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Abstract 

Longitudinal data is becoming increasingly common, especially in the medical and 

economic fields, and various methods have been analyzed and developed to analyze this type of 

data. 

In this research, the focus was on compiling and analyzing this data, as cluster analysis 

plays an important role in identifying and grouping co-expressed subfiles over time and 

employing them on the nonparametric smoothing cubic B-spline model, which is characterized 

by providing continuous first and second derivatives, resulting in a smoother curve with fewer 

abrupt changes in slope. It is also more flexible and can pick up on more complex patterns and 

fluctuations in the data. 

The longitudinal balanced data profile was compiled into subgroups by penalizing the 

pairwise distances between the coefficients of the cubic B-spline model using one of the 

common penalize functions, the Minimax Concave Penalty function (MCP). This method, in 

turn, works to determine the number of clusters through one of the model selection criteria, 

Bayesian information criteria (BIC), and we used optimization methods to solve their equations. 

Therefore, we applied the alternative direction method of the ADMM multiplier algorithm to 

reach approximate solutions to find the estimators of the nonparametric model using R statistical 

software. 

Longitudinally balanced data were generated in the simulation study, as the number of subjects 

was 60 and the number of repeats (time) was 10 for each subject. The simulation was iterated 

100 times, and it showed that employing the MCP partial methods on the cubic model can group 

profiles into clusters, which is the aim of this paper. 
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1. Introduction 
   Many terms describe longitudinal data. Data of repeated measurements is called 

(longitudinal data) in clinical and environmental studies, while in economic studies it is called, 

(panel data), or time series and cross-sectional data. It combines the spatial, the sectional,  and 

the temporal dimensions  (Fadaam, 2018; Al-Adieel and Aboodi, 2021).  

In longitudinal studies, data is collected from the same individuals or subjects at multiple 

points in time. This allows researchers to examine changes that occur over time and to study the 

effects of interventions or treatments (Mohammed and Khaleel, 2012).  

Some examples of longitudinal data include tracking the academic performance of 

students over multiple school years, monitoring the health outcomes of patients over several 

months or years, or following the career trajectories of workers over some time (Sadik, 2015). 

When the cross-sectional observations are measured for the same periods, the longitudinal data 

is called Balanced longitudinal data. However, if the longitudinal data have missing values at 

some time observations for some of the groups, then it is Unbalanced longitudinal data 

(Algamal, 2012).  

Certain longitudinal data models are only valid for balanced datasets. If the panel datasets 

are unbalanced, they may need to be condensed to include only the consecutive periods for 

which there are observations for all individuals in the cross-section (Liu, 2016). As well as the 

distance between successive observations, there is a case of equal and unequal space. 

Cubic B-spline is a widely used mathematical technique in the context of longitudinal 

data analysis. By using a cubic B-spline, it is possible to efficiently model and analyze smooth 

trajectories and directions found in longitudinal data. This powerful combination, which is built 

with a collection of knots and a set of basic functions, provides a valuable way to understand the 

dynamic behavior and evolution of subjects through time. 

   Coffey et al. (2014) pointed out that the spline basis functions consist of a set of piecewise 

polynomials that connect smoothly at specific points in the time interval, which are known as 

knots, and the number of basis functions used depends on the number of knots selected. The 

basis functions used in a cubic B-spline are cubic polynomials that are defined over a local 

interval between adjacent knots. The knots are typically equally spaced over the range of the 

predictor variable and are used to determine the location and shape of the basis functions. The 

Cubic B-spline basis functions are created to be continuous and differentiable and to have a 

smooth second derivative; that is, the curve of the cubic spline regression function will be in the 

form of curves that make it more accurate in approaching the real regression curve, and this is 

reflected in reducing the value of the standard of error, which makes it well suited for modeling 

smooth and flexible trajectories over time. 

Subjects' trajectories can be clustered by employing nonparametric smoothing methods 

like B-spline techniques treated as a convex optimization problem (Chi and Lange, 2015). In this 

approach, each subject penalizes the pairwise distance between their centers, enabling the 

estimation of centers of clusters and the simultaneous determination of the number of groups. 

