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Abstract
Semi-parametric regression models have been studied in a variety of

applications and scientific fields due to their high flexibility in dealing with data
that has problems, as they are characterized by the ease of interpretation of the
parameter part while retaining the flexibility of the non-parametric part. The
response variable or explanatory variables can have outliers, and the OLS
approach have the sensitivity to outliers. To address this issue, robust (resistance)
methods were used, which are less sensitive in the presence of outlier values in the
data. This study aims to estimate the partial regression model using the robust
estimation method with the wavelet threshold and the PLM estimation method
with the Speakman estimation and Nadarya-Watson smoothing, using simulation
experiments at different sample sizes and contaminated ratios.

The mean square error criterion was employed to compare the two methods.
The robust method is more efficient in obtaining robust estimators than the PLM
estimation method.

Keywords: Partial linear regression, Outliers, Robustness , Wavelet thresholding,
Spek man , Nadarya-Watson.
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1- Introduction

The partial linear regression model technique is theoretically complex and
frequently requires extensive software experience, but it is distinguished by the
ease of interpretation of the parameter part and the retention of some flexibility of
the non-parametric part, as it has greater flexibility in dealing with data that has
problems when compared to the restricted parametric regression model, which
must fulfill certain assumptions , However, if the number of explanatory variables
is large, it may be difficult to interpret and provide inaccurate estimates, resulting
in the Dimensional problem, >4

The partial linear regression model's goal is to estimate the vector B and
function g from the data. The analysis technique is to ignore or remove the non-
parametric component (t) and analyze the parameter component BX from the
model as if the non-parametric component is not present or vice versa. The partial
regression model can be written as follows:

Y=XB+g()+u 1)

Since:

Y: the vector of the response variable at point t; .

X: the matrix of parametric explanatory variables of dimension (n x m).

t: a continuous variable that represents the data’s nonparametric component. It is
an indicator, such as the time or distance of the observation, where t € [0,1].

B: a vector of unknown parameter with the dimension (m x 1) of the explanatory
variable matrix X.

g(t): unknown nonparametric function .

u: the vector of noise variables (random errors) of dimension (m x 1) which is
normally distributed u ~ N(0, 6?).

Several researchers have developed several methods for estimating partially
linear models since Engel et al. [8] introduced it ,and one of the methods for
estimating the nonparametric component in these models is based on the Spline
Smoothing techniques presented by Hickman, as suggested by Speakman method
Kernel Smoothing, Kosick also suggested the Partial Residual method. Profile
likelihood method developed by Severini Wong and Carroll . Local linear
estimation was also introduced by Hamilton and Trung . Zhang and Zhou were the
first to propose the wavelet method. In addition to Hardle . comprehensive
introduction to partial linear models theory and applications . Many of the above
methods have been found to be closely related to the least-squares (LS) method.
The LS method is known to be sensitive to the presence of outliers (outliers) in the
data set, as outliers are observations that are numerically far from the rest of the
data, which can occur due to artificial errors in data collection or by incorrectly
including part of the sample with information. However, If there are outliers in the
data set, it is best to replace the Ordinary Least Squares (LS) method with a robust
method. As a result, some researchers have developed a set of immune procedures
for the partial regression model in order to eliminate the influence of outliers
during the data analysis and conclusion-drawing process, %7712 [9:PP.293.294]

In our study, we will address the robust estimation of the partial regression
model in equation (1) by using the wavelet transform to estimate the non-
parametric component of the model and the robust method to estimate the
parameter vector of the parameter component using the M estimator. The method
for linking wavelet estimators to M estimates is based on the use of M estimation
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algorithms (Half-quardratic algorithms) represented by (ARTUR, LEGEND)
algorithms for robust estimation of the parameter vector B.using simulation
experiments. The comparison criterion, mean squares error (MSE) , is used to
compare the two estimation methods.

