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Abstract 
In this study, we made a comparison between LASSO & SCAD methods, 

which are two special methods for dealing with models in partial quantile 

regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric 

part ;in addition, the rule of thumb method was used to estimate the smoothing 

bandwidth (h). Penalty methods proved to be efficient in estimating the regression 

coefficients, but the SCAD method according to the mean squared error criterion 

(MSE) was the best after estimating the missing data using the mean imputation 

method. 
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1. Introduction 
   The semi-parametric model is one of the regression models that combines the 

characteristics of parametric regression and non-parametric regression in order to 

obtain the best curve for the data. Sherwood (2016) quantile with partial linear 

regression to estimate missing data, Alhamzawi et al (2019) suggested Bayesian 

Adaptive Lasso Quantile Regression, Tibshirani (1996) proposed the Lasso method, 

which is considered one of the most famous penal methods used in estimating and 

selecting a linear regression model simultaneously. The main objective of 

regression analysis is to reduce the observed data or summarize it to ensure its 

presentation, for the relationship between each of the explanatory and response 

variables, and to analyse the regression line and give a conceptual and an 

approximation to that relationship by drawing or displaying that relationship 

according to the direction of the approximation line. As the semi-parametric 

regression model is a model that combines parametric regression and 

nonparametric regression, one of the most famous semi-parametric models is the 

partial linear regression model and is symbolized by the symbol (PLM). In 

addition, it gives an easier explanation for the effect of each variable compared to a 

complete non-parametric regression, as well as better than the non-parametric 

model because it avoids the curse of dimensional problem that occurs when the 

number of explanatory variables is increased in the non-parametric model. 

Quantile Regression is one of the important regression methods that have the 

ability to investigate the relationship between the response variable and the 

explanatory variables and in the entire conditional distribution of the response 

variable by estimating the conditional percentiles (  (   ))        It differs in 

the distribution of the response variable rather than being limited to estimating the 

conditional expectation (Ε(Y|X=x)) as in the normal mean regression. It is the 

observations of the explanatory variables. 

  (   )            ,      . 

 

2. Partial Quantile Linear Regression Model (PQLRM)  
It is considered as one of the important regression models that have the 

ability to investigate the relationship between the response variable and the 

explanatory variables and in the full conditional distribution of the response 

variable by estimating the conditional function (  (   ))            the 

difference in the distribution of the response variable rather than being limited for 

estimating the conditional expectation ( (     ))  as in the normal mean 

regression. And since the partial quantile linear regression model is written 

according to the following formula:  

     
       (  )                                                 (1) 

 

Where X and T are explanatory variables. 

Y: The vector of the response variable of degree (n  ) 

g(.): Unknown smooth function of degree (n 1) 

 : Unknown parameters vector of degree (p 1) 

 : is the error term  
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there is a difficulty in estimation process because there is no clear behavior 

of the variables in the non-parametric part of the model leads to use one of the 

smoothing methods to solution the noise in the non-parametric part in order to 

show its true behavior. 

In this paper, (NW) will be used to build the model correctly, and in order 

to implement the estimation process, we will use penalty methods, such as the 

LASSO & SCAD method, which has the characteristics that qualify to perform the 

estimation process accurately, where the penalties perform the necessary 

approximation of variables of the model to extend the estimation process, taking 

into account all the variables of the model and with as little bias as possible (Zhao, 

2015). 

3. LASSO Method  
Tibshirani 1996 Proposed the technique of the work of the (LASSO) method 

is based on reducing the sum of the squares of the residuals according to a 

constraint that represents the absolute sum of the coefficients, which is less than a 

certain constant. (LASSO) does the Shrinkage process, as it makes a penalty for the 

regression coefficients and makes some equal to zero. Also, Lasso's estimator for 

the parameter (β) according to the quantile regression model is written as follows: 

(Tibshirani, 1996) 

 ̂             {∑  (     
   )

 
 

   

  ∑|    |

 

   

}         ( )  

Where: (λ) is called the Penalty Parameter or the Regularization Parameter, 

 ∑     
    called the Penalty Function. 

4. SCAD Method 
Fan and Li (2001) proposed the oracle properties of SCAD besides to 

variables selection (Smoothly Clipped Absolute Deviation), and (Fan and Li, 2001) 

predicted that the LASSO penalty does not have Oracle propertiesصThe SCAD 

estimator for the parameter (β) can be written according to the quantile regression 

model as: 

 ̂         {∑  (     
   )

 
 ∑  

 

   

(|    |)

 

   

}        ( ) 

Where:      , ∑   
 
   (|    |) called the Penalty Function 

5. Penalty Parameter  
The basic step in Penalized Regression is the selection of the penalty 

parameter or the so-called regularization parameter, which is symbolized by the 

symbol (λ), and it is the parameter that controls the amount of reduction of the 

parameters and the selection of the subset of the variables included in the final 

model. (Craven, and Wahba, 1978) 

In our article, the generalized Cross Validation method was used to estimate 

the value of the penalty parameter, which is written according to the following 

formula:  

 ( )  
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, -
 ( )

    
           ,       

, -
 ( )   ∑      

 
    

6. Nadaraya-Watson Estimator 
This estimator is characterized by being used in non-parametric regression 

functions, but in this research, it will be employed to work as an estimator for the 

semi-parametric regression model. 

