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Abstract 
            Semi-parametric regression models have been studied in a variety of 

applications and scientific fields due to their high flexibility in dealing with data 

that has problems, as they are characterized by the ease of interpretation of the 

parameter part while retaining the flexibility of the non-parametric part. The 

response variable or explanatory variables can have outliers, and the OLS 

approach have the sensitivity to outliers. To address this issue, robust (resistance) 

methods were used, which are less sensitive in the presence of outlier values in the 

data. This study aims to estimate the partial regression model using the robust 

estimation method with the wavelet threshold and the PLM estimation method 

with the Speakman estimation and Nadarya-Watson smoothing, using simulation 

experiments at different sample sizes and contaminated ratios. 

     The mean square error criterion was employed to compare the two methods. 

The robust method is more efficient in obtaining robust estimators than the PLM 

estimation method.  

 

Keywords: Partial linear regression, Outliers, Robustness , Wavelet thresholding, 

Spek man , Nadarya-Watson. 

 

 

 

 

 

 

 

 

 

 

 

mailto:ekhlass.jaleel1201@coadec.uobaghdad.edu.iq
mailto:Lekaa.ali.1968@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


 

 

 

 

 

Journal of Economics and Administrative Sciences Vol.28 (NO. 133) 2022, pp. 97-113 
   

  

87  

 

   

 

 

 

1- Introduction 
        The partial linear regression model technique is theoretically complex and 

frequently requires extensive software experience, but it is distinguished by the 

ease of interpretation of the parameter part and the retention of some flexibility of 

the non-parametric part, as it has greater flexibility in dealing with data that has 

problems when compared to the restricted parametric regression model, which 

must fulfill certain assumptions , However, if the number of explanatory variables 

is large, it may be difficult to interpret and provide inaccurate estimates, resulting 

in the Dimensional problem. 
[25;PP.xvii ,1]

 

     The partial linear regression model's goal is to estimate the vector β and 

function 𝒈 from the data. The analysis technique is to ignore or remove the non-

parametric component (t) and analyze the parameter component βX from the 

model as if the non-parametric component is not present or vice versa. The partial 

regression model can be written as follows: 

     𝒈                                                                (1)   

Since: 

Y:  the vector of the response variable at point ti . 

X:   the matrix of parametric explanatory variables of dimension (n x m). 

t: a continuous variable that represents the data's nonparametric component. It is 

an indicator, such as the time or distance of the observation, where t ∈ [0,1]. 

β: a vector of unknown parameter with the dimension (m x 1) of the explanatory 

variable matrix X. 

g(t): unknown nonparametric function . 

u: the vector of noise variables (random errors) of dimension (m x 1) which is 

normally distributed u ~ N(0,   ). 

      Several researchers have developed several methods for estimating partially 

linear models since Engel et al. [8] introduced it ,and one of the methods for 

estimating the nonparametric component in these models is based on the Spline 

Smoothing techniques presented by Hickman, as suggested by Speakman method 

Kernel Smoothing, Kosick also suggested the Partial Residual method. Profile 

likelihood method developed by Severini Wong and Carroll . Local linear 

estimation was also introduced by Hamilton and Trung . Zhang and Zhou were the 

first to propose the wavelet method. In addition to Härdle . comprehensive 

introduction to partial linear models theory and applications . Many of the above 

methods have been found to be closely related to the least-squares (LS) method. 

The LS method is known to be sensitive to the presence of outliers (outliers) in the 

data set, as outliers are observations that are numerically far from the rest of the 

data, which can occur due to artificial errors in data collection or by incorrectly 

including part of the sample with information. However, If there are outliers in the 

data set, it is best to replace the Ordinary Least Squares (LS) method with a robust 

method. As a result, some researchers have developed a set of immune procedures 

for the partial regression model in order to eliminate the influence of outliers 

during the data analysis and conclusion-drawing process. 
[16;PP.1,2]

 
[9;PP.293,294]

. 

       In our study, we will address the robust estimation of the partial regression 

model in equation (1) by using the wavelet transform to estimate the non-

parametric component of the model and the robust method to estimate the 

parameter vector of the parameter component using the M estimator. The method 

for linking wavelet estimators to M estimates is based on the use of M estimation 
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algorithms (Half-quardratic algorithms) represented by (ARTUR, LEGEND) 

algorithms for robust estimation of the parameter vector B.using simulation 

experiments. The comparison criterion, mean squares error (MSE) , is used to 

compare the two estimation methods. 