2. The concept of outliers

Observations are often defined in terms of spread and concentration through
the shape of the normal distribution, however because some observations are
located far from the data center, they may follow a different pattern or none at all.
Such abnormal observations are called outliers (which are observations with large
residual values). Its presence causes severe distortion in the data and takes it away
from the shape of the normal distribution, which may occur due to artificial errors
when collecting data or by incorrectly including part of the sample with
information . When outliers appear in the response variable, they are referred to as
(Outliers), and when they appear in the explanatory variables, they are referred to
as (Leverage Points), and when they appear in both variables, it makes estimating
more difficult. Scientists and researchers have discussed several concepts and
definitions of values outliers. It is defined by Broos (1961) as an observation that
differs significantly from the other components of the sample. *""“/, As Freeman
defined it in 1980, it is a point of view that does not originate in the same manner
that most other points of view do. *77%%1

As a result, outlier values are observations that are distant from the sample's

center and have a considerable inaccuracy and bias when compared to the rest of
the observations, reducing estimating efficiency. **">°

3. Ordinary Estimation Method of Partial Linear Regression Model (PLM)
3.1. Speckman Estimation

Speckman (1988) proposed the following method for estimating the partial
regression model: in equation (1), consider the conditional expectation of both sides
of the partial regression model as follows: [3:PF-61[2:FP4L7]
Y - E(Y[) = {X-EX|)}' B +{u-EU}
Let: Y=Y ({A-=S),X=X(1-S),U=u-E(lt)
Where S is the smoothing matrix for the estimator (N.W), and it takes the form:
S= _Kn(tiztj) (2)

Yh=1Kn (ti—t))
The smoothing matrix is replaced with X and Y. We'll get the parameter estimator
in the format shown below.

B=(X"X)" XY @3)
The nonparametric estimator can be obtained using the following formula: 277!
g_Z?ﬂkh(ti—tj)(J’i—xiTﬁ) @

Lakn(ti— t;)
g=S(y—XB)
For the semi-parametric regression model, the Nadaraya-Watson estimator is used
, and it is written as follows:

ooy = I kR =Ty —
In0) =S 55m oty - =1 Wiy = Wy (5)
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k(5D ka
Wi = n 1(%) - Yo K@) (6)

Since {Wy; (H)}j-; denotes a set of weights that is normal if their sum is one. The

size of the weights is represented by the weight function, which also represents the
kernel function K(u), which is a real, decreasing function as u changes, and h,
represents the smoothing parameter (bandwidth) by which the size of the weights is
defined (h > 0). The value of the observation T is determined by the distance or
closeness of data for the observation ti., Furthermore, the (Gaussian) function will
be used to estimate (N W) [4;PP.254] [ 1;PP. 397] [10;PP.379]

The Cross-validation (CV) method will be used to choose the smoothln?

aramejter which is one of the most efficient and widely used methods. *4"7*°
21;PP.312

cV(h) =2 yr {y - galt)) @)
and the optimal parameter with the smallest value for the criterion (CV) is
obtained using the following equation: #7778l
h., = argmin CV,, (8)
4. The wavelet transformation and robust estimation in the partial regression
model

The wavelet transform is a mathematical tool that converts data from the
original field to the wavelet field by dividing it into different frequencies. It is used
in the fields of mathematics, economics, engineering, social studies, and science for
the representation, analysis, and processing of various data. Wavelets are
mathematical functions that divide data into a group of compounds of varying
frequencies and then study the effect of each compound using a solution consistent
with its measurement. The wavelet theory was founded by the French researcher
Fourier. "% PPl Thys, any function in the wavelet space can be analyzed into a
scale function @(t) known as the father wavelet and a wavelet function ¥(t) known
as the mother wavelet, which generates several functions known as sons wavelets,
the function g is expressed in the form

2jo-1 o 2/—
wwz%mmzzkmw,tmﬂ O
k=0 J=jo k=
Where l[)]k(t) \/_1/) ( > ) (10) and
G®=7=0(3)  an

The Wavelet coeff|C|ents are denoted by dj; and the Scaling coefficients by ¢y -
cjor = (g, Bjk (D)), (k=0,1,--,2J0 - 1)
dix = (9.%jx) . (J =jo » k=01,-,2/-1)

Mallat proposed an efficient algorithm for calculating wavelet coefficients for a
set of noisy data in (1989). He named it the Discrete Wavelet transformation
(DWT) process because it divided the input signal into different frequency packets
represented by the high-frequency filter G = {g«} and the low-frequency filter H =
{hd}, yielding the wavelet coefficients dj;, and the Scaling coefficients c¢; ;. Ingrid
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Daubchies, a researcher, proposed a method in 1988 that uses compact supported
for orthogonal wavelets and N vanishing moments, To create a family of Scaling
functions (Daubchies) that is accompanied by wavelet functions, as this family leads
to a family of smoothing Scaling functions. Daubechies wavelets are biorthogonal,
sufficiently regular, and asymmetric. [*6:FP14:48:5]