As for the kernel function used with the (N.W) estimator, it has several properties, 

including: 

1- ∫ ( )     

2- ∫  ( )     

3- ∫   ( )                               
And where (k) represents the degree of the kernel function, it has been 

confirmed in most applications that these conditions are fulfilled when (z = 2), that 

is the kernel functions are of the second order, which are recognized either through 

derivation or integration. (Hmood and Mohamed, 2014) 

(N.W) estimator in semi-parametric regression functions can be summarized 

according to the following formula: 

 ̂   ( )  
∑    

 
   (    )  

∑   
     

(    )
                                               ( )  

The estimator of the kernel ( ̂   ( ))can be written using a function of 

weights, which is equal to:  

   (    )  
   (    )

∑    (    ) 
   

                                   ( )     

Where it can be written in the following form: 

 ̂   ( )  ∑   

 

   

(    )                                             ( ) 

 Whereas  ∑    
 
   (    )    

Thus, the estimator of (N.W) in the semi-parametric regression functions is 

according to the following formula: 

  (   )  ∑   

 

   

( )(     
  )                                ( )                                     

Where: (*   ( )+   
 ) denote to a series of weights and these weight functions can 

be normal if the following condition is met:  

∑   

 

   

( )                                                    

Where:       

As for the shape of the weights, it is determined by the weight function, 

which also represents the kernel function   .
    

 
/  And this function gets to its 

maximum when (Ti) approaches (t) and decreases when (  ) gets away from (t). 

And the weight function can be defined as follows: 

   ( )  
 (

    
  

)

∑   
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7. Choosing the Smoothing Parameter 
It is also called the bandwidth parameter and is denoted by (h). The choice 

of the kernel function and the smoothing parameter are necessary in estimating the 

regression function; in this research, the rule of thumb method was used to 

estimate the value of Smooth. 

7.1 Rule Of Thumb (ROT)  
This method is one of the important methods for selecting bandwidth 

parameter; the bandwidth parameter is obtained by reducing Weighted Mean 

Integrated squared error of the regression function estimator. (Hmood, and 

Stadtmüller, 2013) 

       ∫ [     ( ̂( ))     ( ̂( ))] ( )  

  

  

      

    ( ̂( ))  
 

 
    ( ) ∫    ( )     ( )

  

  

 

   ( ̂( ))  
  ( )

   ( )
 ∫   ( )      (  )  

  

  

 

Whereas     represents a weight function and this decreases results in:- 

      ( ) 

[
 
 
 
 
∫   ( ) ( )

 ( )  
⁄

∫(   ( ))
 
 ( )  

]
 
 
 
 

 
 ⁄

  
  

 ⁄                                                   ( )  

Whereas: 

C(K): Represents a specific constant value that depends on the type of kernel 

function used. 

   ( ): is the second derivative of the regression function & f(t): represents the 

probability density function. 

The rule of thumb is based on a quadratic polynomial model matching. 

 ( )              
                                                                    (  )   

Whereas:  ̂  represents the sum of the squares of the residuals, which is estimated 

using the polynomial model in the equation (10). Then the estimated values are 

substituted into the equation (9). We get:  

 ̂     ( ) [
 ̂ ( ) ∫ ( )  

∑ . ̂  (  )/
 
 ( ) 

   

]

 
 ⁄

  
  

 ⁄                                    (  ) 

 

8. Missing Data   
Sometimes, especially in the applied field, the information to be studied may 

not be available due to a number of reasons, including the loss of that information 

for insufficient (unknown) reasons and the loss may be done on purpose, data loss 

may bias this data, and this affects the quality of data Liang, et al (2004).  
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Missing Data Imputation: this method replaces the missing values in a data 

set with other possible values, and it has several benefits, including that the 

treatment of these missing data does not always depend on a specific method, and 

this allows researchers to choose a calculation method that is more appropriate 

with their applications. 

Since each process of loss has a specific pattern (mechanism) according to 

which the loss takes place according to a certain probability, and as a result, the 

(Little and Rubin) classified the mechanisms of missing data into three types: 

1.Missing at Random: this type of loss is only related to the values of other 

variables, while it is independent of its missing data. In such a case, the loss is 

random. (MAR). 

2.Missing Completely at Random: this type of loss is due to the fact that the loss is 

independent of the missing data itself as well as independent of the values of other 

variables in the sample, then it can be said that the data is completely and 

randomly lost (MCAR). 

