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Abstract:

Long memory analysis is one of the most active areas in econometrics and
time series where various methods have been introduced to identify and estimate
the long memory parameter in partially integrated time series. One of the most
common models used to represent time series that have a long memory is the
ARFIMA (Auto Regressive Fractional Integration Moving Average Model) which
diffs are a fractional number called the fractional parameter. To analyze and
determine the ARFIMA model, the fractal parameter must be estimated. There are
many methods for fractional parameter estimation. In this research, the estimation
methods were divided into indirect methods, where the Hurst parameter is
estimated first, and then the fractional integration parameter is estimated from it
by a relation between them. As for direct methods, the fractional integration
parameter is estimated directly without relying on Hurst's parameter, and most of
them are semi parametric methods. In this paper, some of the most common direct
methods were used to estimate the fraction modulus namely (Geweke-Porter-
Hudak, Smoothed Geweke-Porter-Hudak, Local Whittle, Wavelet and weighted
wavelet), using simulation method with different value of (d) and different size of
time series. The comparison between the methods was done using the mean
squared error (MSE). It turns out that the best methods to estimate the fractional
parameter is (Local Whittle).

The ARFIMA model was generated by a function programmed by the
MATLAB statistical program.

Keywords: Time series, Hurst exponent, ARFIMA model, Differences, Fractional
integration, Wavelet transformation, and Estimating long memory.
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1. Introduction:

Time series with long memory can be observed in many areas of application
which has attracted lots of interest in statistics and many applications.

The estimation of long memory (d) in the fractionally integrated process has
been inspected widely in the literatures and different estimation methods will be
introduced.

In 1980, the researchers Granger and Joyeux put forward the idea of the
fractional integration parameter (d) in terms of the integral being fractional
number, which arises from Box Jenkins generalization of (p, d, g) models.

In 1981, the researcher Hosking defined the time series of the type (ARFIMA),
which is an extended case of the time series of the type (ARIMA), and the
differences can be taken as fractional values. The researcher also defined the factor
of fractional differences in the form of an indeterminate binomial series in the back
word- Shift operator; also, he reached the mathematical formulas for the
autocorrelation functions and the covariances of the fractional integration
operations and proved that these operations show more flexibility in modeling the
long-run and short-run behavior of the time series.

Long-memory property, also called Long Range Dependence (LRD), means the
decay or decline of autocorrelation at a polynomial rate or hyperbolic rate,
meaning slow decay, because the observations appear to be independent but have
non-zero correlations.

The property is statistically clarified assuming a time series (Y¢) that has an
autocorrelation function (px) (Autocorrelations function) and a lag (k) with a
sample size (n) and according to the definition of MacLeod and Hippel 1978, the
process has the property of long memory if lim,,_,, Y.p-_,|Px!| infinite quantity.

It should be noted that the previous is achieved when the integration is a
fractional 1(d), since (d) is a real number, that is, (0<d<1), and then it is said that
the series have a fractional integration, noting that (d) the parameter of the
fractional integral to be estimated, which is related to the exponent parameter
(Hurst parameter).

As explained, one of the most popular models for modeling the long memory
time series are ARFIMA with fractional parameter (d) representing to the
difference of the series that are not integer to make it stationary.

The multivariate time series such as VARFIMA model (Vertical Auto
Regressive fractional Integration Moving Average model) introduced by Lobato in
1997, with a fractional parameter for each variable can be estimates as a univariate
ARFIMA because the fractional parameters in VARFIMA model represented as a
diagonal matrix in the arithmetic formula of VARFIMA.

This paper presents different methods of estimation that are Geweke-Porter-
Hudak estimator, Smoothed Geweke-Porter-Hudak estimator, Wavelet estimator,
Local Whittle estimator and Wavelet Local Whittle estimator.

These methods were compared using mean squared errors (MSE).
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2. ARFIMA Model and fractional integration

Given a discrete time series process, Y, with autocorrelations function y; at
lag j. According to McLeod and Hippel, the process possesses long memory or is
long-range dependent if the sum of the absolute autocorrelations was infinite
(decaying to zero slowly at a hyperbolic rate).

T

Jim Z )]
j=-T
The long memory process has an autocovariance function for large k, given by
~ 2H-2
Vi = E(R)k=7%.
The Hurst exponent (H) introduced by Harold Edwin Hurst characterized the
long-range dependence (0 < H < 1) and Long-memory occurs when % <H<I1.

(Lildholdt, 2000, Karagiannis and et. al., 2002)
The spectral density function for ARFIMA(p,d,q,) behavior at the origin is
found to be:
aZlp(1)|?
f(,1)~£—

2P @

This may be compared with the leading order behavior of fractional Gaussian
noise fGN at the origin given by: (Graves and et. al., 2017, Sheng and et. al., 2010)

fD)~cyla* =21 (3)
Then the fractional differencing parameter can therefore be obtained by:
1
d=H-5 , 0<H<1 4)

The closer the value of the Hurst Exponent to 0, the more jagged will the time
series be.

The differences or integrated processes that are represented by I(d) are a
procedure applied to eliminate nonstationary for the time series and makes it a
stationary through finding the differences between the sequential observations
(X; = X; — X;_1), then the increment / displacement is called a level difference,
and the stationary time series using the differences is called an integrated process.

The process of taking the differences for the time series continue for more than
one time until the time series have stationarity. (McCauley and et. al., 2008)

Order of integration (d) is a summary statistic used to describe a unit root
process in time series analysis. Specifically, it tells us the minimum number of
differences needed to get a stationary series (time series transformed to stationary
by differencing d times).

An ideal time series has stationarity. That means that a shift in time does not
cause a change in the shape of the distribution. Unit root processes are one cause
for nonstationarity. (Kirchgassner and Wolters, 2007)

As mentioned above, the concept of integrated time series should be extended to
that effect that the order of integration, d, is no longer restricted to be an integer
number. It might be any real number.