This method also incorporates the covariates of interest for the univariate model.  

In this paper, we are interested in the method of cluster analysis for longitudinal data 

using a nonparametric cubic B-spline function, but not with the common methods such as the K-

mean method. We used the method proposed by Zhu and Qu (2018) and we will investigate 

whether the method of clustering using penal functions applies to cubic B-spline, that is, we are 

developing the method by applying it to cubic B-spline functions. 
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1.1 Literature review  

There are many studies concerned with the field of cluster analysis of longitudinal data, 

such as: Abraham et al. (2003) collected data with a focus on the functional nature of clusters, 

and the method was based on the two-stage compilation: the B-spline data function and the 

division of model coefficients using the K-means algorithm . Fitzmaurice and Ravichandran 

(2008) aimed at studying repeated measurements of heart patients and studying changes in liver 

function over a 12-month study period. The researchers Genilonini and Falissard (2010) applied 

the design of kml, which is an application to determine the paths of longitudinal data using k-

means, they made a comparison between artificial data and real data (epidemiological data). 

Rasheed and Abdel-Hafiz (2012) compared the robust M estimates of the cubic smoothing 

splines technique with the traditional method of estimating time-varying parameter functions for 

the balanced longitudinal data, by using two criteria differentiation (MADE, WASE) for 

different sample sizes, the study showed that the method suggested is better than the traditional 

methods. 

Ali and Abd Al-Sattar (2014) studied the mixed linear parametric and non-parametric 

model (kernel functions) to analyze wind speed data in Iraq that take the form of repeated 

measurements over a period of years, 8 meteorological stations were chosen randomly among all 

stations in Iraq, so the researchers considered that each cluster would represent a station for 

twelve months, and preference was chosen using the mean squared error (MSE). Coffey et al. 

(2014) proposed an alternative approach aiming to aggregate profiles of gene expression data 

over a time period using linear mixed effects models and p-spline smoothing. Another study 

proposed by Schramm and Vial (2015) used an extended baseline. It was method for treatment 

efficacy clustering in longitudinal data. Zhu and Qu (2018) proposed a grouping method using 

the pairwise clustering penalty on the coefficients of the nonparametric model to form subgroups 

on clustering profiles of subgroups of longitudinal data. Yang et al. (2020) studied random 

effects to capture correlation from multivariate responses and group individuals by penalizing 

the pairwise distance between the B-spline coefficient vectors. There was a study by Mohamed 

and Mohammed (2020) that used kernel methods by the k-means method for cluster analysis, 

which is aimed at clustering observations in the same cluster that data are homogeneous and not 

homogeneous with the other clusters in nonlinear data, a method algorithm with k-means are 

misleading. Therefore they used kernel methods. Zhan et al. (2023) proposed a copula kernel 

mixture model (CKMM) for clustering multivariate longitudinal data in cases where variables 

exhibit high autocorrelation using Gaussian copula because of its mathematical tractability to 

estimate marginal distributions.  

The problem of this research is to advance the field of clustering in longitudinal data 

analysis by utilizing the cubic B-spline model through a novel approach- previously employed 

with the quadratic B-model- by using the method of penalizing pairwise distances between 

coefficients of the B-spline model, which is the identification of significant features or time 

points for data collection. This leads to the creation of more interpretable and insightful models 

for clustering longitudinal data. 

The research aims to achieve two main outcomes: 

1. The primary objective is: Is it possible to employ the penalty method for clustering on the 

model nonparametric cubic B-spline with longitudinal data by penalizing pairwise distances of 

the cubic B-spline coefficient? 

