as

¢ For erlang- inverse levy prior with (k=0.5,v=2).
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e For erlang-non informative prior with (k = 1,¢0=2).

e For inverse levy -non informative prior with (v =1,¢cy =1).

e For erlang-chi-square prior with (k=1,b=2).

To investigate the behavior of the proposed methods and their estimates, the

estimates have been compared in terms of their mean-square error (MSE) which
has been computed as

1 5000 )
E—%g(w(r)-w) (33)

The results are presented in tables (1 and 2), including the estimated values

n

(w) and the mean square error (MSE) for parameter (o) of the Gompertz

distribution under square error loss function based on different double prior.
Also, the results are presented in tables (3 and 4), including the estimated values

n

(w) and the mean square error (MSE) for parameter (o) of the Gompertz
distribution under exponential error loss function based on different double prior.

Table .1 Estimated values(w) of parameter () for the Gompertz distribution

using
square error loss function under different double prior.
w
N Method 0.02 05 1 >
15 Erlang- inverse levy prior with (k =0.5,v = 2) 0.023462 | 0.55452 | 1.0581 1.9211

0.022769 | 0.54753 | 1.0624 1.9843
0.02065 | 0.50545 | 0.99826 1.9247
Inverse levy -non informative prior with(v=1,c, =1) | 0.024173 | 0.57133 1.0902 1.9793

Erlang-chi-square prior with (k =1,b = 2)

erlang-non-informative prior with (k =1,c, =2)

25 Erlang- inverse levy prior with (k =0.5,v = 2) 0.02203 | 0.53498 | 1.0349 1.9475
0.021624 | 0.53047 | 1.0364 1.9863
0.020385 | 0.50523 | 0.99735 | 1.949

Inverse levy -non informative prior with (v =1,c, =1) | 0.022445 | 0.54508 | 1.0545 1.9843

Erlang-chi-square prior with (k =1,b = 2)

Erlang-non-informative prior with (k =1,c, = 2)

50 Erlang- inverse levy prior with (k =0.5,v = 2) 0.020979 | 0.51914 | 1.0196 1.9773
0.02078 | 0.51676 | 1.02 1.9971
0.020173 | 0.50417 | 1.0002 1.9779
Inverse levy -non informative prior with(v=1,c, =1) | 0.021183 | 0.52418 | 1.0295 1.9965

Erlang-chi-square prior with (k =1,b = 2)

Erlang-non-informative prior with (k =1,c, = 2)

100 | Erlang- inverse levy prior with (k =0.5,v =2) 0.020501 | 0.50869 | 1.0098 1.9904
0.020402 | 0.50746 | 1.0099 2.0004
0.020101 | 0.5012 0.99995 1.9906
Inverse levy -non informative prior with(v=1,c, =1) | 0.020602 | 0.51119 1.0148 2.0002

Erlang-chi-square prior with (k =1,b = 2)

Erlang-non-informative prior with (k =1,c, = 2)
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Table .2 The mean square error of parameter (o) for the Gompertz distribution

using
square error loss function under different double prior.
w
N Method 0.02 05 1 >
15 Erlang- inverse levy prior with (k =0.5,v = 2) 5.520e-5 | 0.023007 | 0.074019 | 0.18229

4.844e-5 | 0.022616 | 0.080907 | 0.21575
3.402e-5 | 0.018132 | 0.073893 | 0.24151
Inverse levy -non informative prior with(v=1,c, =1) | 6.329e-5 | 0.026354 | 0.083121 | 0.18733

Erlang-chi-square prior with (k =1,b = 2)

Erlang-non-informative prior with (k =1,c, = 2)

25 Erlang- inverse levy prior with (k =0.5,v = 2) 2.461e-5 | 0.012946 | 0.042834 | 0.13074
2.240e-5 | 0.01272 | 0.044955 | 0.14468
1.773e-5 | 0.010975 | 0.04229 | 0.15422
Inverse levy -non informative prior with(v=1,c, =1) | 2.725e-5 | 0.014201 | 0.046164 | 0.13311

Erlang-chi-square prior with (k =1,b = 2)

Erlang-non-informative prior with (k=1,c, = 2)

50 Erlang- inverse levy prior with (k =0.5,v = 2) 9.653e-6 | 0.005839 | 0.020086 | 0.072291
9.142e-6 | 0.005762 | 0.020534 | 0.076303
8.076e-6 | 0.005292 | 0.019776 | 0.078534
Inverse levy -non informative prior with(v=1,c, =1) | 1.026e-5 | 0.006164 | 0.020956 | 0.073187

Erlang-chi-square prior with (k =1,b = 2)

Erlang-non-informative prior with (k=1,c, = 2)

100 | Erlang- inverse levy prior with (k =05,v =2) 4.534e-6 | 0.002699 | 0.010266 | 0.038432
4.404e-6 | 0.002680 | 0.010375 | 0.039514
4.129e-6 | 0.002575 | 0.01018 | 0.040021
Inverse levy -non informative prior with(v=1,c, =1) | 4.687e-6 | 0.002774 | 0.010489 | 0.038718

Erlang-chi-square prior with (k =1,b = 2)

Erlang-non-informative prior with (k=1,c, = 2)

Note: The shadow cells represent the smallest value of RMSE.