3.Not missing at random: the reason for this loss is generated as a result of the lost 

data itself; that is, the loss of data will be intentional and not random (Not MAR). 

8.1. Partial Quantile Regression Model in the case of complete and incomplete data 

We consider the case where some (Y) values in a sample size n may be missing, but 

X and T are observed completely.  

That is, we obtain the following incompletely observations:  

   *                                                   

                                                  
 

In practice, the MAR assumption is usually justified in the nature of 

experiments, especially when it is consider hat missing Y mainly depends on X. 

MCAR has a stronger assumption than MAR, where, MCAR is a special case of 

MAR.  

And assuming that Y is missing at random Qin, et al (2007).  

Let: 

  ∑                       

 

   

 

Where: (m, r) is defined as the response group and the non-response group or the 

loss response variable Y (respectively). 

In addition to that, (  ) represents the non-response state, (  ) represents the 

response state. 

Assuming that (K) is a symmetric probability density function and ((h =   ) the 

bandwidth that is decreasing towards zero with increasing sample size (n  ). 

Where: 

     
    (  )                              

 

Assuming that (β) values are defined, we have a kernel estimator  ̂( ) for g(t), 

based on the complete observations data: 

 ̂(  )  
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Where K(.) is called the kernel function, which can be obtained from using 

the (Gaussian kernel) the standard normal density function and using  ̂( ) instead 

of g(t) in equation (12) we get: 

     
   

∑    (
     

 
) (      ) 

   

∑    (
     

 
) 

       

                                        (  ) 

Since the     component is added to avoid the case that the denominator is zero. 

Using the transformations, we get: 

     
          

where: 

      

∑      (
(     )
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∑    (
(     )
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∑      (
(     )
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∑    (
(     )
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The parameters of β can be estimated as according to the theory of the penalty 

linear quantile regression model as follows: 

 In regard to adding the penalty limit for the SCAD method estimator: 

 ̂       (∑      
 

 

   

)

  

(∑      

 

   

)  ∑  

 

   

(|    |)            (  ) 

 In regard to adding the penalty limit for the estimator of the LASSO method: 

 ̂        (∑      
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                      (  )      

 

And by substituting into the equation (12) we get: 

 ̂ (  )  
∑    (

     

 
) (      ̂ )

 
   

∑    (
     

 
)      

   

                                           (  )  

9. Mean Imputation in the Response Variable 
This method is used to estimate the missing value in a series of data and 

compensate for it with the mean value of the studied variable, as this method helps 

to maintain the actual size of the data and reduce the discrepancy between 

observations and is characterized by its ease of use, and to reduce the value of 

deviations has a significant impact on its estimation, as we will obtain a biased 

value for the deviations, which also affects the value of covariance and correlations, 

where the mean value is compensated instead of the missing values, and if the 

missing values are few, the bias value will be relatively low (Jamshidian, and Mata, 

2007). 
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10. Discussion of Results 
10.1  Simulation  
Simulations were performed using (1000) replicate, three sample sizes for each 

experience (n= 30, 50, 100), and as follows: 

 

1- The explanatory variables of the parameter part (Xi) are generated in the 

following form (Hmood and Mohamed, 2014) : 

       ̅    

        ̅    

whereas:       

Where the following values (5.2, 6.5) were used as initial values for the mean in the 

generation process 

2- The explanatory non-parametric variables (  ) are distributed normally with 

mean (0) and variance (1), where four values of variance of error (2, 5, 7.2, and 

10.3) were used. 

3- The dependent variable is generated through the models used in simulation 

experiments through the use of regression functions for the explanatory variables 

of the parametric part and the non-parametric part with an error term added. 

The following model was used: 

 ( )          

The kernel function used is a standard normal density function, Gaussian Kernel, 

as follows: 

 ( )  
 

   
   ( 

  

 
) 

Where data missing data is random (MAR) according to the percentage of loss 

(10%, 20%, 30%), that is, if the cause of loss is related to the values of other 

variables only and is independent of the missing value. 
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Table No. (1) Simulation results when P=2 , G=2    𝛔    

MSE  ̂ 

 NO MISS MISS 10% MISS 20% MISS 30% 

tao n LASSO SCAD 
LASSO 

MI 

SCAD 

MI 

LASSO 

MI 

SCAD 

MI 

LASSO 

MI 

SCAD 

MI 

0.3 

30 0.5417 0.5483 2.5978 2.5840 2.0687 2.0415 2.5441 2.4862 

50 3.2032 3.1879 2.2017 2.1923 3.1489 3.1409 4.2043 4.2061 

100 4.4994 4.4943 3.4726 3.4766 2.3091 2.3002 1.0777 1.0746 

 