2. The researcher seeks to apply the method through simulated longitudinally balanced data. 

Then comparing it with the k-means method of clustering. 
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2. Material and Methods 

2.1 The model for longitudinal data  

In general, the subject-wise model for longitudinal data as follows: 

 

      (   )                                                                                                                              

 

   Where yij is the response variable for subject i
th
 , i=1,2,..,n  , which repeats in j

th
 times,  where  

j=1, 2, …, ni,  fi(xjl ) is denoted  for a function for each subject, and assumed that xjl , l=1, 2, …,p 

,is the corresponding covariate of time that can be scaled to compact interval          And εij  

are i.i.d error (noise)  with mean 0 and variance     
Many different types of functions can be used in longitudinal data analysis, but spline based 

functions are commonly used in many applications. These functions are made of smooth 

connections between polynomials with many definitions at specific points called nodes. These 

nodes are denoted by k={ k0 < k1 < … < km }, and the number of base functions used depends on 

the number of nodes chosen. (Coffey, 2014)  

 

2.2 Cubic B-Spline  
The degree q of a spline basis function refers to the highest power of the polynomial used in 

the local intervals between adjacent knots. For example, a cubic B-spline uses cubic polynomials 

(q = 3) in each interval. 

The order r of a spline basis function equals to the degree plus one. This is because the 

number of coefficients needed to represent the basis function equals to the degree plus one. For 

example, a cubic B-spline has four coefficients (r = 3+1) multiplied by the knots' values and the 

polynomial terms in each interval (Chaudhuri, 2013). Let r be the r
th
 order B-spline with a set of  

m knots sequences k={ 0 =k0 < k1 < …  < km = 1 } ,  and the values k  are monotonically 

increasing values which may be either equally spaced, integers or positive. The B-spline is 

defined by (Carl De Boor, 1972) as follow: 

 

  
     

    

        
  

       
      

         
    

   
  ),                                                (2) 

 

for i = 0 , ±1 , ±2 , ±3 ,…. . The basis functions   
      define by (2), are called B-spline of 

degree q. and there are p=m + r-1 normalized B-spline basis functions of order r for each 

outcome.  

We introduce a special kind of spline function of degree 3, called (cubic B-spline) is given by 

(Munguia and Bhatta, 2015):  
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Then, we can write the cubic spline function as an approximation of         

 

              ∑   
 (   )                                                                                , 

 

where                      
    ,       

     
       

   ,           , 

                     ,                               
    is a matrix ni × p for each 

subject i.  

and     (  
    

        
 )     

  is a p-dimensional coefficient vector with p=m+q. 

 

2.3 Penalized B-spline  

In order to estimate the smoothing function, which reduces the sum of the squares of the 

penalized error, the penalty limit is added. Both indicated this in the following equation (Hmood 

and Burhan, 2017): 

∑[      (     )]
 
   ∫ [  

   
   ]

 
                                                                       

 

 

  

   

 

Equation (5) comprises two components: the first component penalizes the lack of fit, which 

can be considered as modeling bias, while the second component imposes a Roughness Penalty 

(RP) that addresses the issue of over-parameterization. We introduce the penalty function to 

address the fact that the least sum of squares in our model adds unnecessary complexity, leading 

to a large variance in the estimated parameters. In this approach, the residuals       (     )  are 

zero, which contradicts our model. For this approach is zero, which contradicts our model, (Fan 

and Gijbels, 1996).  

 So the appropriate way to introduce this punishment is through coarseness, which is 

commonly measured    ∫ [  
   

   ]
 
  

 

 
, so that differentiable for the time (v=2),      is the 

tuning parameter, often called the smoothing parameter, which variates with the change of 

coefficient functions. 
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We can rewrite the objective function of penalized regression spline given the r
th
-order 

difference penalty as a matrix equation:  

 

     
 

 
‖    ‖ 

  
 

 
    

                                                                                  

 

where  ‖  ‖ 
  is an L2  norm,                     , is penalty matrix with size      , and   

           ,         is a matrix has (p×(p-r)) and Gr  can be written as: 
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        ]
 
 
 
 
 

   

  

 

By minimizing equation (6), we are obtaining the penalized B-spline coefficient estimator as 

follows: 

 

 ̂        
    

                
                                                                              

 

Where    {        } is the B-spline coefficients subspace, which corresponds to the group 

partition. 

 
2.4 Clustering the Subjects  

We assumed that each subject has a unique unknown smoothing function and is denoted by 

           ,   if the subjects share the same smoothing function form if they are the same group, 

that is       if the subject i and j are from the same cluster group. 