 

2. The concept of outliers 
      Observations are often defined in terms of spread and concentration through 

the shape of the normal distribution, however because some observations are 

located far from the data center, they may follow a different pattern or none at all. 

Such  abnormal observations are called outliers (which are observations with large 

residual values). Its presence causes severe distortion in the data and takes it away 

from the shape of the normal distribution, which may occur due to artificial errors 

when collecting data or by incorrectly including part of the sample with 

information . When outliers appear in the response variable, they are referred to as 

(Outliers), and when they appear in the explanatory variables, they are referred to 

as (Leverage Points), and when they appear in both variables, it makes estimating 

more difficult. Scientists and researchers have discussed several concepts and 

definitions of values outliers. It is defined by Broos (1961) as an observation that 

differs significantly from the other components of the sample. 
[6;PP.4]

, As Freeman 

defined it in 1980, it is a point of view that does not originate in the same manner 

that most other points of view do. 
[8;PP.350 ]

 . 

       As a result, outlier values are observations that are distant from the sample's 

center and have a considerable inaccuracy and bias when compared to the rest of 

the observations, reducing estimating efficiency. 
[12;PP.59]

 

 

3. Ordinary Estimation Method of Partial Linear Regression Model (PLM) 
3.1.  Speckman Estimation 
       Speckman (1988) proposed the following method for estimating the partial 

regression model: in equation (1), consider the conditional expectation of both sides 

of the partial regression model as follows:  
[13;PP.6] [23;PP.417]    

 

Y - E(Y|t) = {X - E(X|t)}
T
 β  + { u - E(u|t)} 

Let :    ̃ = Y (I – S ) ,  ̃ = X ( I – S ) ,  ̃ = u - E(u|t) 

Where S is the smoothing matrix for the estimator (N.W), and it takes the form: 

S = 
             

∑             
 
   

                                                             (2) 

The smoothing matrix is replaced with  ̃ and  ̃. We'll get the parameter estimator 

in the format shown below.     

 ̂ = ( ̃  ̃)
  

 ̃  ̃                                                             (3) 

The nonparametric estimator can be obtained using the following formula: 
[20;PP.3]

 

�̂�   
∑    (        )        

   ̂   
   

∑    (        )
 
    

                                    

�̂�          ̂   
For the semi-parametric regression model, the Nadaraya-Watson estimator is used 

, and it is written as follows: 

�̂� (t) = 
    ∑             

 
 

    ∑           
 
 

 = ∑   
 
      = Wy                       (5) 
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 =  
    

∑      
   

                                                (6) 

Since {       }   
   denotes a set of weights that is normal if their sum is one. The 

size of the weights is represented by the weight function, which also represents the 

kernel function K(u), which is a real, decreasing function as u changes, and hn 

represents the smoothing parameter (bandwidth) by which the size of the weights is 

defined (h > 0). The value of the observation T is determined by the distance or 

closeness of data for the observation ti., Furthermore, the (Gaussian) function will 

be used to estimate (N.W). 
[4;PP.254] [ 1;PP. 286 ] [10;PP.379]

 

      The Cross-validation (CV) method will be used to choose the smoothing 

parameter, which is one of the most efficient and widely used methods. 
[14;PP.185] 

[21;PP.312]
   

CV(h) = 
 

 
 ∑ {   �̂� 

      }
  

                                                (7) 

and the optimal parameter with the smallest value for the criterion (CV) is 

obtained using the following equation: 
[2;PP.77,78]

 

                                                                               (8) 

4. The wavelet transformation and robust estimation in the partial regression 
model 
        The wavelet transform is a mathematical tool that converts data from the 

original field to the wavelet field by dividing it into different frequencies. It is used 

in the fields of mathematics, economics, engineering, social studies, and science for 

the representation, analysis, and processing of various data. Wavelets are 

mathematical functions that divide data into a group of compounds of varying 

frequencies and then study the effect of each compound using a solution consistent 

with its measurement. The wavelet theory was founded by the French researcher 

Fourier. 
[19; PP.xvii ]

  Thus, any function in the wavelet space can be analyzed into a 

scale function ∅(t) known as the father wavelet and a wavelet function 𝜓(t) known 

as the mother wavelet, which generates several functions known as sons wavelets, 

the function 𝒈 is expressed in the form  

𝒈    ∑     ∅   
   ∑ ∑                        ∈ [   ]                        

    

   

 

    

     

   

 

 

Where            
 

√  
 (

   

  )                           and   

∅    
    

 

√   
∅(

   

   
)                 

The wavelet coefficients are denoted by      and the Scaling coefficients by      .  