The time series is said to be fractionally integrated of order (d), where (0 <
d < 1) and transformed into weakly stationary process with strong dependence
and slow autocorrelation decay.
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In 1980, Granger and Joyeux introduced ARFIMA model that is useful in
modeling time series having long memory with fractional differencing parameter

(—% <d< %) the time series will be covariance stationary, for (0 <d< %) the

time series shows a long range depending behavior and for (—% <d< 0) the time

series will be Antipersistent. (Dark, 2007)

Granger and Joyeux 1980 have proposed a class of stochastic process by
permitting (d) in the ARIMA(p,d,q) process of Box and Jenkins to take any real
value. These processes have become very popular due to their ability in providing a
good characterization of the long memory properties of many economic and
financial time series. The univariate ARFIMA(p,d,g) model represented as:
(Kamagaté, and Hili, 2013, Vacha and Barunik, 2012)

iy | < 1/,
¢W)A - L)%Y, O(L)et{eti.i.d~N(0,0§)

where L: Backshift operator.
¢ (L): AR polynomial of degree (p) with roots outside unit circle.
0(L): MA polynomial of degree (q) with roots outside unit circle.
e.: White noise.

There are multiple extensions of univariate ARFIMA to the multivariate
framework. The multivariate generalization would be z, (a k x 1) vector time
series such that: (Sela and Hurvich, 2008)

(5)

@(L)D(L)Vz,
=J(L)g, (6)
where @(L) = (9o — @1L — L% — - — @, L?)
I(L) = (99 + O1L + 9,L% + -+ 9, L9)
(Pi,ll (pi,lz (pi,lk
Pi) = oL = ‘Pi5,21 ‘Pis,zz (piS,Zk
Pikr Prz - Pikk
Y11 Yz - Yjak
;|9 Y; o 9;
19],(L) — .'9iLl — 1521 1222 ]§2k
lﬂj,la Djrz - 19j,kkJ

¢@(L) and (L) are k x k matrix polynomials in the lag operator L.

It will be assumed that D(L) = diag[(1 — L)%, (1 — L)%, ..., (1 — L)%], (L)
is of order (p), @(L) is of order (q), (¢(0) = 6(0) = I,), the roots of |@(a)| and
|0(a)| are outside the unit circle and (g,~IIDN(0,%)).

The constant (k x k) matrix (V) is nonsingular. The simple form of the
differencing matrix D(L) means that the characteristics of the fractional (z,)
vector series stated below can be obtained by the univariate proofs applied by

element. In particular: (z,) is stationary if (di < %) for(i=1,2,..,k).

1) (z,) possess an invertible moving average representation if d; > —%.
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2) If the spectral density of 2z, is denoted f,(4) then as (4—-0) ,
fz(/l)~[1c,-j/1‘(di+di)] where each (k;;) is constant and is independent of (d;) and
(d)).

3) If the autocovariances of (z,) are denoted (y,(s) = E[x;x;_¢]) then as (s — o0),
Y2(8)~[hyjs?*%~1] where each (h;;) is constant and depends on (d;) and (d;).

Sowell and Mellon write a general differencing operator as (1 — L)4, for

d=[—%,%] the fractional differencing operator (1 —L)¢ is defined by its

Maclaurin series (binomial theorem) to be:

CEESY (j’) =, )

j=0
d\ (_qy — T@+H(1  T(=d+1)
where (i)( D T r(d—j+1r(+1)  r(-dr(+1)

Because % is bounded and has roots at the nonpositive integers the sum

defining (1 — L)4 has finite number of nonzero terms for d = [—%%] and d # 0.

(Robinson, 2018)

For a univariate time series, the spectral density measures the contribution of a
particular frequency to movements of the time series where for multivariate time
series, and the cross-spectral density measures the relationship between two time
series at a particular frequency.

3. Estimation methods

As mentioned before, there are many different methods to estimate fractional
parameter (d) for ARFIMA model which introduced by Granger and Joyeux
(1980) and by Hosking (1981), indirect methods by estimating Hurst exponent (H)
which introduced by Mandelbrot and van Ness (1968) then using the relation

between H and d as in the formula (H=d+%), such methods Aggregated

variance estimator, Differencing variance estimator, Higuchi’s method, dretrended
fluctuation analysis, Rescaled Range estimator ... etc. (Rea and et. al., 2007)

In this paper, some of direct methods estimators of the memory parameter
which are semiparametric will be introduced. These methods become popular since
they do not require knowing the specific form of the short memory structure. They
are based on the periodogram of the series and can be categorized into two types:
the log-periodogram (LP) estimator and the local-Whittle (LW) estimator. (Hou
and Perron, 2014)

3.1. Geweke-Porter-Hudak estimator

Geweke Porter Hudak method proposed by Geweke and Porter-Hudak (1983)
is a semiparametric estimator of (d) based on the first (J) periodogram ordinates
for the univariate ARFIMA(p,d,q) as given: (Shang, 2020, Geweke and Hudak,
1983)
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1 -
a B _EZ§=1 [loglo(ﬂ.]) - loglo(l])] log10 I(Aj)
GPH — _ 12 !
%1 [10g10(4;) ~ log10(4,)]
where loglo(l]) = ;2§=1 loglo(),])
A= . Aj € [—m, m] , set of harmonic frequencies (Fourier frequencies).

n

J = +/n, positive integer refers to smallest Fourier frequencies.

1(3) = %{R(O) +2 Y"1 R(s) cos(s4;)} , periodogram that is a measure of
autocovariance.

R(s) = %Z?;f(xt —X)(Xpys—X%X), s==1,...,x(n—1) , sample autocovariance
function.

3.2. Smoothed Geweke-Porter-Hudak estimator

Smoothed Geweke-Porter-Hudak estimator introduced by Geweke and Porter-
Hudak (1983). They proposed a method for estimating d using a regression model
based on the periodogram by using the asymptotic normal distribution of the
smoothed periodogram.

A smoothed periodogram was introduced by using Parzen lag window (kernel
function) for estimating (d) as: (Reisen, 1994)

1 hEE
~ —ZZ§=1 [10810(/11') - 10810(/1])] logo Is()lj)

dscpn = R ’
Z§=1 [l"glo(’li) - l°g10()‘1)]
=1,..,J (9)
where I5(4;) = ﬁ{R(O) +2¥h K (%) R(s) cos(sitj)} , A€ [-m m], smoothed

periodogram.
K(a), lag window generator with -1 <a < 1, K(0) = 1 and K(—a) = K(a).
K(a)

1
Jl—Gaz — 6lal? lal <5
_ 1
2(1—|al®) -><as<t1
LO la] > 1

h = n%?, the bandwidth parameter.
Parzen lag window chosen because it always produces positive estimates of the
spectral density.