Let   {          }, where     is the number of distance groups, then we can define the 

nonparametric function subspace    
 
 corresponding to the group partition (Zhu, 2012): 

 

  
 

 {                                       }  

 

and the subspace of the B-spline coefficients corresponding to the group partition as: 

 

  
 

 {                                       }  

 

We use the B-spline approach to estimate B-spline coefficients simultaneously and perform 

clustering into subgroups (Zhu and Qu, 2018). This involves applying a penalty to the differences 

between their B-spline coefficients to encourage subjects to be in the same group, which leads to the 

following objective function as follow: 

          ∑  (        )

 

     

                                                                                      

Where          is a penalty function with a tuning parameter λ2 to determine the number of 

subgroups.  Also,    is the index set containing a total number of possible pairs | |  
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  We will use a Minimax Concave Penalty (MCP) which is proposed by Zhang (2010) as a 

penalty concave function for penalizing a cubic smoothing B-spline, the MCP form is as follows: 

 

   | |  

{
 
 

 
   | |  

|  |

   
      | |      

   

 
        | |    

                                                                                      

 

The value of    is the tuning parameter; it provides the least value of unbiasedness and 

more concavity. The parameter γ≥1 controls the unbiasedness of the penalty function, ensuring it 

possesses continuous and scattering properties (Choon,  2012). To achieve nonparametric 

coefficient estimations and subgroup subjects, we attempt to minimize equation (8). However, we 

encountered challenges while optimizing the objective function      directly, and thus, we 

transform it into the following constrained problem: 

        ∑  (        )

 

     

  

Which is equivalent to: 

        ∑   
     

 

 

       

 

Where is Dβ=(β1-β2, β1-β3, …, βn-1-βn)
T 

 ,               is the transformation matrix of 

pairwise differences (Park and Shin, 2022). 

To solve equation (8), we use the Alternative Direction Method of Multipliers (ADMM) 

algorithm (Boyd et al., 2010), which is a variant of the Augmented Lagrangian Multipliers (ALM) 

method.  

So, we can rewrite the equation as follows:   

        ∑   
  |  |  

 

 

                                                                                              

  

Subject to       
The scaled version of (ALM) of (10) is given by  

                  ∑   
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Where      ⁄   

We update the estimation of β, z, λ, at the (s+1)th iteration step as follows: 
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First, the solution of equation (12) for β has a closed-form solution as follows: 

 

                      (              )                                                          

 

   In order to update z -equation (13) - we use the soft threshold operations of the penalty function 

        
    to approximate the MCP as follows (Pang et al., 2020): 
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                                                    | |      

       
   | |     

    
        | |       
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Then  

          

          
  

 

 
                                                                                      (16) 

 

Then, we substitute the equations (15) and (16) in (14) to get values   
   

 (the number of 

clusters). 

 

Now, we can summarize the ADMM algorithm as follows: 

ADMM algorithm  

Initialize λ
0
=0 and z

0
=0 ,         

 

 
  are fixed. 

Step1: update  

                      (              ) 

Step2: for all d=1, 2, 3, …,| | , update 

        
    

{
 
 

 
    | |    

       (
   | |     

    
)     | |      

  | |    

  

                Where           

          
  

 

 
  

And    
      

             

Step3: iterate step 1-2 until stopping criteria are met. 

 

 

2.5 Select the tuning parameter: 

There are various methods for choosing the tuning parameters, such as the Generalized Cross-

Validation (GCV) method, the Akaike Information Criterion (AIC), and the Bayesian Information 

Criterion (BIC) (Wang and  Zhu, 2011). These methods aim to balance the goodness of fit and the 

complexity of the model. 