     (𝒈    ∅      )                 

    (𝒈     )                          

 

     Mallat proposed an efficient algorithm for calculating wavelet coefficients for a 

set of noisy data in (1989). He named it the Discrete Wavelet transformation 

(DWT) process because it divided the input signal into different frequency packets 

represented by the high-frequency filter G = {𝒈k} and the low-frequency filter H = 

{hk}, yielding the wavelet coefficients     and the Scaling coefficients     . Ingrid 
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Daubchies, a researcher, proposed a method in 1988 that uses compact supported 

for orthogonal wavelets and N vanishing moments, To create a family of Scaling 

functions (Daubchies) that is accompanied by wavelet functions, as this family leads 

to a family of smoothing Scaling functions. Daubechies wavelets are biorthogonal, 

sufficiently regular, and asymmetric. 
[16;PP.14,48,56 ] 

 

 
Figure 1. scaling ∅ and wavelet 𝜓 functions of Daubechies with P vanishing 

moments 

 

      The nonparametric component g is represented as a function in infinite 

dimensional space in nonparametric analysis. The idea behind wavelet approaches 

is that the unknown function has an economical wavelet expression, i.e. g is, or is 

well approximated by, a function with a small proportion of nonzero wavelet 

coefficients. 
[9;PP. 294] 

      When there is incomplete or garbled data, signal noise occurs, and it is 

necessary to remove this noise from the original signal to receive correct info. As a 

result, comparing the set of wavelet coefficients with a value or set of values from 

the (Threshold) is an acceptable approach for reducing noise, as the idea of the 

threshold comprises setting zero for all wavelet coefficients whose values are less 

than the value of the threshold limit. As a result, in the kernel functions, the 

wavelet threshold will replace the smoothing parameter, and its rise or decrease 

will affect the amount of smoothing tainted data. The hard threshold function and 

the soft threshold function are two types of threshold law.
 [18;PP. 347] [15;PP.431] 

  
      = {

                 | |     

                  | |       
}                                     (12) 

  
      = {

                             
                            

                        | |       
}                              (13) 

Whereas    
      denotes the hard threshold function , and   

      denotes to the 

soft threshold function. 

 It is assumed that the t points have the same dimensions ti = i/n and that the 

sample size is      n = 2
j
, where J represents positive integers. In the following steps, 

the data is converted from its original field to the wavelet (time-frequency) domain 

by applying the Daubechies discrete wavelet transform (DWT) to X and Y to 

obtain their corresponding wavelet representations A and Z. Where this 

transformation is based on both the scale function ∅jk(t) and the wavelet function 
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𝜓jk(t), both of which represent orthogonal wavelets of the space L
2
 [0,1] to any 

nonparametric function 𝒈 ∈ L
2
 [0,1] . 

      We suppose that e = ( e1 , ….. , en )
T
  is a  vector of real numbers . The following 

equation gives the discrete wavelet transform of the vector e: 

d = Wn x n e                                                                   (14) 

were d is the discrete scaling coefficients Sj0k and discontinuous wavelet 

coefficients wjk of the vector e are both included in this vector of dimension (n x 1).  