Table .3 Estimated values (w) of parameter () for the Gompertz distribution

using
exponential error loss function under different double prior.
w
N Method 0.02 05 1 >
15 Erlang- inverse levy prior with (k =0.5,v =2) 0.02348 | 0.56471 | 1.0961 2.0494

0.022786 | 0.55781 | 1.1021 2.1276
0.021378 | 0.53291 | 1.073 2.1477
Inverse levy -non informative prior with(v =1,c, =1) | 0.021346 | 0.51337 0.99641 1.8631

Erlang-chi-square prior with (k=1,b =2)

Erlang-non-informative prior with (k =1,c, = 2)

25 Erlang- inverse levy prior with (k =0.5,v =2) 0.022039 | 0.54069 | 1.0565 2.0256
0.021633 | 0.53619 | 1.0586 2.0696
0.02081 | 0.52117 | 1.04 2.0761
Inverse levy -non informative prior with(v=1,c, =1) | 0.020792 | 0.51008 | 0.99673 | 1.911

Erlang-chi-square prior with (k =1,b = 2)

Erlang-non-informative prior with (k =1,c, = 2)

50 Erlang- inverse levy prior with (k =0.5,v = 2) 0.020983 | 0.52183 | 1.03 2.017
0.020784 | 0.51945 | 1.0305 2.0381

Erlang-non-informative prior with (k =1,c, = 2) 0020381 | 051192 | 1.0209 50397

Inverse levy -non informative prior with(v=1,c, =1) | 0.020372 | 0.50663 1 1.9582
Erlang-chi-square prior with (k=1,b =2)
100 | Erlang- inverse levy prior with (k =05,v =2) 0.020503 | 0.50998 | 1.0149 2.0104

0.020404 | 0.50876 | 1.015 2.0207
0.020204 | 0.505 1.0101 2.0211
Inverse levy -non informative prior with(v=1,c, =1) | 0.0202 0.50244 | 0.99991 | 1.9807

Erlang-chi-square prior with (k =1,b = 2)

Erlang-non-informative prior with (k =1,c, = 2)
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Table .4 The mean square error of parameter (o) for the Gompertz distribution

using
exponential error loss function under different double prior.
w
N Method 0.02 05 1 >
15 Erlang- inverse levy prior with (k =0.5,v =2) 5.547e-5 | 0.025854 | 0.091386 | 0.23393

4.867e-5 | 0.025402 | 0.1007 0.30695
3.798e-5 | 0.022124 | 0.098848 | 0.37349
Inverse levy -non informative prior with(v=1,c, =1) | 3.765e-5 | 0.018085 | 0.067913 | 0.21005

Erlang-chi-square prior with (k =1,b = 2)

Erlang-non-informative prior with (k =1,c, = 2)

25 Erlang- inverse levy prior with (k =0.5,v = 2) 2.469e-5 | 0.013908 | 0.048561 | 0.15128
2.246e-5 | 0.013643 | 0.051099 | 0.17625
1.899%-5 | 0.012378 | 0.049816 | 0.19475
Inverse levy -non informative prior with(v=1,c, =1) | 1.890e-5 | 0.011007 | 0.040386 | 0.14198

Erlang-chi-square prior with (k =1,b = 2)

Erlang-non-informative prior with (k=1,c, = 2)

50 Erlang- inverse levy prior with (k =0.5,v = 2) 9.669e-6 | 0.006066 | 0.021438 | 0.078151
9.156e-6 | 0.005978 | 0.02193 | 0.084369
8.361e-6 | 0.005641 | 0.021486 | 0.088286
Inverse levy -non informative prior with(v=1,c, =1) | 8.341e-6 | 0.005313 | 0.019357 | 0.075139

Erlang-chi-square prior with (k =1,b = 2)

Erlang-non-informative prior with (k=1,c, = 2)

100 | Erlang- inverse levy prior with (k =05,v =2) 4.537e-6 | 0.002750 | 0.010602 | 0.040022
4.407e-6 | 0.002728 | 0.010716 | 0.041582
4.204e-6 | 0.002651 | 0.010599 | 0.042473
Inverse levy -non informative prior with(v=1,c, =1) | 4.199e-6 | 0.002578 | 0.010075 | 0.039117

Erlang-chi-square prior with (k =1,b = 2)

Erlang-non-informative prior with (k=1,c, = 2)

Note: The shadow cells represent the smallest value of RMSE.

5. Discussion

The results of the simulation and comparison show that in table.2, the bayes
estimators of the scale parameter (o) for the Gompertz distribution using square
error loss function under
e Inverse levy -non informative double prior with(v=1,c,=1) , for all samples
sizes ,when the true values of ®=0.02,0.5,1.
e Erlang- inverse levy double prior with (k =0.5,v =2), for all samples sizes ,when

the true values of ® =2

have less than mean square error compared with the other bayes estimators.
For the results which are listed in table.4, we see that the bayes estimators using the
exponential error loss function under the double prior erlang-chi-square with
(k=1,b=2) have less than mean squared error compared with the other

estimators, for all samples sizes and for all the true values of (®).
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6. Conclusion

In this study, we have used two double priors for comparison. In double
prior we have more information than single prior.
We have derived the posterior distributions for the unknown parameter oof the
Gompertz distribution, and provided the bayes estimators of the scale parameter
(w) using square error loss function and exponential error loss function under the

different double priors which are erlang- inverse levy , erlang-non-informative
Jinverse levy -non informative and erlang-chi-square. On the basis of the result of
the the simulation study, the following conclusions can be drawn:

e The estimates for all estimators converge to true value in all cases when the
sample size increases.

e The mean square error of all estimators decreases when the sample size
(n)increases.

e The mean square error of all estimators increases when the true value (o)

increases.
For all samples sizes, using erlang-chi-square double prior with (k =1,b =2)as the

double prior ,we can see the exponential error loss function is better than square
error loss functions.
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