 We used BIC for selecting the tuning parameters λ1, which controls the smoothness of B-

spline approximation, and λ2 controls the number of clusters. This is done by a two-step procedure 

that is proposed by (Zhu and Xiaolu, 2018) as follows:  

Step 1: We select the optimal λ1 by minimizing  
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Step2: given λ2 =0, then we select λ2 given the optimal λ1 in equation (17) by minimizing: 

 

          
   

 
 

 

  
                   

 

 

̂
∑    

 
                                                

 

3. Discussion of results  

3.1 Data generation 

We used the R program to generate data for n= {60, 100} subjects, explanatory variables 

were generated based on four common models: The first two models were using the Box-Muller 

method f(1)(x)=cos(2πx), f(2)(x)=sin(2πx), the third function was f(3)(x) =2(1 -2 exp(-6x)), and  

f(4)(x) = 1-2 exp(-4x). For each subject i in a subgroup, ni=10 equally spaced times points in the 

interval [0, 1]. The longitudinal data have the autocorrelation problem in the subject, but it is 

independent between subjects. We generated the random error εij is independently and 

identically distributed according to a normal distribution with mean 0 and variance     where 

           which is estimated by generalized least squares GLS. The continuous response yij for 

subject i at time point j is calculated using the corresponding functional pattern f(C)(xij), where 

C=1, 2, 3, 4 represents the subgroup, i.e.         (   )     . To obtain robust and reliable 

results, we conducted 100 simulations. 

To determine of the number of knots for each subject by choosing the minimum of ni/4, 

where ni is the number of observations for subject i, i.e. ni=10, then the number of knots will be 

k=3 for all subjects. Additionally, we use a B-spline with an order of 4. Figure (1) shows the 

curve of one subject of data [0,1] vs. the number of coefficient = 7. 

 
 

 
Figure 1: Curve of B-cubic spline for one of the subjects, where x-axis is the time=10, y-axis 

represents the coefficients =7 

 

By adopting this simulation framework, we can generate data capturing diverse functional 

patterns that resemble real-world scenarios commonly encountered in scientific studies. In our 

simulation study, we choose the optimal tuning parameters value by the equations (17) and (18), 

respectively. λ1= 0.74 and λ2=0.08 in case 1 (n=60), and we set the values of θ = 1, 1.25, 1.5 and 

fixed    = 1, 2 to ensure the convexity of our objective function.   
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Case 2: When (n=100), the optimal tuning parameters value, λ1= 0.8, λ2=0.05 and we put 

θ=1.25, 1.5 and    .  

 

3.2 The Results 

By applying the nonparametric cubic B-spline pairwise grouping, we performed penalty 

functions MCP, and the results for case 1 are shown in Table (1): 
Table (1): The number of clusters and the number of elements in each cluster with γ = 1, 2 and different 

values of θ 

λ1= 0.74 

λ2=0.08 

θ = 1 θ = 1.25 θ = 1.5 

  = 1   = 1   = 1 

Number of clusters 60 clusters 5 clusters 3 clusters 

Number in each 

cluster 

 

 

1 element in each 

cluster 

17 elements 

15 elements 

26 elements 

The other 2 cluster, 

every one has 1 

element 

18 elements 

16 elements 

26 elements 

 

   = 2   = 2   = 2 

Number of clusters 3 clusters 3 clusters 3 clusters 

Number in each 

cluster 

18 elements 

16 elements 

26 elements 

18 elements 

16 elements 

26 elements 

18 elements 

16 elements 

26 elements 

  

We calculated the sum of squares within clustering by the cubic B-spline pairwise grouping 

of 3 clusters, and the result is 8.94772,  12.00920 and 11.91577, and the Mean Squared Error 

(MSE) is 0.4789956.  

And compared it with the MSE for k-means for 3 clusters, which is equal to 0.897 that seems 

from the Mean Squared Error (MSE), the nonparametric cubic B-spline pairwise grouping is the 

better than k-means . 

 

 
Figure 2: The clusters for 60 subjects, 3 clusters by cubic B-spline, the x-axis representing the 

repeating(time) and y-axis are the function’s curve y, and the curves represented the functions 
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For the implementation of our study, we utilize the R software. R provides a comprehensive 

and flexible environment for statistical analysis and algorithm development, making it suitable for 

our purposes. 

In Figure 3, we can see the dendrogram for the clusters of the subjects; we used the 

(dendextend) R package, which uses to hierarchical cluster analysis. 