And Wn x n is an orthogonal matrix connected with the base of the mother wavelet's 

orthogonal recurring wavelet. To create a PLM model in the form (1) based on 

wavelets, multiply both sides by the orthogonal matrix W to obtain the 

transformed model using the formula: 
[9;PP.295 ]  

  K = Vβ + θ + ϵ                                                      (15) 

Where       K = Wn×nY    ,   V = Wn×nX  ,   θ = Wn×n𝒈  ,   ϵ = Wn×nU 

The Penalized Least Square PLS is used to estimate the parameters and in the 

model (6) by reducing the Object Function, which is divided into two parts, the 

Loss Function and the Penalty Function. in the following format: 

( ̂   ̂ )    𝒈   
     

{       

 ∑
 

 
(     

     )
 

 

   

  ∑ |  |

 

    

}                                     

Were 𝜆 is the smoothing parameter represented by the threshold value, 

which is chosen using the universal threshold approach. Only the empirical wavelet 

coefficients of the nonparametric section of the model, not the scaling coefficients, 

are penalized by the penalty term in the preceding equation. Were i0 = 2
j0

 + 1  . 

Both the estimators  ̂n    and  ̂n   represent two solutions to the optimization 

problem, employing the M-Huber method to estimate β and half-squared 

algorithms (ARTUR and LEGEND) to estimate θ, as shown in the following 

formulas  

 ̂    𝒈   
 

∑         
   

 

    

                                                                 

 ̂    {
     

  ̂                                                                                                     

       (     
  ̂ )                                                                 

 

 where is Huber's cost functional    defined by 

      {
   ⁄                                | |                                                           

 | |     ⁄            | |                                                                     
 

The soft threshold function         is defined by :  

              𝒈     | |                                                                                

The inverse discrete wavelet transform IDWT is used to estimate the robust 

nonparametric component g by 
[3;PP.7,8] [7;PP.2,3]

 

 

𝒈 = W
T

n x n D                                                                         (21) 
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4.1 Half-quaadratic algorithms 
        To obtain the estimator of the parameters vector β , we must solve the 

minimization problem by Standard optimization tools, such as the convex Huber 

(ρ𝜆) loss function, whose second derivative is large near zero,  which may result in 

slow optimization. As a result, for model (13), the half-squared optimization 

method for cost functions is used, which involves associating an auxiliary variable c 

with every β and creating an augmented criterion F so that the function F(β,c) is 

quadratic for each β (therefore, quadratic programming can be used) where each c 

can be calculated independently for each constant β using an appropriate formula. 
[9;PP.299 ]

  

 ̂    𝒈   
 

                    ∑  (     
  )                              

 

   

 

Each c can be determined independently using an explicit formula for each β 

fixed. The augmented criterion F is chosen because it achieves the same minimum 

as J for the same value of β. The augmented energy optimization problem can be 

solved iteratively. At each iteration, one realized an optimization for c with respect 

to β for c fixed and a second optimization for β fixed with respect to c . If β
(m)

 and 

c
(m)

 are the values obtained after m iterations, the algorithm's (m + 1)th step 

actualizes these values by 

 

         𝒈                                                                (23) 

         𝒈   
 

            

This method yields two algorithms, ARTUR and LEGEND, which are also known 

as IRLS and IMR in the literature. 

4.1.1 ARTUR Algorithms 

       The Iterative Reweighted Least Squares Algorithm is also known as (ARTUR) 

in the robustness literature (IRLS). The Gaiman and Reynolds theorem leads to an 

improved criterion for the following form: 

       ∑  (     
  )

 
     

 

   

                                               

The auxiliary variable c corresponds to a weight on the residuals of the least 

squares fit, which explains the IRLS terminology. Weights on large residuals, 

intuitively, have a tendency to eliminate the corresponding responses from the fit. 

As a result, the ARTUR algorithm's m+1 step can be described as follows 

{
 
 

 
   

   
      

                                           

  
     

 
  

 (   
   

)

   
   

            ∈ {     }

       (         )
  

               

 

4.1.2 LEGEND Algorithms 

        Is an algorithm that is a little different. Instead of weighing the residuals, the 

auxiliary variable subtracts the larger residual values. The existence of the related 

augmented energy functional is proven by Geman and Reynolds' second theorem 

(1992). The criterion that should be minimized is as follows 
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       ∑(     
     )

 
 

   

                                               

The LEGEND algorithm's m + 1 step can be expressed as follows, using similar 

notation as the ARTUR algorithm. 