P(7) P(r) @(1)
1 //l,\ 4 /f \\ A Irl,.,.\ll
i (AN NE i AN w | A0
ol P o L n/ 1
y \ 7 T v/f\“
05 3 E3 3 0% ] 2 3 a Tt B 3 8
¥ (1) w(r)
1 /]\l | ) r.""\l i A
o= j/ \ /“/'\ i i J." I'k nss: 0.5 PN | ||||
I -, i I \ 4 i "N || f—
—1 \f % ~ 'L'f fEmer \.\I IJ' 'L/
ik ° i 2 -2 o 1 Se=——= e
p=2 p=3 p=4
Figure 1. scaling @ and wavelet ¥ functions of Daubechies with P vanishing
moments

The nonparametric component g is represented as a function in infinite
dimensional space in nonparametric analysis. The idea behind wavelet approaches
is that the unknown function has an economical wavelet expression, i.e. g is, or is
well approximated by, a function with a small proportion of nonzero wavelet
coefficients. 77294l

When there is incomplete or garbled data, signal noise occurs, and it is
necessary to remove this noise from the original signal to receive correct info. As a
result, comparing the set of wavelet coefficients with a value or set of values from
the (Threshold) is an acceptable approach for reducing noise, as the idea of the
threshold comprises setting zero for all wavelet coefficients whose values are less
than the value of the threshold limit. As a result, in the kernel functions, the
wavelet threshold will replace the smoothing parameter, and its rise or decrease
will affect the amount of smoothing tainted data. The hard threshold function and
the soft threshold function are two types of threshold law. 477 371 [15:PFP.431]

o (t)z{ot: il){ ||§|I ZAA} 12
t—24,  if t> A

o5 () ={t+a, if t<-2 (13)
0, if Itl <4

Whereas ¢ (t) denotes the hard threshold function , and ¢$ (t) denotes to the
soft threshold function.

It is assumed that the t points have the same dimensions t; = i/n and that the
sample sizeis  n =2, where J represents positive integers. In the following steps,
the data is converted from its original field to the wavelet (time-frequency) domain
by applying the Daubechies discrete wavelet transform (DWT) to X and Y to
obtain their corresponding wavelet representations A and Z. Where this
transformation is based on both the scale function @;c(t) and the wavelet function
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Yjk(t), both of which represent orthogonal wavelets of the space L? [0,1] to any
nonparametric function g € L?[0,1] .

We suppose thate = (e, ....., e, )" isa vector of real numbers . The following
equation gives the discrete wavelet transform of the vector e:
d=W,xne (14)

were d is the discrete scaling coefficients Sjox and discontinuous wavelet
coefficients wjx of the vector e are both included in this vector of dimension (n x 1).
And W« is an orthogonal matrix connected with the base of the mother wavelet's
orthogonal recurring wavelet. To create a PLM model in the form (1) based on
wavelets, multiply both sides by the orthogonal matrix W to obtain the
transformed model using the formula: °77?%!
K=Vp+0+e (15)

Where K=WpnqY , V=WnpnX, 0=Wnng , €=WpU
The Penalized Least Square PLS is used to estimate the parameters and in the
model (6) by reducing the Object Function, which is divided into two parts, the
Loss Function and the Penalty Function. in the following format:

(B 8,) =arg min {j (B, 0)

n

n
1 2
=) S(a—Vig-6)"+2) |04 (16)
i=1 i=ig

Were A is the smoothing parameter represented by the threshold value,
which is chosen using the universal threshold approach. Only the empirical wavelet
coefficients of the nonparametric section of the model, not the scaling coefficients,
are penalized by the penalty term in the preceding equation. Were ip = 2!° + 1 .
Both the estimators B, and ©, represent two solutions to the optimization
problem, employing the M-Huber method to estimate p and half-squared
algorithms (ARTUR and LEGEND) to estimate 0, as shown in the following
formulas