 
Figure 3:  The distribution of 60 subjects using cubic B-spline with MCP penalty function, 

Having 3 clusters   

 
When we repeated the simulation n=100 subjects (case 2), the results are shown in Table (2): 

  
Table (2): The number of clusters in case 2 

λ1= 0.8 

λ2=0.05 

θ = 1.25 θ = 1.5 

  = 2   = 2 

Number of clusters 4 clusters 3 clusters 

Number in each cluster 

30 elements 

27 elements 

32 elements 

11 elements 

30 elements 

27 elements 

43 elements 

 

4. Conclusion 

By employing the cubic B-spline function to group the longitudinal trajectories over time, 

we conclude that we can group the subjects into subgroups by penalizing the pairwise distances 

of the cubic B-spline coefficient vectors, and this method proved successful in grouping by 

applying it to the generated data of different sizes. For subjects n = 100 and 60, choose the 

optimal values for the tuning parameters λ1 and λ2 and fix the values of both θ and   suitable for 

each n, because the characteristic of this sub-grouping method is that it determines the number 

of clusters by selecting the suitable tuning parameter. 

In addition, by comparing this way with k-means through MSE, where we chose the 

number of clusters as three, we found the nonparametric pairwise grouping was superior to k-

means. 
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 البحث: هسحخلص

انطىنُح شائعح تشكم يرضاَذ، خاصح فٍ انًدالاخ انطثُح والالرصادَح، ولذ ذى ذحهُم وذطىَش طشائك أصثحد انثُاَاخ 

 يخرهفح نرحهُم هزا انُىع يٍ انثُاَاخ.

ًًا فٍ ذحذَذ  فٍ انىسلح انثحثُح هزِ، ذى انرشكُض عهً ذدًُع هزِ انثُاَاخ وذحهُهها، ار َهعة انرحهُم انعُمىدٌ دوسًا يه

غُش انًعهًٍ، وانزٌ َرًُض تكىٌ  cubic B-splineنفشعُح وانًعثش عُها تًشوس انىلد وذىظُفها فٍ ًَىرج وذدًُع انًهفاخ ا

انًشرماخ الأونً وانثاَُح نها يسرًشج، يًا َؤدٌ إنً يُحًُ أكثش سلاسح وأكثش يشوَح ار ًَكُها انرماط أًَاط وذمهثاخ أكثش 

 ذعمُذًا فٍ انثُاَاخ.

ىنُح انًرىاصَح فٍ يدًىعاخ فشعُح عٍ طشَك يعالثح انًسافاخ انضوخُح تٍُ يعايلاخ ًَىرج ذى ذدًُع يهف انثُاَاخ انط

cubic B-spline  تاسرخذاو إحذي وظائف انعمىتح انشائعحMinimax Concave Penalty function (MCP) ِوهز .

، (BIC)هى يعاَُش انًعهىياخ انثاَضَح انطشَمح تذوسها ذعًم عهً ذحذَذ عذد انعُالُذ يٍ خلال أحذ يعاَُش اخرُاس انًُىرج و

نهىصىل  ADMMواسرخذيُا طشائك انرحسٍُ نحم يعادلاذها. ونزنك لًُا ترطثُك طشَمح الاذداِ انثذَم نخىاسصيُح يضاعف 

 الإحصائٍ. Rإنً حهىل ذمشَثُح لإَداد يمذساخ انًُىرج غُش انًعهًٍ تاسرخذاو تشَايح 

 10وعذد انركشاساخ )انضيٍ( ، subjects 100، 00يرىاصَح طىنُاً، راخ احداو عُُح وفٍ دساسح انًحاكاج ذى ذىنُذ تُاَاخ 

فٍ انًُىرج انًكعة ًَكٍ أٌ  MCPيشج، وأظهشخ أٌ اسرخذاو انطشائك اندضائُح  100. ذى ذكشاس انًحاكاج subjectنكم 

 َعُمذ انًهفاخ انشخصُح فٍ يدًىعاخ، وهزا هى انهذف يٍ هزِ انذساسح.

 

 وسلح تحثُح نىع البحث:

 

انركعُثُح انلايعهًُح ، انرحهُم انعُمىدٌ ، طشَمح  B-splineانثُاَاخ انطىنُح ، ًَىرج انششائح   الوصطلحات الشئيسة للبحث:

 .ADMMالاذداِ انًرُاوب نخىاسصيُح انًضاعف 
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