3.3. Wavelet estimator

Wavelet estimator introduced by Tse, Y.K.; Anh, V.V. and Tieng Q., 2002. It is
an estimator based on the wavelet theory by applying the discrete wavelet

transform (DWT) on time series to obtains the wavelet coefficient (w]-’k) where
they are distributed N(0,6%n;2%) , (where this assumption lead to the

noncorrelation of wavelet coefficients within the same level as well as across
different levels. (Tse, 2002)
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Defining the wavelet coefficient’s variance at scale (j) as: (Wu, 2020)
R(j) = o’n; (11)
Then taking the logarithm transformation gotten linear regression model:

log; R(j)
= log, o*
+ dlog, n;? (12)

For Haar wavelet n; = 2/ then gotten:
log; R(j)
= log, o*
+ d(—2j) (13)
where = 1, ...,J , No. of the coefficient scale.
k =1, ..,n;, time location (No. of wavelet coefficient at transformation level j).
log,, 02 is constant.
logo R(j) = %2:":1 ng,k , sample variance of wavelet coefficients.

Using ordinary least squares and based on Haar wavelet, (d) can be estimated
as given:
d,,
B ] Z§=1(—2 log, nj)(l()gz R(j)) — (Z§=1(—2 log, n,-))(ﬂ:l log, R(i)) (14)
= . >

I3 (-210g,my)" — (¥ (~210g, n)))

There are different types of wavelet can used in the estimation; the wavelets
with longer filter coefficient can provide a much finer analysis.

The reason of selecting Haar wavelet was the resulting length of coefficients at
each DTW level is dyadic. (Wang, 2006)

The estimated parameter (?lw) is biased, so the weighted least square is needed

and the weight is the reciprocal of the variance of log, R(j) as given: (Wu, 2020,
Gong, and et. al., 2000)

var(log; R(j)) = ———= 15
var(o8; R()) =3 5 (15)
dwh
B Z§=1 h; 25:1(—2’11' logz n;)(logz R(j)) — (Z§=1 —2h;log; n,-)(ZLl hilog, R(i)) (16)
= - >
(2521 hl) (Z§=1 hl(—Z logz n]) ) — (Z§=1 —Zhl logz n])

where h; = ; , weights.

var(logz R(j))

3.4. Local Whittle estimator

Local Whittle estimator proposed by Kunsch (1987) and later developed by
Robinson (1995a) and Velasco (1999) is a Gaussian semiparametric estimation
method based on the approximation periodogram, such as (Ix(lj)~1;2dlu(lj))
where (X) represents the time series and (u) represents the error. The estimation of
(d) is given as: (Shimotsu and Phillips, 2005)
dy, = argmingcoR(d) (17)
where R(d) = In |~ 3, 22¢1(2;)| -2 2 In 4,

1(2;) is the periodogram of time series.
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0 = [dq,d;], closed interval of admissible estimates of fractional parameter,

-<d;<d; < %) for stationary series (0 <d;{<d; < %)

(_ 1
2

(m < g) positive integer (number of frequencies used in the minimization) where

1

—+ % — 0 asn — o, (M) less than (n) such as (m = n%,0 < a < 1) (in this paper

taken bandwidth parameter m = n®® by experimental to be suitable with above
conditions for (m)). (Boubaker and Péguin-Feissolle, 2013)

4. Simulation and comparative

In this paper, a data simulated for ARFIMA model used in the estimating of
fractional parameter using the methods explained in section 3.

The steps below applied to get results of estimation and make a comparative
study between these methods:
1. Applying a MATLAB function [Z]=ARFIMA_model(n,PHi, THi,d,stdx,er) for
simulate  ARFIMA with different type, in particular consider the cases
[ARFIMA(0,d,0), ARFIMA(1,d,0), ARFIMA(0,d,1), ARFIMA(1,d,1)] with
(¢, =0.5)and (6, = 0.5), and for different value of fractional integration (0.1,
0.2, 0.3, 0.4) and chosen a sample size to be a dyadic number (2') which is suitable
when dealing with wavelet estimator (32, 64, 128, 256, 512, 1024).
2. Estimate the fractional parameter for simulated data by introduced methods
» Depending on eq.(8) Geweke Porter-Hudak estimator GPH (EGPH) using
MATLAB function dGPHi=dGPH(Z,n).
» Depending on eq.(9) Smooted Geweke Porter-Hudak estimator SGPH (ESGPH)
using MATLAB function dSGPHi=dSGPH(Z,n).
» Depending on eq.(14) Wavelet estimator (aw) using MATLAB function
dwi=dw(Z,n).
» Depending on eq.(16) Weighted wavelet estimator (awh) using MATLAB
function dwhi=dwh(Z,n).
» Depending on eq.(17) Local Whittle estimator (a,w) using MATLAB function
dLWi=dLW(Z,n).
3. Step 1 and 2 repeated for (r) iteration, (in this paper r = 500).
4. For each estimation methods, the mean of estimated (d) at each iteration,
standard deviation (a)) and mean square error (MSE) computed as given:

1w
d= ;Z d, (18)
i=1
1 Tr
. a2
o= |-—=> (42 (19)
i=1
1 r
MSE = Fz(di —d)? (20)
i=1
where

(d) is the mean over all iteration.
(di) is the estimated (d) at each iteration.
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(d) is the fractional parameter value in the simulated data.

square error are shown in below tables.