{
 
 

 
 

                                                                          

  
     

   
   

(  
  

 (   
   

)

   
   

)            ∈ {     }

                (        )                               

 

5. Simulation Study 
    A simulation is an imitation or portrayal of the operation of a genuine system 

over a period of time. Simulation, whether done manually or with a computer, is 

based on the creation of a model of the real system. This model is made up of a set 

of assumptions about how the system operates, which can be expressed as 

mathematical, logical, or symbolic relationships between system elements. 

Following the development and activation of the model, it is used to conduct some 

experiments that cannot be conducted on the real system in order to observe and 

deduce the many changes and interactions that would occur in the system if they 

were conducted on it.  
[5;PP.14]

     

The following steps can be used to describe the stages of simulation experiments:  

1-  Explanatory variables (xk) with a normal distribution are generated using the 

Box-Muller method by first generating two random variables u1 and u2 that follow 

the uniform distribution u (0,1), and then converting these two variables into 

independent random variables x1 and x2 that follow the standard normal 

distribution. Random errors  ei with a mean of zero and a variance of   
  also 

generated . then  nonparametric explanatory variables (t)  are generated that 

follow the uniform distribution. 

2- The following formulas are used to select the nonparametric smoothing 

functions g(z i) (quadratic, sinusoidal, and cubic): 

𝒈                   
[24;PP.16]

      

𝒈                            [11;PP.12]
   

𝒈                     
[22;PP.534]

      

3- According to the partial regression model, the dependent variable is generated 

directly using the explanatory variables, random errors, and smoothing functions 

that were generated  as follows:   

    ∑  

 

   

    𝒈 (   )                                              

4- The values of the semi-parametric model's parameters are determined by using 

the least squares method to estimate them as follows: 

                          
5- The following formula is used to contaminated the variables with contaminated 

rates (C = 10%,20%,40%) : 

                                                                                          
whereas: 

C:  the contamination percentage to be used to contaminate the data. 
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      : Percentage of uncontaminated data. 

 ,    ,    : It shows the final contaminating variable, the uncontaminated 

variable, and the contaminating variable in that order. 

6- The simulation experiments next apply the two studied estimation methods. For 

the wavelet estimation method, filters with level (4) , soft Universal threshold and 

Daubechies function were used. [17;PP.29]
 

𝜆UV = σ√                                                                               (28) 

7- Three different sizes (n = 64,128,256) and three contamination rates (= 10, = 20, 

= 40) were used, and the steps were repeated (R = 1000) . and the average was 

taken to  find the estimators and get the final values of the estimators and the 

average error squares . 

The following tables and figures show the results: 

 

 

 

 

 

 

 

M1 M2 M3 

Figure 2.Curves of true values and estimated values of response variable Y for the 

three models and for the two estimation methods WAVE and PLM at 

( 1=0.5,2=0.75, 3=-1.25),  =10%, n=128 
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Table 1: Estimated values of  the parameters for the two estimation methods 

WAVE and PLM  at          C = 10% when (β_1 = 0.5, β_2 = 1.5, β_3 = -1.25)  
Baise PLM 

 

Baise 
WAVE  ̂ n 

Method 
Models 

𝒈(t) 

-0.0641 0.5641 0.1074 0.3926  ̂  

64 

1𝒈 M1 

0.2892 1.2108 0.0321 1.4679  ̂  

0.1351 -1.3851 -0.0701 -1.1799  ̂  

-0.133 0.633 0.0395 0.4605  ̂  

017 0.086 1.414 0.0377 1.4623  ̂  

0.072 -1.322 0.007 -1.2570  ̂  

-0.0525 0.5525 0.0175 0.4825  ̂  

145 0.0384 1.4616 0.0492 1.4508  ̂  

0.0571 -1.3071 0.0201 -1.2701  ̂  

-0.0669 0.5669 -0.018 0.518  ̂  

53 

2𝒈 M2 

-0.0355 1.5355 0.049 1.451  ̂  

-0.184 -1.0660 0.063 -1.313  ̂  

-0.0585 0.5585 0.1062 0.3938  ̂  

017 0.0493 1.4507 -0.0171 1.5171  ̂  

-0.0737 -1.1763 0.0245 -1.2745  ̂  

-0.0611 0.5611 0.031 0.469  ̂  

145 0.0643 1.4357 0.09 1.410  ̂  

-0.0171 -1.2329 -0.021 -1.229  ̂  

-0.3418 0.8418 0.2506 0.2494  ̂  

53 

3𝒈 M3 

-0.4908 1.9908 0.2576 1.2424  ̂  

-0.4675 -0.7825 -0.637 -0.6130  ̂  

-0.0145 0.5145 0.1275 0.3725  ̂  

017 -0.1945 1.6945 -0.0759 1.5759  ̂  

-0.3859 -0.8641 0.2434 -1.4934  ̂  

0.0268 0.4732 0.089 0.411  ̂  

256 0.0143 1.4857 0.184 1.316  ̂  

0.0381 -1.2881 

 
0.038 -1.288  ̂  

 