Bo=argmin ) p;(k;—VIp) (17)
i=ig
_ ki— VB, if i < i,
in= (k_VTA) . .>. -:1.” 18
YSoft,l i zﬁn lf t=21p 1 A ( )
where is Huber's cost functional p; defined by
u?/2 if luj<a
pa(w) = {Alul —A%2/2  iflul>4 (19)
The soft threshold function y o 4 is defined by :
Ysofea(Ww) = sign(w)(Ju| — ), 20)

The inverse discrete wavelet tr_ansforr_n IDWT is used to estimate the robust
nonparametric component g by 7778 17:PP23]

9:WTnan (21)
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4.1 Half-quaadratic algorithms

To obtain the estimator of the parameters vector § , we must solve the
minimization problem by Standard optimization tools, such as the convex Huber
(p2) loss function, whose second derivative is large near zero, which may result in
slow optimization. As a result, for model (13), the half-squared optimization
method for cost functions is used, which involves associating an auxiliary variable ¢
with every B and creating an augmented criterion F so that the function F(B,c) is
quadratic for each P (therefore, quadratic programming can be used) where each c

[can be]calculated independently for each constant f using an appropriate formula.
9;PP.299

—~

Bu=argminj®) . J(B) = Z pa(ki~VIB) 22)

Each ¢ can be determined independently using an explicit formula for each
fixed. The augmented criterion F is chosen because it achieves the same minimum
as J for the same value of . The augmented energy optimization problem can be
solved iteratively. At each iteration, one realized an optimization for ¢ with respect
to B for c fixed and a second optimization for p fixed with respect to c . If B(m) and
c™ are the values obtained after m iterations, the algorithm's (m + 1)th step
actualizes these values by

B = arg ming F(B, c™ (23)
c™D = grgmin F(B™*D, ¢
(4

This method yields two algorithms, ARTUR and LEGEND, which are also known
as IRLS and IMR in the literature.
4.1.1 ARTUR Algorithms

The Iterative Reweighted Least Squares Algorithm is also known as (ARTUR)
in the robustness literature (IRLS). The Gaiman and Reynolds theorem leads to an
improved criterion for the following form:

K0 =) cilki—VIB) +¥(©) (24)
i=1

The auxiliary variable ¢ corresponds to a weight on the residuals of the least
squares fit, which explains the IRLS terminology. Weights on large residuals,
intuitively, have a tendency to eliminate the corresponding responses from the fit.
As a result, the ARTUR algorithm's m+1 step can be described as follows

™ = k- vigm™

/ (m)
D) _ pl(zrl‘ )
i = )
2rl.

B+ — (VTc(m+1)V)_1VTC(m+1)K
4.1.2 LEGEND Algorithms
Is an algorithm that is a little different. Instead of weighing the residuals, the
auxiliary variable subtracts the larger residual values. The existence of the related
augmented energy functional is proven by Geman and Reynolds' second theorem
(1992). The criterion that should be minimized is as follows

. Vie{l,-,n}

103



Journal of Economics and Administrative Sciences Vol.28 (NO. 133) 2022, pp. 97-113

F(B,¢) = Z(k —VIg-c)’ + &) (25)

The LEGEND algorithm's m + 1 step can be expressed as follows, using similar
notation as the ARTUR algorithm.
( rm = K —ypgm

(m)
cgmﬂ) = rgm) 1 —L:m)) , vie{l,-,n}
2r;
L
B(m+1) — (VTV)_IVT(K _ C(m+1))
5. Simulation Study
A simulation is an imitation or portrayal of the operation of a genuine system
over a period of time. Simulation, whether done manually or with a computer, is
based on the creation of a model of the real system. This model is made up of a set
of assumptions about how the system operates, which can be expressed as
mathematical, logical, or symbolic relationships between system elements.
Following the development and activation of the model, it is used to conduct some
experiments that cannot be conducted on the real system in order to observe and
deduce the many changes and interactions that would occur in the system if they
were conducted on it. =77
The following steps can be used to describe the stages of simulation experiments:
1- Explanatory variables (xx) with a normal distribution are generated using the
Box-Muller method by first generating two random variables u; and u, that follow
the uniform distribution u (0,1), and then converting these two variables into
independent random variables x; and x, that follow the standard normal
distribution. Random errors e; with a mean of zero and a variance of o2 also
generated . then nonparametric explanatory variables (t) are generated that
follow the uniform distribution.
2- The following formulas are used to select the nonparametric smoothing
functions g(z i) (quadratic, sinusoidal, and cubic):
91(ti) —32¢2 -1 [24;PP.16]
g2(t;) = sin(2t) + 2exp(—16t2) 7
gs(t) =t— 32 + 3¢3 [22;PP.534]
3- According to the partial regression model, the dependent variable is generated
directly using the explanatory variables, random errors, and smoothing functions
that were generated as follows:
m