Table 1: The estimated value (d

) and MSE for n=32, p=0, q=0

The results of the simulation of fractional parameter estimation (d), and mean

ARFIMA(0,0.1,0) ARFIMA(0,0.2,0) ARFIMA(0,0.3,0) ARFIMA(0,0.4,0)
Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.1275 | 0.1684 GPH 0.1875 | 0.1894 GPH 0.2701 | 0.1715 GPH 0.4241 | 0.184
SGPH 0.0096 | 0.0906 SGPH 0.0791 | 0.1027 SGPH 0.1649 | 0.1063 SGPH 0.2779 | 0.1092
Wavelet | -0.127 | 0.1794 | Wavelet | -0.042 | 0.1795 | Wavelet | 0.0181 | 0.1988 | Wavelet | 0.1571 | 0.1537
Wwavelet | -0.059 | 0.0749 | Wwavelet | 0.0114 | 0.0867 | Wwavelet | 0.0844 | 0.0949 | Wwavelet | 0.1962 | 0.0854
Local W. | 0.1614 | 0.0116 | Local W. | 0.1934 | 0.0105 | Local W. | 0.2473 | 0.016 | Local W. | 0.3006 | 0.0216

Table 2: The estimated value (d

)and MSE for n=64, p=0, q=0

ARFIMA(0,0.1,0)

ARFIMA(0,0.2,0)

ARFIMA(0,0.3,0)

ARFIMA(0,0.4,0)

Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.1035 | 0.1204 GPH 0.1929 | 0.1165 GPH 0.3133 | 0.1198 GPH 0.4095 | 0.1207
SGPH 0.0333 | 0.0607 | SGPH 0.1095 | 0.0625 | SGPH 0.2026 | 0.0758 | SGPH 0.3079 | 0.0707
Wavelet | -0.083 | 0.0885 | Wavelet | 0.0156 | 0.0948 | Wavelet | 0.1092 | 0.093 Wavelet | 0.2215 | 0.0768
Wwavelet | -0.017 | 0.03 | Wwavelet | 0.0655 | 0.0362 | Wwavelet | 0.1488 | 0.0395 | Wwavelet | 0.2453 | 0.0395
Local W. | 0.1369 | 0.005 | Local W. | 0.1873 | 0.0077 | Local W. | 0.2561 | 0.0108 | Local W. | 0.3309 | 0.0115

Table 3: The estimated value (d) and MSE for n=128, p=0, =0

ARFIMA(0,0.1,0)

ARFIMA(0,0.2,0)

ARFIMA(0,0.3,0)

ARFIMA(0,0.4,0)

Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.0958 | 0.0767 GPH 0.1787 | 0.0759 GPH 0.3143 | 0.0665 GPH 0.4233 | 0.0729
SGPH 0.0369 | 0.0476 SGPH 0.1091 | 0.048 SGPH 0.2316 | 0.0428 SGPH 0.3344 | 0.0457
Wavelet | -0.051 | 0.0543 | Wavelet | 0.0331 | 0.0605 | Wavelet | 0.1499 | 0.0554 | Wavelet | 0.2394 | 0.0604
Whwavelet | 0.0197 | 0.0132 | Wwavelet | 0.101 | 0.0174 | Wwavelet | 0.1943 | 0.0188 | Wwavelet | 0.2795 | 0.0216
Local W. | 0.1255 | 0.0024 | Local W. | 0.1859 | 0.0056 | Local W. | 0.2774 | 0.0061 | Local W. | 0.3534 | 0.0054

Table 4: The estimated value (d) and MSE for n=256, p=0, q=0

ARFIMA(0,0.1,0)

ARFIMA(0,0.2,0)

ARFIMA(0,0.3,0)

ARFIMA(0,0.4,0)

Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.1001 | 0.0466 GPH 0.2207 | 0.0424 GPH 0.2997 | 0.0489 GPH 0.4391 | 0.0433
SGPH 0.0533 | 0.0275 | SGPH 0.1602 | 0.0244 | SGPH 0.2448 | 0.0328 | SGPH 0.3736 | 0.0292
Wavelet | -0.019 | 0.039 | Wavelet | 0.085 | 0.0347 | Wavelet | 0.172 | 0.0395 | Wavelet | 0.2822 | 0.0352
Wwavelet | 0.042 | 0.0067 | Wwavelet | 0.1313 | 0.0077 | Wwavelet | 0.2143 | 0.0107 | Wwavelet | 0.3071 | 0.0121
Local W. | 0.1197 | 0.0014 | Local W. | 0.1913 | 0.003 | Local W. | 0.2821 | 0.0039 | Local W. | 0.3675 | 0.0031
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Table 5: The estimated value (d) and MSE for n=512, p=0, =0

ARFIMA(0,0.1,0) ARFIMA(0,0.2,0) ARFIMA(0,0.3,0) ARFIMA(0,0.4,0)
Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.1291 | 0.0293 GPH 0.2189 | 0.025 GPH 0.3317 | 0.0302 GPH 0.4317 | 0.0275
SGPH 0.086 | 0.0168 | SGPH | 0.1761 | 0.0164 | SGPH 0.2895 | 0.0176 | SGPH 0.3943 | 0.0187
Wavelet | 0.0062 | 0.0242 | Wavelet | 0.1052 | 0.0222 | Wavelet | 0.2079 | 0.0238 | Wavelet | 0.2999 | 0.0243
Wwavelet | 0.0564 | 0.0031 | Wwavelet | 0.1426 | 0.0048 | Wwavelet | 0.2323 | 0.006 | Wwavelet | 0.3209 | 0.0077
Local W. | 0.1143 | 0.0007 | Local W. | 0.1913 | 0.002 | Local W. | 0.2931 | 0.002 | Local W. | 0.3779 | 0.0013

Table 6: The estimated value (d) and MSE for n=1024, p=0, g=0

ARFIMA(0,0.1,0)

ARFIMA(0,0.2,0)

ARFIMA(0,0.3,0)

ARFIMA(0,0.4,0)

Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.1044 | 0.0207 GPH 0.2075 | 0.0193 GPH 0.3147 | 0.0182 GPH 0.4248 | 0.0183
SGPH 0.0811 | 0.0123 SGPH 0.1785 | 0.0126 SGPH 0.2847 | 0.012 SGPH 0.3968 | 0.012
Wavelet | 0.0211 | 0.0155 | Wavelet | 0.1083 | 0.0183 | Wavelet | 0.2047 | 0.0174 | Wavelet | 0.2924 | 0.0225
Wwavelet | 0.0681 | 0.0016 | Wwavelet | 0.1533 | 0.0028 | Wwavelet | 0.2396 | 0.0043 | Wwavelet | 0.3334 | 0.0051
Local W. | 0.112 | 0.0004 | Local W. | 0.1966 | 0.0011 | Local W. | 0.2958 | 0.0011 | Local W. | 0.3861 | 0.0006