 

5.1 Results and Discussion 
We note from table1 and figure2 that the bias values  show that they 

decrease as the estimated values of the parameters approach the default values. 

The robust estimation technique (WAVE) was chosen over the (PLM) approach in 

the M1  and,  M2  models since the estimated values of its parameters converged to 

the default values at sample sizes (256,64,128) .  

 

In the second model M2 The ordinary estimating technique (PLM) has 

advanced above the robust estimation method (WAVE) through the convergence of 

the values of its estimated parameters at sample sizes (256,128,64), followed by 

(WAVE) method at sample sizes (64, 128). 
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Table 2. Estimated values of  the parameters for the two estimation methods 

WAVE and PLM  at                C = 20% when (β_1 = 0.5, β_2 = 1.5, β_3 = -1.25) 

Baise PLM Baise WAVE  ̂ n 
Method 

Models 
𝒈(t) 

 -0.0836 0.5836 0.1196 0.3804  ̂  

64 

1𝒈 M1 

0.4288 1.0712 0.0976 1.4024  ̂  

0.2019 -1.4519 -0.0971 -1.1529  ̂  

-0.2093 0.7093 0.0873 0.4127  ̂  

017 0.1115 1.3885 0.0309 1.4691  ̂  

0.102 -1.3520 0.0438 -1.2938  ̂  

-0.0823 0.5823 0.0312 0.4688  ̂  

145 0.0586 1.4414 0.0966 1.4034  ̂  

0.0875 -1.3375 0.0195 -1.2695  ̂  

-0.0433 0.5433 -0.0052 0.5052  ̂  

53 

2𝒈 M2 

-0.0586 1.5586 0.1044 1.3956  ̂  

-0.1549 -1.0951 0.0411 -1.2911  ̂  

-0.0833 0.5833 0.1542 0.3458  ̂  

017 0.0537 1.4463 -0.0242 1.5242  ̂  

-0.1047 -1.1453 0.0582 -1.3082  ̂  

-0.0815 0.5815 0.0436 0.4564  ̂  

145 0.0853 1.4147 0.1358 1.3642  ̂  

-0.0131 -1.2369 -0.0218 -1.2282  ̂  

-0.4371 0.9371 0.2681 0.2319  ̂  

53 

3𝒈 M3 

-0.5784 2.0784 0.3304 1.1696  ̂  

-0.5703 -0.6797 -0.672 -0.5780  ̂  

-0.0825 0.5825 0.1694 0.3306  ̂  

017 -0.2834 1.7834 -0.0693 1.5693  ̂  

-0.4536 -0.7964 0.2855 -1.5355  ̂  

-0.0105 0.5105 0.1074 0.3926  ̂  

256 -0.0101 1.5101 0.2245 1.2755  ̂  

0.0221 -1.2721 0.0345 -1.2845  ̂  
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M1 M2 M3 

Figure 3.Curves of true values and estimated values of response variable Y for the 

three models and for the two estimation methods WAVE and PLM at 

( 1=0.5,2=0.75, 3=-1.25),  =20%, n=128 

 

Table2 and figure3 reveal that the (WAVE) technique outperforms the estimate 

method (PLM) in the first and third models M1 and M3 at sample sizes of 128, 256, 

and 64, respectively, with a 20% contaminated percent. Unlike the first and third 

models, the second model demonstrates that the (PLM) approach outperforms the 

(WAVE) estimate method when the sample size is (64,128,256). 