= Zﬁjxi,- +gi(t;)+e;,i=12,..,n,j=12,.,m (26)

4- The values of the semi-parametric model's parameters are determined by using
the least squares method to estimate them as follows:

(ﬂl = 0.5,32 == 1.5,33 = —125)

5- The following formula is used to contaminated the variables with contaminated
rates (C = 10%0,20%0,40%0) :

Y=1-0OM+CM, , C+0 27)

whereas:

C: the contamination percentage to be used to contaminate the data.
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(1 — C) : Percentage of uncontaminated data.

Y, M, M, : It shows the final contaminating variable, the uncontaminated
variable, and the contaminating variable in that order.

6- The simulation experiments next apply the two studied estimation methods. For
the wavelet estimation method, filters with level (4) , soft Universal threshold and
Daubechies function were used. *"""%!

Auv =6,/2In(n) (28)

7- Three different sizes (n = 64,128,256) and three contamination rates (= 10, = 20,
= 40) were used, and the steps were repeated (R = 1000) . and the average was
taken to find the estimators and get the final values of the estimators and the
average error squares .

The following tables and figures show the results:

Wave G1
Wave G3

Wave G2

10 20

10 0

T ' ' T T T T T T T
T T T T T T 0

20 40 G0 80 100 120

0

20 40 60 B0 100 120

Indax

PLK

T
0

T T T T T
20 40 60 80 100
Index

M,

T
120

=

20 40 60

80

Index

FLM

100 120

=

20 40 60 80 100 120

Index

M,

20 0 20

-60

Index

PLM

T T T T T T T
0 20 40 60 80 100 120
Index

M;

Figure 2.Curves of true values and estimated values of response variable Y for the
three models and for the two estimation methods WAVE and PLM at
(B1=0.5,2=0.75,p3=-1.25), =10%, n=128
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Table 1: Estimated values of the parameters for the two estimation methods
WAVE and PLM at C=10% when (B 1=0.5,p 2=1.5,p 3=-1.25)

Models M;t(ktl)od N I} WAVE Baise PLM Baise
B4 0.3926 0.1074 0.5641 -0.0641

64 | B, 1.4679 0.0321 1.2108 0.2892

B -1.1799 -0.0701 -1.3851 0.1351

B4 0.4605 0.0395 0.633 -0.133

M, g1 128 | B, 1.4623 0.0377 1.414 0.086
B -1.2570 0.007 -1.322 0.072

B4 0.4825 0.0175 0.5525 -0.0525

256 | B, 1.4508 0.0492 1.4616 0.0384

B -1.2701 0.0201 -1.3071 0.0571

B4 0.518 -0.018 0.5669 -0.0669

64 | B, 1.451 0.049 1.5355 -0.0355

Bs -1.313 0.063 -1.0660 -0.184

B4 0.3938 0.1062 0.5585 -0.0585

M, g 128 Bz 1.5171 -0.0171 1.4507 0.0493
B -1.2745 0.0245 -1.1763 -0.0737

B4 0.469 0.031 0.5611 -0.0611

256 | B, 1.410 0.09 1.4357 0.0643

Bs -1.229 -0.021 -1.2329 -0.0171

B4 0.2494 0.2506 0.8418 -0.3418

64 | B, 1.2424 0.2576 1.9908 -0.4908

Bs -0.6130 -0.637 -0.7825 -0.4675

B4 0.3725 0.1275 0.5145 -0.0145

Ms g3 128 | B, 1.5759 -0.0759 1.6945 -0.1945
B -1.4934 0.2434 -0.8641 -0.3859

B4 0.411 0.089 0.4732 0.0268

256 | B, 1.316 0.184 1.4857 0.0143

B -1.288 0.038 -1.2881 0.0381

5.1 Results and Discussion

We note from tablel and figure2 that the bias values show that they
decrease as the estimated values of the parameters approach the default values.
The robust estimation technique (WAVE) was chosen over the (PLM) approach in
the M; and, M, models since the estimated values of its parameters converged to
the default values at sample sizes (256,64,128) .