Table 7: The estimated value (d) and MSE for n=32, p=0, g=1

ARFIMA(0,0.1,1)

ARFIMA(0,0.2,1)

ARFIMA(0,0.3,1)

ARFIMA(0,0.4,1)

Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.2089 | 0.1932 GPH 0.2696 | 0.1825 GPH 0.369 | 0.1929 GPH 0.5004 | 0.2375
SGPH 0.0949 | 0.0826 | SGPH 0.142 | 0.0897 | SGPH 0.2344 | 0.0912 | SGPH 0.338 | 0.1026
Wavelet | 0.0679 | 0.1155 | Wavelet | 0.1086 | 0.1237 | Wavelet | 0.2088 | 0.1255 | Wavelet | 0.2973 | 0.1255
Wwavelet | 0.2068 | 0.0565 | Wwavelet | 0.2496 | 0.0479 | Wwavelet | 0.332 | 0.0456 | Wwavelet | 0.418 | 0.0496
Local W. | 0.3634 | 0.0747 | Local W. | 0.3792 | 0.0356 | Local W. | 0.389 | 0.0099 | Local W. | 0.395 | 0.0008

Table 8: The estimated value (d) and MSE for n=64, p=0, g=1

ARFIMA(0,0.1,1) ARFIMA(0,0.2,1) ARFIMA(0,0.3,1) ARFIMA(0,0.4,1)
Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.0981 | 0.1201 GPH 0.2264 | 0.1228 GPH 0.3247 | 0.1128 GPH 0.4379 | 0.1117
SGPH 0.0265 | 0.0651 | SGPH | 0.1323 | 0.0649 | SGPH 0.2187 | 0.0668 | SGPH 0.3232 | 0.0676
Wavelet | 0.0511 | 0.0668 | Wavelet | 0.1484 | 0.056 Wavelet | 0.2219 | 0.0664 | Wavelet | 0.3128 | 0.0641
Wwavelet | 0.2145 | 0.0316 | Wwavelet | 0.2956 | 0.0256 | Wwavelet | 0.364 | 0.0211 | Wwavelet | 0.4407 | 0.0183
Local W. | 0.3367 | 0.0631 | Local W. | 0.3754 | 0.0335 | Local W. | 0.3917 | 0.0093 | Local W. | 0.3984 | 0.0000
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Table 9: The estimated value (d) and MSE for n=128, p=0, g=1

ARFIMA(0,0.1,1) ARFIMA(0,0.2,1) ARFIMA(0,0.3,1) ARFIMA(0,0.4,1)
Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.1123 | 0.0713 GPH 0.2143 | 0.079 GPH 0.3152 | 0.0835 GPH 0.4151 | 0.0665
SGPH 0.0484 | 0.0428 SGPH 0.1337 | 0.0458 SGPH 0.2448 | 0.0465 SGPH 0.3287 | 0.0444
Wavelet | 0.0621 | 0.0338 | Wavelet | 0.1435 | 0.044 Wavelet | 0.2412 | 0.0363 | Wavelet | 0.3147 | 0.0453
Whwavelet | 0.2305 | 0.0234 | Wwavelet 0.3 0.0173 | Wwavelet | 0.3851 | 0.0138 | Wwavelet | 0.4584 | 0.0112
Local W. | 0.2839 | 0.0397 | Local W. | 0.3555 | 0.0275 | Local W. | 0.3902 | 0.0089 | Local W. | 0.3977 | 0.0002
Table 10: The estimated value (d) and MSE for n=256, p=0, g=1

ARFIMA(0,0.1,1)

ARFIMA(0,0.2,1)

ARFIMA(0,0.3,1)

ARFIMA(0,0.4,1)

Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.1181 | 0.0429 GPH 0.2222 | 0.0446 GPH 0.3312 | 0.0434 GPH 0.4365 | 0.0459
SGPH 0.0632 | 0.0265 SGPH 0.1673 | 0.0292 SGPH 0.2705 | 0.0248 SGPH 0.3772 | 0.0292
Wavelet 0.08 | 0.0203 | Wavelet | 0.1718 | 0.0196 | Wavelet | 0.2588 | 0.0229 | Wavelet | 0.3513 | 0.0271
Wwavelet | 0.2425 | 0.0234 | Wwavelet | 0.3224 | 0.018 | Wwavelet | 0.405 | 0.0141 | Wwavelet | 0.4904 | 0.0115
Local W. | 0.2264 | 0.0198 | Local W. | 0.321 | 0.0177 | Local W. | 0.3844 | 0.0079 | Local W. | 0.3989 | 0.0001
Table 11: The estimated value (d) and MSE for n=512, p=0, g=1
ARFIMA(0,0.1,1) ARFIMA(0,0.2,1) ARFIMA(0,0.3,1) ARFIMA(0,0.4,1)

Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.1049 | 0.0262 GPH 0.209 | 0.0255 GPH 0.3228 | 0.0307 GPH 0.4164 | 0.0285
SGPH 0.0634 | 0.0187 | SGPH 0.1765 | 0.016 SGPH 0.2817 | 0.0199 | SGPH 0.3864 | 0.0185
Wavelet | 0.0759 | 0.015 | Wavelet | 0.1717 | 0.0138 | Wavelet | 0.2621 | 0.015 | Wavelet | 0.3523 | 0.0177
Wwavelet | 0.2485 | 0.0233 | Wwavelet | 0.3317 | 0.0187 | Wwavelet | 0.4103 | 0.0135 | Wwavelet | 0.4972 | 0.011
Local W. | 0.1926 | 0.0104 | Local W. | 0.2921 | 0.0107 | Local W. | 0.3758 | 0.0066 | Local W. | 0.3994 | 0.0000

Table 12: The estimated value (d) and MSE for n=1024, p=0, g=1

ARFIMA(0,0.1,1)

ARFIMA(0,0.2,1)

ARFIMA(0,0.3,1)

ARFIMA(0,0.4,1)

Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.1068 | 0.018 GPH 0.2175 | 0.017 GPH 0.3204 | 0.0182 GPH 0.4354 | 0.0183
SGPH 0.083 | 0.0123 | SGPH | 0.1883 | 0.0102 | SGPH 0.294 | 0.0127 | SGPH 0.4031 | 0.0121
Wavelet | 0.0739 | 0.0102 | Wavelet | 0.1701 | 0.0095 | Wavelet | 0.2561 | 0.0111 | Wavelet 0.347 | 0.0117
Wwavelet | 0.2574 | 0.0254 | Wwavelet | 0.337 | 0.0195 | Wwavelet | 0.418 | 0.0146 | Wwavelet | 0.5031 | 0.0113
Local W. | 0.1676 | 0.0056 | Local W. | 0.2673 | 0.0058 | Local W. | 0.3622 | 0.0047 | Local W. | 0.3998 | 0.000
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Table 13: The estimated value (d) and MSE for n=32, p=1, g=0

ARFIMA(1,0.1,0)

ARFIMA(1,0.2,0)

ARFIMA(L,0.3,0)

ARFIMA(L,0.4,0)

Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.0322 | 0.1768 GPH 0.108 | 0.1785 GPH 0.2355 | 0.1652 GPH 0.3346 | 0.1863
SGPH -0.074 | 0.1009 | SGPH 0.0049 | 0.1161 | SGPH 0.0907 | 0.1179 | SGPH 0.1807 | 0.1343
Wavelet -0.35 | 0.3299 | Wavelet | -0.251 | 0.3163 | Wavelet -0.19 | 0.3666 | Wavelet | -0.079 | 0.3376
Wwavelet | -0.386 | 0.2891 | Wwavelet | -0.308 | 0.307 | Wwavelet | -0.245 | 0.3476 | Wwavelet | -0.149 | 0.3555
Local W. 0.1 0.0000 | Local W. | 0.1025 | 0.0097 | Local W. | 0.1072 | 0.0383 | Local W. | 0.1159 | 0.0831

Table 14: The estimated value (d) and MSE for n=64, p=1, g=0

ARFIMA(L,0.1,0)

ARFIMA(,0.2,0)

ARFIMA(1,0.3,0)

ARFIMA(L,0.4,0)

Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE

GPH 0.0508 | 0.1149 GPH 0.1503 | 0.1514 GPH 0.2929 | 0.1374 GPH 0.3558 | 0.1277

SGPH -0.016 | 0.0765 SGPH 0.065 | 0.0801 SGPH 0.1855 | 0.0777 SGPH 0.2498 | 0.0841

Wavelet | -0.276 | 0.2101 | Wavelet | -0.175 | 0.203 | Wavelet | -0.067 | 0.1998 | Wavelet | 0.0179 | 0.2044

Whwavelet | -0.321 | 0.1951 | Wwavelet | -0.235 | 0.2082 | Wwavelet | -0.143 | 0.214 | Wwavelet | -0.066 | 0.2341

Local W. 0.1 0 Local W. | 0.1014 | 0.0098 | Local W. | 0.1088 | 0.0373 | Local W. | 0.1279 | 0.0768
Table 15: The estimated value (d) and MSE for n=128, p=1, g=0

ARFIMA(1,0.1,0)

ARFIMA(1,0.2,0)

ARFIMA(L,0.3,0)

ARFIMA(L,0.4,0)

Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.1028 | 0.0787 GPH 0.1983 | 0.064 GPH 0.2932 | 0.0718 GPH 0.3908 | 0.0781
SGPH 0.0358 | 0.0447 | SGPH 0.114 | 0.0431 | SGPH 0.2198 | 0.0484 | SGPH 0.3116 | 0.0531
Wavelet -0.18 | 0.1104 | Wavelet -0.09 | 0.1187 | Wavelet | 0.0026 | 0.1229 | Wavelet | 0.0961 | 0.1276
Wwavelet | -0.257 | 0.1343 | Wwavelet | -0.176 | 0.1491 | Wwavelet | -0.084 | 0.1551 | Wwavelet | -0.005 | 0.1714
Local W. | 0.1001 | 0.0000 | Local W. | 0.1028 | 0.0096 | Local W. | 0.1246 | 0.0324 | Local W. | 0.1813 | 0.0528

Table 16: The estimated value (d) and MSE for n=256 , p=1,q=0

ARFIMA(1,0.1,0) ARFIMA(1,0.2,0) ARFIMA(1,0.3,0) ARFIMA(1,0.4,0)
Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.0953 | 0.0476 GPH 0.1905 | 0.0452 GPH 0.3227 | 0.0508 GPH 0.41 | 0.0474
SGPH 0.045 | 0.0299 SGPH 0.1398 | 0.0303 SGPH 0.2616 | 0.0337 SGPH 0.348 | 0.0342
Wavelet | -0.131 | 0.0741 | Wavelet | -0.036 | 0.0777 | Wavelet | 0.0687 | 0.0774 | Wavelet | 0.1602 | 0.0799
Wwavelet | -0.221 | 0.1063 | Wwavelet | -0.136 | 0.1164 | Wwavelet | -0.054 | 0.1289 | Wwavelet | 0.0359 | 0.136
Local W. | 0.1002 | 0.0000 | Local W. | 0.1077 | 0.0089 | Local W. | 0.1628 | 0.0217 | Local W. | 0.2485 | 0.027
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Table 17: The estimated value (d) and MSE for n=512, p=1, g=0

ARFIMA(0,0.1,1) ARFIMA(0,0.2,1) ARFIMA(0,0.3,1) ARFIMA(0,0.4,1)
Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.107 | 0.0259 GPH 0.2147 | 0.0273 GPH 0.3207 | 0.0254 GPH 0.4367 | 0.0295
SGPH 0.0657 | 0.0168 | SGPH 0.1704 | 0.0184 | SGPH 0.2808 | 0.0178 | SGPH 0.393 | 0.0189
Wavelet | -0.088 | 0.0492 | Wavelet | 0.0061 | 0.0515 | Wavelet | 0.1069 | 0.0521 | Wavelet | 0.2197 | 0.0458
Wwavelet | -0.198 | 0.0897 | Wwavelet | -0.114 | 0.0999 | Wwavelet | -0.025 | 0.1072 | Wwavelet | 0.0683 | 0.1116
Local W. 0.1 0.0000 | Local W. | 0.1178 | 0.0074 | Local W. | 0.2014 | 0.0119 | Local W. | 0.3022 | 0.0115

Table 18: The estimated value (d) and MSE for n=1024, p=1, =0

ARFIMA(L,0.1,0)