 

Table 3. Estimated values of  the parameters for the two estimation methods 

WAVE and PLM  at             C = 40% when (β_1 = 0.5, β_2 = 1.5, β_3 = -1.25)   

Baise PLM Baise WAVE  ̂ n 
Method 

Models 
𝒈(t) 

-0.1031 0.6031 0.1307 0.3693  ̂  

64 

1𝒈 M1 

0.5684 0.9316 0.1542 1.3458  ̂  

0.2687 -1.5187 -0.1219 -1.1281  ̂  

-0.2854 0.7854 0.1282 0.3718  ̂  

017 0.1366 1.3634 0.02 1.4800  ̂  

0.1322 -1.3822 0.084 -1.3340  ̂  

-0.1121 0.6121 0.0405 0.4595  ̂  

145 0.0788 1.4212 0.1378 1.3622  ̂  

0.118 -1.3680 0.0251 -1.2751  ̂  

-0.0198 0.5198 0.0077 0.4923  ̂  

53 

2𝒈 M2 

-0.0818 1.5818 0.1597 1.3403  ̂  

-0.1257 -1.1243 0.019 -1.2690  ̂  

-0.108 0.608 0.189 0.311  ̂  
017 

0.058 1.442 -0.038 1.538  ̂  
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-0.136 -1.114 0.112 -1.362  ̂  

-0.1019 0.6019 0.0561 0.4439  ̂  

145 0.1063 1.3937 0.1819 1.3181  ̂  

-0.0091 -1.2409 -0.0229 -1.2271  ̂  

-0.5325 1.0325 0.2969 0.2031  ̂  

53 

3𝒈 M3 

-0.666 2.1660 0.3873 1.1127  ̂  

-0.6731 -0.5769 -0.7206 -0.5294  ̂  

-0.1505 0.6505 0.2184 0.2816  ̂  

017 -0.3722 1.8722 -0.0801 1.5801  ̂  

-0.5213 -0.7287 0.3527 -1.6027  ̂  

-0.0478 0.5478 0.123 0.377  ̂  

256 -0.0344 1.5344 0.264 1.236  ̂  

0.006 -1.2560 0.037 -1.287  ̂  

 

 

 

 

 

 

 

M1 M2 M3 

Figure 4.Curves of true values and estimated values of response variable Y for the 

three models and for the two estimation methods WAVE and PLM at 

( 1=0.5,2=0.75, 3=-1.25),  =40%, n=128 

as shown in Table3 and figuare4 , and through small bias values and At a 40 

percent contaminated ratios, note that the (WAVE) method is also better than the 

(PLM) method in the first model M1 at the samples sizes (64,128,256) respectively, 

while we note the progress of the estimation method (PLM) on the method 

(WAVE) in the second M2 and third M3  models  with sample sizes  (256,128,64). 
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Table 4: The values of the MSE criterion to compare between the two estimation 

methods WAVE and PLM for the partial linear regression model when                      

                            (β_1 = 0.5, β_2 = 1.5, β_3 = -1.25) and at contaminated rates   = 

10%,   = 20%,   = 40%  

 PLM WAVE n 

Method 

Models C 
𝒈(t) 

0.2552 0.07962 53 

1𝒈 M1 

10% 

0.2227 0.05699 017 

0.1358 0.05121 145 

0.2406 0.07349 53 

2𝒈 M2 0.1378 0.05622 017 

0.08044 0.03829 145 

0.8033 0.2026 53 

3𝒈 M3 1.287 0.08761 017 

0.9733 0.06739 145 

0.368 0.1615 53 

1𝒈 M1 

20% 

0.3028 0.1253 017 

0.2058 0.1089 145 

0.3843 0.1582 53 

2𝒈 M2 0.2207 0.1147 017 

0.1507 0.08284 145 

0.8749 0.3175 53 

3𝒈 M3 1.349 0.1795 017 

1.042 0.1499 145 

0.5255 0.2749 53 

1𝒈 M1 

40% 

0.4149 0.2162 017 

0.3031 0.1867 145 

0.5807 0.2747 53 

2𝒈 M2 0.3381 0.1948 017 

0.2495 0.1454 145 

0.9906 0.5438 53 

3𝒈 M3 1.442 0.2957 017 

1.138 0.259 145 

 

The values of the comparison standard (MSE) for the two estimating 

methods (WAVE) and (PLM) are shown in Table (4), where we see that the 

(WAVE) approach recorded the lowest value for the (MSE) standard in all three 

models and at all sample sizes and pollution rates. 