In the second model M; The ordinary estimating technique (PLM) has
advanced above the robust estimation method (WAVE) through the convergence of
the values of its estimated parameters at sample sizes (256,128,64), followed by
(WAVE) method at sample sizes (64, 128).
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Table 2. Estimated values of the parameters for the two estimation methods

WAVE and PLM at C=20% when (B 1=0.5,p 2=1.5,p 3=-1.25)
Method _
Models 70 n B WAVE Baise PLM Baise
B4 0.3804 0.1196 0.5836 -0.0836
64 | B, 1.4024 0.0976 1.0712 0.4288
B3 -1.1529 -0.0971 -1.4519 0.2019
B4 0.4127 0.0873 0.7093 -0.2093
M, g1 128 | B, 1.4691 0.0309 1.3885 0.1115
B3 -1.2938 0.0438 -1.3520 0.102
B4 0.4688 0.0312 0.5823 -0.0823
256 | B, 1.4034 0.0966 1.4414 0.0586
B -1.2695 0.0195 -1.3375 0.0875
B4 0.5052 -0.0052 0.5433 -0.0433
64 | B, 1.3956 0.1044 1.5586 -0.0586
B -1.2911 0.0411 -1.0951 -0.1549
B4 0.3458 0.1542 0.5833 -0.0833
M, g2 128 | B, 1.5242 -0.0242 1.4463 0.0537
B -1.3082 0.0582 -1.1453 -0.1047
B4 0.4564 0.0436 0.5815 -0.0815
256 | B, 1.3642 0.1358 1.4147 0.0853
B3 -1.2282 -0.0218 -1.2369 -0.0131
B4 0.2319 0.2681 0.9371 -0.4371
64 | B, 1.1696 0.3304 2.0784 -0.5784
B3 -0.5780 -0.672 -0.6797 -0.5703
B4 0.3306 0.1694 0.5825 -0.0825
Ms gs 128 | B, 1.5693 -0.0693 1.7834 -0.2834
B3 -1.5355 0.2855 -0.7964 -0.4536
B4 0.3926 0.1074 0.5105 -0.0105
256 | B, 1.2755 0.2245 1.5101 -0.0101
B -1.2845 0.0345 -1.2721 0.0221
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Figure 3.Curves of true values and estimated values of response variable Y for the
three models and for the two estimation methods WAVE and PLM at
(B1=0.5,2=0.75,B3=-1.25), 8=20%, n=128

Table2 and figure3 reveal that the (WAVE) technique outperforms the estimate
method (PLM) in the first and third models M; and M3 at sample sizes of 128, 256,
and 64, respectively, with a 20% contaminated percent. Unlike the first and third
models, the second model demonstrates that the (PLM) approach outperforms the
(WAVE) estimate method when the sample size is (64,128,256).

Table 3. Estimated values of the parameters for the two estimation methods

WAVE and PLLM at

C =40% when (B_1=0.5,p 2=1.5,p_3 = -1.25)