ARFIMA(L,0.2,0)

ARFIMA(L,0.3,0)

ARFIMA(L,0.4,0)

Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.102 | 0.0181 GPH 0.216 | 0.0196 GPH 0.3265 | 0.0202 GPH 0.43 0.017
SGPH 0.0756 | 0.0119 SGPH 0.19 | 0.0121 SGPH 0.2962 | 0.0117 SGPH 0.4003 | 0.0108
Wavelet -0.07 0.04 Wavelet | 0.0314 | 0.039 Wavelet | 0.1328 | 0.0376 | Wavelet 0.225 | 0.0397
Wwavelet | -0.183 | 0.0809 | Wwavelet | -0.097 | 0.0888 | Wwavelet | -0.009 | 0.0962 | Wwavelet | 0.0839 | 0.1006
Local W. | 0.1001 | 0.0000 | Local W. | 0.1326 | 0.0053 | Local W. | 0.2297 | 0.0062 | Local W. | 0.3281 | 0.0064

Table 19: The estimated value (d) and MSE for n=32, p=1, g=1

ARFIMA(1,0.1,1) ARFIMA(1,0.2,1) ARFIMA(1,0.3,1) ARFIMA(1,0.4,1)
Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.0841 | 0.1963 GPH 0.2205 | 0.1954 GPH 0.2837 | 0.1936 GPH 0.4102 | 0.1846
SGPH -0.008 | 0.098 SGPH 0.0906 | 0.0961 SGPH 0.1672 | 0.1101 SGPH 0.2689 | 0.1056
Wavelet | -0.116 | 0.1669 | Wavelet | -0.066 | 0.212 Wavelet | 0.0281 | 0.1855 | Wavelet | 0.1473 | 0.1673
Wwavelet | -0.059 | 0.073 | Wwavelet | -0.003 | 0.0958 | Wwavelet | 0.08 | 0.0954 | Wwavelet | 0.1833 | 0.0924
Local W. | 0.1529 | 0.0098 | Local W. | 0.1926 | 0.0103 | Local W. | 0.2441 | 0.0161 | Local W. | 0.296 | 0.0227

Table 20: The estimated value (d) and MSE for n=64, p=1, =1

ARFIMA(1,0.1,1) ARFIMA(1,0.2,1) ARFIMA(1,0.3,1) ARFIMA(1,0.4,1)
Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.0856 | 0.1182 GPH 0.1766 | 0.1254 GPH 0.3011 | 0.1137 GPH 0.3945 | 0.1177
SGPH 0.0126 | 0.0647 | SGPH 0.0854 | 0.0736 | SGPH 0.2043 | 0.0719 | SGPH 0.2889 | 0.0789
Wavelet | -0.072 | 0.086 | Wavelet | 0.0064 | 0.0945 | Wavelet | 0.0915 | 0.1082 | Wavelet | 0.1775 | 0.1068
Wwavelet | -0.011 | 0.0297 | Wwavelet | 0.065 | 0.0353 | Wwavelet | 0.1455 | 0.0421 | Wwavelet | 0.2257 | 0.0484
Local W. | 0.1361 | 0.005 | Local W. | 0.1904 | 0.0077 | Local W. | 0.2583 | 0.0114 | Local W. | 0.3202 | 0.0142
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Table 21: The estimated value (d) and MSE for n=128, p=1, g=1

ARFIMA(1,0.1,1) ARFIMA(1,0.2,1) ARFIMA(1,0.3,1) ARFIMA(1,0.4,1)
Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.1073 | 0.0734 GPH 0.2027 | 0.0735 GPH 0.3188 | 0.0699 GPH 0.4183 | 0.0683
SGPH 0.0441 | 0.0408 | SGPH 0.1229 | 0.0477 | SGPH 0.2274 | 0.0453 | SGPH 0.3285 | 0.048
Wavelet | -0.046 | 0.0567 | Wavelet | 0.0561 | 0.0542 | Wavelet | 0.1436 | 0.0585 | Wavelet | 0.2428 | 0.0566
Wwavelet | 0.0221 | 0.013 | Wwavelet | 0.1048 | 0.0163 | Wwavelet | 0.1899 | 0.0197 | Wwavelet | 0.2749 | 0.0226
Local W. | 0.1271 | 0.0027 | Local W. | 0.1842 | 0.005 | Local W. | 0.275 | 0.0071 | Local W. | 0.3496 | 0.006
Table 22: The estimated value (d) and MSE for n=256, p=1, g=1

ARFIMA(L,0.1,1)

ARFIMA(1,0.2,1)

ARFIMA(1,0.3,1)

ARFIMA(L,0.4,1)

Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.1138 | 0.0459 GPH 0.2078 | 0.0437 GPH 0.3197 | 0.047 GPH 0.4241 | 0.0436

SGPH 0.0598 | 0.028 SGPH 0.1543 | 0.0301 SGPH 0.2557 | 0.0299 SGPH 0.3683 | 0.03
Wavelet | -0.005 | 0.0323 | Wavelet | 0.0916 | 0.0301 | Wavelet | 0.1823 | 0.0351 | Wavelet | 0.2779 | 0.0394
Wwavelet | 0.0451 | 0.0058 | Wwavelet | 0.1316 | 0.0075 | Wwavelet | 0.216 0.01 | Wwavelet | 0.3044 | 0.0125
Local W. | 0.1212 | 0.0016 | Local W. | 0.1911 | 0.0033 | Local W. | 0.2847 | 0.0038 | Local W. | 0.3684 | 0.0027

Table 23: The estimated value (d) and MSE for n=512, p=1, g=1

ARFIMA(1,0.1,1) ARFIMA(1,0.2,1) ARFIMA(1,0.3,1) ARFIMA(1,0.4,1)
Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.116 | 0.0292 GPH 0.2234 | 0.0235 GPH 0.3104 | 0.0303 GPH 0.4278 | 0.0307
SGPH 0.0822 | 0.0183 SGPH 0.1785 | 0.0168 SGPH 0.271 | 0.0203 SGPH 0.3948 | 0.019
Wavelet | 0.0063 | 0.0233 | Wavelet | 0.1051 | 0.0242 | Wavelet | 0.1947 | 0.0261 | Wavelet | 0.2943 | 0.0276
Wwavelet | 0.0591 | 0.003 | Wwavelet | 0.1441 | 0.0044 | Wwavelet | 0.2305 | 0.0064 | Wwavelet | 0.3215 | 0.0078
Local W. | 0.1168 | 0.0008 | Local W. | 0.1967 | 0.0018 | Local W. | 0.2895 | 0.0022 | Local W. | 0.3782 | 0.0014