We also notice that as the sample size is increased, the (MSE) value of the 

two estimation methods decreases, with some fluctuation in the MSE values when 

the sample size is increased in the (PLM) method in the third model M3 and at the 

three ratios of contamintaed . The results also revealed that the second model had 

the lowest MSE criterion value for the two estimation methods and the three 

contamintaed ratios than the first and third models. 
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6- Conclusions 
1-  For all models, sample sizes, and contamination rates allowed in experiments, 

the (WAVE) estimating method outperforms the ordinary estimation method 

(PLM) in terms of obtaining more efficient estimations because it is the most 

effective in data trimming and smoothing. 

2- For all sample sizes in the first and third models at the 10% and 20% 

contaminated ratios, and in the second model at the 10% contaminated ratio, the 

estimated values of the parameters using the robust estimation method (WAVE) 

are the closest to the default parameter values. 

3- For most models and sample sizes, the value of the mean square error (MSE) is 

inversely proportional to the sample size, with the larger the sample size, the 

smaller the  (MSE). 

4- By recording the minimum value of the MSE criterion at the three sample sizes 

and the recorded contaminated ratio, the second model is more efficient than the 

first and third models.  

5- Because it records the highest values of the MSE criterion at all three sample 

sizes and contaminated ratios, the third model is regarded as the least efficient of 

the first and second models.  
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 مشتخلص البخث

ذٕاند انذساساخ حٕل ًَارج الاَحذاس انشثّ يعهًٛح فٙ انعذٚذ يٍ انرطثٛقاخ ٔانًجالاخ انعهًٛح انًرُٕعح 

ٔرنك نًا ذرًرع تّ يٍ يشَٔح عانٛح فٙ انرعايم يع انثٛاَاخ انرٙ ذعاَٙ يٍ انًشاكم حٛس آَا ذرًٛز تسٕٓنح 

ًٚكٍ نًرغٛش الاسرجاتح أٔ انًرغٛشاخ انرٕضٛحٛح  يع الاحرفاظ تًشَٔح انجزء انلايعهًٙ , ٔ ذفسٛش انجزء انًعهًٙ

ٔرنك نحساسٛرٓا  فٙ ذقذٚشْا OLS(،حٛس ذفشم طشٚقح انًشتعاخ انصغشٖ Outliers)أٌ ذحرٕ٘ عهٗ قٛى شارج 

أقمّ حساسٛح فٙ حانح رٙ ذكٌٕ ان ق انحصُٛح أ )انًقأيح(ائانطش اسرخذاؤنعلاج ْزِ انًشكهح ذى نهقٛى انشارج . 

ٚٓذف ْزا انثحس انٗ ذقذٚش إًَرج الاَحذاس انجزئٙ تاسرعًال طشٚقح انرقذٚش انثٛاَاخ. فٙ  انقٛى انشارجٔجٕد 

يٍ خلال  ذقذٚش  (PLM)انحصٍٛ تاسرعًال الاسهٕب انًٕٚجٙ ٔيقاسَرّ يع طشٚقح انرقذٚش الاعرٛادٚح 

(Speakman)  ٔيًٓذNadarya-Watson   ٔرنك عٍ طشٚق ذُفٛز ذجاسب انًحاكاج عُذ حجٕو عُٛاخ َٔسة

.  (Mean square error)ذهٕز يخرهفح. ذًد انًقاسَح تٍٛ انطشٚقرٍٛ تاسرخذاو يعٛاس يرٕسط يشتعاخ انخطأ 

حٛس ٔجذ اٌ  طشٚقح انرقذٚش انحصٍٛ يٍ خلال الاسهٕب انًٕٚجٙ ْٙ الاكثش كفاءج فٙ انحصٕل عهٗ يقذساخ 

 شٚقح انرقذٚش انعادٚح نلإًَرج  .حصُٛح يٍ ط

إًَرج الاَحذاس انجزئٙ , انقٛى انشارج , الاَحذاس انحصٍٛ , انعرثح انًٕٚجٛح ,  المصطلخات الرئيشة للبخث:

Speakman  ,Nadarya-Watson . 
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