Method _

Models 70 n B WAVE Baise PLM Baise
By 0.3693 0.1307 0.6031 -0.1031

64 | B, 1.3458 0.1542 0.9316 0.5684

B -1.1281 -0.1219 -1.5187 0.2687

B4 0.3718 0.1282 0.7854 -0.2854

M, g: 128 | B, 1.4800 0.02 1.3634 0.1366
B -1.3340 0.084 -1.3822 0.1322

B4 0.4595 0.0405 0.6121 -0.1121

256 | B, 1.3622 0.1378 1.4212 0.0788

B -1.2751 0.0251 -1.3680 0.118

B4 0.4923 0.0077 0.5198 -0.0198

64 B, 1.3403 0.1597 1.5818 -0.0818

M, 9> B; -1.2690 0.019 -1.1243 -0.1257
128 El 0.311 0.189 0.608 -0.108

B, 1.538 -0.038 1.442 0.058
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Bs -1.362 0.112 -1.114 -0.136
B4 0.4439 0.0561 0.6019 -0.1019
256 | B, 1.3181 0.1819 1.3937 0.1063
Bs -1.2271 -0.0229 -1.2409 -0.0091
B4 0.2031 0.2969 1.0325 -0.5325
64 | B, 1.1127 0.3873 2.1660 -0.666
Bs -0.5294 -0.7206 -0.5769 -0.6731
B4 0.2816 0.2184 0.6505 -0.1505
M; gs 128 | B, 1.5801 -0.0801 1.8722 -0.3722
Bs -1.6027 0.3527 -0.7287 -0.5213
B4 0.377 0.123 0.5478 -0.0478
256 | B, 1.236 0.264 1.5344 -0.0344
Bs -1.287 0.037 -1.2560 0.006
Wave G3
Wave G1 Wave G2 ¥
7 Y N _| — T T T T 1 8 T T 1
0 20 40 60 80 100 120 0 20 40 60 8O0 100 120 0 20 40 &0 80 100 120
Index Index Index
PLM - PLM
B e e L 0 20 40 60 80 100 120 e R
0 20 40 ligexao 100 120 Index 0 20 40 60 80 100 120
Index
M, M, M3

Figure 4.Curves of true values and estimated values of response variable Y for the
three models and for the two estimation methods WAVE and PLM at
(B1=0.5,2=0.75,B3=-1.25), 8=40%, n=128
as shown in Table3 and figuare4 , and through small bias values and At a 40
percent contaminated ratios, note that the (WAVE) method is also better than the
(PLM) method in the first model M; at the samples sizes (64,128,256) respectively,
while we note the progress of the estimation method (PLM) on the method
(WAVE) in the second M; and third M3 models with sample sizes (256,128,64).
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Table 4: The values of the MSE criterion to compare between the two estimation
methods WAVE and PLM for the partial linear regression model when
B_1=0.5,p_2=1.5,p_3 =-1.25) and at contaminated rates @ =
10%, 0 = 20%, 0 = 40%

Method
C Models n WAVE PLM
g(t)

64 0.07962 0.2552

M; g1 128 0.05699 0.2227

256 0.05121 0.1358

64 0.07349 0.2406

10% M, 9> 128 0.05622 0.1378
256 0.03829 0.08044

64 0.2026 0.8033

M, g3 128 0.08761 1.287

256 0.06739 0.9733

64 0.1615 0.368

M, g1 128 0.1253 0.3028

256 0.1089 0.2058

64 0.1582 0.3843

20% M, 9> 128 0.1147 0.2207
256 0.08284 0.1507

64 0.3175 0.8749

M, g3 128 0.1795 1.349

256 0.1499 1.042

64 0.2749 0.5255

M; g1 128 0.2162 0.4149

256 0.1867 0.3031

64 0.2747 0.5807

40% M, 9> 128 0.1948 0.3381
256 0.1454 0.2495

64 0.5438 0.9906

M, g3 128 0.2957 1.442

256 0.259 1.138

The values of the comparison standard (MSE) for the two estimating
methods (WAVE) and (PLM) are shown in Table (4), where we see that the
(WAVE) approach recorded the lowest value for the (MSE) standard in all three
models and at all sample sizes and pollution rates.

We also notice that as the sample size is increased, the (MSE) value of the
two estimation methods decreases, with some fluctuation in the MSE values when
the sample size is increased in the (PLM) method in the third model M3 and at the
three ratios of contamintaed . The results also revealed that the second model had
the lowest MSE criterion value for the two estimation methods and the three
contamintaed ratios than the first and third models.
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6- Conclusions

1- For all models, sample sizes, and contamination rates allowed in experiments,
the (WAVE) estimating method outperforms the ordinary estimation method
(PLM) in terms of obtaining more efficient estimations because it is the most
effective in data trimming and smoothing.

2- For all sample sizes in the first and third models at the 10% and 20%
contaminated ratios, and in the second model at the 10% contaminated ratio, the
estimated values of the parameters using the robust estimation method (WAVE)
are the closest to the default parameter values.

3- For most models and sample sizes, the value of the mean square error (MSE) is
inversely proportional to the sample size, with the larger the sample size, the
smaller the (MSE).

4- By recording the minimum value of the MSE criterion at the three sample sizes
and the recorded contaminated ratio, the second model is more efficient than the
first and third models.

5- Because it records the highest values of the MSE criterion at all three sample
sizes and contaminated ratios, the third model is regarded as the least efficient of
the first and second models.
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