Table No. (2) Simulation results when P=2, G=2     𝛔    

MSE  ̂ 

 NO MISS MISS 10% MISS 20% MISS 30% 

tao n LASSO SCAD 
LASSO 

MI 

SCAD 

MI 

LASSO 

MI 

SCAD 

MI 

LASSO 

MI 

SCAD 

MI 

0.6 

30 0.3015 0.3155 0.2842 0.4141 0.3234 0.3941 0.2869 0.3113 

50 3.3706 3.3391 3.4156 3.4301 3.5539 3.4054 3.3372 3.3441 

100 2.9428 3.0205 2.8648 2.6532 3.5513 3.1664 2.8156 3.1817 

 

Table No. (3) Simulation results when P=2, G=2,   𝛔      

MSE  ̂ 

 NO MISS MISS 10% MISS 20% MISS 30% 

tao n LASSO SCAD 
LASSO 

MI 

SCAD 

MI 

LASSO 

MI 

SCAD 

MI 

LASSO 

MI 

SCAD 

MI 

0.3 

30 1.2820 1.2658 1.1117 1.2843 1.1889 1.1280 2.0232 1.2658 

50 0.5706 0.5191 0.5281 0.5685 0.5778 0.5285 1.8399 0.5191 

100 0.3879 0.3484 0.3039 0.6691 0.3744 0.3438 2.7406 0.3484 

 

Table No. (4) Simulation results when P=2, G=2,  𝛔       

MSE  ̂ 

 NO MISS MISS 10% MISS 20% MISS 30% 

tao n LASSO SCAD 
LASSO 

MI 

SCAD 

MI 

LASSO 

MI 

SCAD 

MI 

LASSO 

MI 

SCAD 

MI 

0.6 

30 1.9191 1.9437 2.0400 1.9831 2.0473 2.0853 1.9112 2.0338 

50 1.7242 1.6329 1.7211 1.6761 1.5390 1.7244 1.7189 1.6710 

100 3.5106 2.5296 2.6834 3.8340 2.5978 2.6341 3.6931 2.5721 

* No. of linear variates 

* No. of non-parametric variates 

*            
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Figure1: shapes when n=100        P=2 , G=2,  𝛔     , miss 10%,20%&30% 
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Figure2:Shapes when n=100        P=2 , G=2,   𝛔      miss 10%,20%&30% 

  

 



 

 

 

 

 

Journal of Economics and Administrative Sciences Vol.28 (NO. 133) 2022, pp. 82-96 
   

  

88  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure3:Shapes when n=100        P=2 , G=2,   𝛔       , miss 10%,20%&30% 
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 Figure4:Shape when n=100        P=2 , G=2,  𝛔        , miss 10%,20%&30% 

 

11. Conclusions 
The estimation process using LASSO and SCAD method is relatively simple, fast 

and very suitable for semi-polar models; on the other hand, adding the missing to 

the data had a significant effect on the amount of mean square error (MSE) in the 

estimated model, where it was noticed that the higher the variance, the lower the 

mean square error (MSE). We conclude from this comparison that there is a clear 

convergence between the estimation process by the two methods, without loss, with 

the SCAD method preferred when data loss occurs. A significant effect of the 

missing appeared on the LASSO method with an increase in the amount of least 

squares, knowing that the method that was used to estimate the missing data was 

the mean compensation method (MI) and the rule of thumb method to estimate the 

smoothing parameter. 
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 البخث مصتخلص

وهوب طشٌقزبى خبصزبى  ،SCADو LASSOقوٌب ثإجشاء هقبسًخ ثٍي طشٌقزٍي  الذساسخ،فً هزٍ 

 لزقذٌشNadarya & Watson Kernel) الجضئً. رن اسزخذام ) زجضٌئًللزعبهل هع الٌوبرج فً الاًحذاس ال

الإثهبم لزقذٌش الوعلوخ  قبعذح، ثبلإضبفخ إلى رلك، رن اسزخذام طشٌقخ (non-parametricاللاهعلوً )الجضء 

وفقبً لوعٍبس هزىسظ  SCADأثجزذ طشق الجضاء فعبلٍزهب فً رقذٌش هعبهلاد الاًحذاس، لكي طشٌقخ (. h) خالزوهٍذٌ

 mean) ثبلوزىسظ، كبًذ الأفضل ثعذ رقذٌش الجٍبًبد الوفقىدح ثبسزخذام طشٌقخ الزعىٌض (MSE) الخطأهشثعبد 

imputation). 

 

 

 وسقخ ثحثٍخ.: ًىع الجحث

 

الاًحذاس الزجضٌئً، اًوىرج الاًحذاس الجضئً، لاسى، سكبد، الجٍبًبد الوفقىدح،  المصطلخات الرئيصة للبخث:

 الوجبوس الأقشة.
 

 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 *الجحث هسزل هي سسبلخ هبجسزٍش
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