Table 24: The estimated value (d) and MSE for n=1024, p=1, g=1

ARFIMA(1,0.1,1) ARFIMA(1,0.2,1) ARFIMA(1,0.3,1) ARFIMA(1,0.4,1)
Method Dhat | MSE Method Dhat | MSE Method dhat MSE Method dhat MSE
GPH 0.1143 | 0.0191 GPH 0.2102 | 0.0167 GPH 0.3235 | 0.0175 GPH 0.4169 | 0.019
SGPH 0.0829 | 0.0115 SGPH 0.1788 | 0.0111 SGPH 0.2897 | 0.0103 SGPH 0.3905 | 0.0128
Wavelet | 0.0136 | 0.0192 | Wavelet | 0.1091 | 0.0184 | Wavelet | 0.2035 | 0.019 | Wavelet | 0.2985 | 0.0189
Wwavelet | 0.0695 | 0.0016 | Wwavelet | 0.1538 | 0.0027 | Wwavelet | 0.2409 | 0.0041 | Wwavelet | 0.3324 | 0.0052
Local W. | 0.1144 | 0.0006 | Local W. | 0.1967 | 0.0011 | Local W. | 0.2961 | 0.0011 | Local W. | 0.3846 | 0.0007
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5. Discussion of Results

In this paper, a time series is generated through an ARFIMA(p,d,q) model as
in eq.(5), and different cases are covered when fractional parameter (d= 0.1, 0.2,
0.3, 0.4) and when sample size (n= 32, 64, 128, 256, 512, 1024) and establish the
short-memory parameters (constants in the definition) (¢, = 0.5) and (6; = 0.5)
that are smaller than one, so the simulated time series is stationary and invertible.

The mean square error (MSE) computed for each estimation’s method at
different cases where the (MSE) provides some information on the accuracy of
estimated long memory parameter.

Through the Analyze of simulation results:

1. By comparing from tables (1) to table (6) when (p=0, g=0) and for all sample size
(32, 64, 128, 256, 512, 1024) with different values of (d= 0.1, 0.2, 0.3 0.4) found that
the best estimation method is Local Whittle and the smallest mean square error
(MSE = 0.0004) for the model ARFIMA(0,0.1,0) with sample size (n = 1024).

2. By comparing from tables (7) to table (12) when (p=0, g=1) and for all sample
size (32, 64, 128, 256, 512, 1024) with different values of (d= 0.1, 0.2, 0.3 0.4) found
that the best estimation method is Weighted Wavelet for tables (7, 8, 9) when (d =
0.1, 0.2) and Local Whittle when (d = 0.3, 0.4), while tables (10, 11, 12) the best
estimation method is Local Whittle and the smallest mean square error (MSE
0.0000) for the models ARFIMA(0,0.4,1) with (n = 64), ARFIMA(0,0.4,1) with (n
512), ARFIMA(0,0.4,1) with (n = 1024).

3. By comparing from tables (13) to table (18) when (p=1, q=0) and for all sample
size (32, 64, 128, 256, 512, 1024) with different values of (d= 0.1, 0.2, 0.3 0.4) found
that the best estimation method is Local Whittle and the smallest mean square
error (MSE = 0) for the model ARFIMA(1,0.1,0) with sample size (n =32,
64,128,256,512,1024).

4. By comparing from tables (19) to table (24) when (p=1, g=1) and for all sample
size (32, 64, 128, 256, 512, 1024) with different values of (d= 0.1, 0.2, 0.3 0.4) found
that the best estimation method is Local Whittle and the smallest mean square
error (MSE = 0.0006) for the model ARFIMA(1,0.1,1) with sample size (n = 1024).

In general, from the tables (1) to (24), the Local Whittle method has the smallest
(MSE) except for a table (7), n=32 ARFIM (0,0.1,1), table (8), n=64 ARFIM
(0,0.1,1), ARFIM (0,0.2,1) and table (9) when n=128, ARFIM (0,0.1,1) and ARFIM
(0,0.2,1) the Weighted wavelet has the smallest (MSE).

So, from results and under the assumed variables in the simulation it can
consider that Local Whittle method is the best method for estimating fractional
parameter of ARFIMA model.

Different value of short-memory can affect the accuracy of estimated fractional
parameters, so in table 7, 8, 9 the value of short-memory parameter affect the best
estimation method that was weighted wavelet for this table.

Sometimes chosen an inappropriate orthogonal wavelet type caused unstable in
the best method for simulated models of ARFIMA which caused by correlations of
wavelet coefficients, so this paper used Haar wavelet that is the simplest type and
when using a higher type of wavelet (another type such as Daubechies, Symlets, ... )
may be get that Wavelet or Weighted Wavelet methods are better than Local
Whittle method this can be as a future work.
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In this paper, many variables needed to assume in the simulation, so as a future
work it can make the simulation of ARFIMA with different value of (¢,) and
(6,)or simulate a higher degree of ARFIMA model and note its effect.

6. Conclusions

The value of the fractional differences parameter ranges between (-0.5<d<0.5)
and all the estimated values of (d) in all tables within this range, and the non-
convergence of the estimated values of (d) with the values imposed in the
simulation to each table is due to the fact that all the estimation methods for (d) are
approximate methods,.

The difference in the estimation between methods can be attributed to the
accuracy of the method.

It is noted in most tables that the best method (Local W.) gave reasonable
results for the estimated (d) values compared to the imposed (d) values and the
estimators are within the specified range of (d).

Depending on the simulation results for all sample sizes the following
conclusions were reached:

1. Noted that the mean squared error decreases as the sample size increases and
for all methods.

2. In general, and for almost tables, the Local Whittle is the best methods for all
sizes and the all value of (p) and (q).

3. In general, as shown in the result, many researchers stated that there is no
specific and better method to estimate fractional parameter (d) where the used
method depends on the type and nature of data or time series.
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