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Abstract

Longitudinal data is becoming increasingly common, especially in the medical and
economic fields, and various methods have been analyzed and developed to analyze this type of
data.

In this research, the focus was on compiling and analyzing this data, as cluster analysis
plays an important role in identifying and grouping co-expressed subfiles over time and
employing them on the nonparametric smoothing cubic B-spline model, which is characterized
by providing continuous first and second derivatives, resulting in a smoother curve with fewer
abrupt changes in slope. It is also more flexible and can pick up on more complex patterns and
fluctuations in the data.

The longitudinal balanced data profile was compiled into subgroups by penalizing the

pairwise distances between the coefficients of the cubic B-spline model using one of the
common penalize functions, the Minimax Concave Penalty function (MCP). This method, in
turn, works to determine the number of clusters through one of the model selection criteria,
Bayesian information criteria (BIC), and we used optimization methods to solve their equations.
Therefore, we applied the alternative direction method of the ADMM multiplier algorithm to
reach approximate solutions to find the estimators of the nonparametric model using R statistical
software.
Longitudinally balanced data were generated in the simulation study, as the number of subjects
was 60 and the number of repeats (time) was 10 for each subject. The simulation was iterated
100 times, and it showed that employing the MCP partial methods on the cubic model can group
profiles into clusters, which is the aim of this paper.

Paper type: Research paper.
Keywords: Longitudinal Data, Nonparametric Cubic B-Spline, Cluster Analysis, The Alternating
Direction Method for Multiplier Algorithm ADMM.

147


mailto:shareef1101@uobahdad.edu.iq
mailto:dr.suhail.najm@coadec.uobaghdad.edu.iq
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Journal of Economics and Administrative Sciences Vol.29 (NO. 138) 2023, pp. 147-160

1. Introduction

Many terms describe longitudinal data. Data of repeated measurements is called
(longitudinal data) in clinical and environmental studies, while in economic studies it is called,
(panel data), or time series and cross-sectional data. It combines the spatial, the sectional, and
the temporal dimensions (Fadaam, 2018; Al-Adieel and Aboodi, 2021).

In longitudinal studies, data is collected from the same individuals or subjects at multiple
points in time. This allows researchers to examine changes that occur over time and to study the
effects of interventions or treatments (Mohammed and Khaleel, 2012).

Some examples of longitudinal data include tracking the academic performance of
students over multiple school years, monitoring the health outcomes of patients over several
months or years, or following the career trajectories of workers over some time (Sadik, 2015).
When the cross-sectional observations are measured for the same periods, the longitudinal data
is called Balanced longitudinal data. However, if the longitudinal data have missing values at
some time observations for some of the groups, then it is Unbalanced longitudinal data
(Algamal, 2012).

Certain longitudinal data models are only valid for balanced datasets. If the panel datasets
are unbalanced, they may need to be condensed to include only the consecutive periods for
which there are observations for all individuals in the cross-section (Liu, 2016). As well as the
distance between successive observations, there is a case of equal and unequal space.

Cubic B-spline is a widely used mathematical technique in the context of longitudinal
data analysis. By using a cubic B-spline, it is possible to efficiently model and analyze smooth
trajectories and directions found in longitudinal data. This powerful combination, which is built
with a collection of knots and a set of basic functions, provides a valuable way to understand the
dynamic behavior and evolution of subjects through time.

Coffey et al. (2014) pointed out that the spline basis functions consist of a set of piecewise
polynomials that connect smoothly at specific points in the time interval, which are known as
knots, and the number of basis functions used depends on the number of knots selected. The
basis functions used in a cubic B-spline are cubic polynomials that are defined over a local
interval between adjacent knots. The knots are typically equally spaced over the range of the
predictor variable and are used to determine the location and shape of the basis functions. The
Cubic B-spline basis functions are created to be continuous and differentiable and to have a
smooth second derivative; that is, the curve of the cubic spline regression function will be in the
form of curves that make it more accurate in approaching the real regression curve, and this is
reflected in reducing the value of the standard of error, which makes it well suited for modeling
smooth and flexible trajectories over time.

Subjects' trajectories can be clustered by employing nonparametric smoothing methods
like B-spline techniques treated as a convex optimization problem (Chi and Lange, 2015). In this
approach, each subject penalizes the pairwise distance between their centers, enabling the
estimation of centers of clusters and the simultaneous determination of the number of groups.
This method also incorporates the covariates of interest for the univariate model.

In this paper, we are interested in the method of cluster analysis for longitudinal data
using a nonparametric cubic B-spline function, but not with the common methods such as the K-
mean method. We used the method proposed by Zhu and Qu (2018) and we will investigate
whether the method of clustering using penal functions applies to cubic B-spline, that is, we are
developing the method by applying it to cubic B-spline functions.
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1.1 Literature review

There are many studies concerned with the field of cluster analysis of longitudinal data,
such as: Abraham et al. (2003) collected data with a focus on the functional nature of clusters,
and the method was based on the two-stage compilation: the B-spline data function and the
division of model coefficients using the K-means algorithm . Fitzmaurice and Ravichandran
(2008) aimed at studying repeated measurements of heart patients and studying changes in liver
function over a 12-month study period. The researchers Genilonini and Falissard (2010) applied
the design of kml, which is an application to determine the paths of longitudinal data using k-
means, they made a comparison between artificial data and real data (epidemiological data).
Rasheed and Abdel-Hafiz (2012) compared the robust M estimates of the cubic smoothing
splines technique with the traditional method of estimating time-varying parameter functions for
the balanced longitudinal data, by using two criteria differentiation (MADE, WASE) for
different sample sizes, the study showed that the method suggested is better than the traditional
methods.

Ali and Abd Al-Sattar (2014) studied the mixed linear parametric and non-parametric
model (kernel functions) to analyze wind speed data in Iraq that take the form of repeated
measurements over a period of years, 8 meteorological stations were chosen randomly among all
stations in Irag, so the researchers considered that each cluster would represent a station for
twelve months, and preference was chosen using the mean squared error (MSE). Coffey et al.
(2014) proposed an alternative approach aiming to aggregate profiles of gene expression data
over a time period using linear mixed effects models and p-spline smoothing. Another study
proposed by Schramm and Vial (2015) used an extended baseline. It was method for treatment
efficacy clustering in longitudinal data. Zhu and Qu (2018) proposed a grouping method using
the pairwise clustering penalty on the coefficients of the nonparametric model to form subgroups
on clustering profiles of subgroups of longitudinal data. Yang et al. (2020) studied random
effects to capture correlation from multivariate responses and group individuals by penalizing
the pairwise distance between the B-spline coefficient vectors. There was a study by Mohamed
and Mohammed (2020) that used kernel methods by the k-means method for cluster analysis,
which is aimed at clustering observations in the same cluster that data are homogeneous and not
homogeneous with the other clusters in nonlinear data, a method algorithm with k-means are
misleading. Therefore they used kernel methods. Zhan et al. (2023) proposed a copula kernel
mixture model (CKMM) for clustering multivariate longitudinal data in cases where variables
exhibit high autocorrelation using Gaussian copula because of its mathematical tractability to
estimate marginal distributions.

The problem of this research is to advance the field of clustering in longitudinal data
analysis by utilizing the cubic B-spline model through a novel approach- previously employed
with the quadratic B-model- by using the method of penalizing pairwise distances between
coefficients of the B-spline model, which is the identification of significant features or time
points for data collection. This leads to the creation of more interpretable and insightful models
for clustering longitudinal data.

The research aims to achieve two main outcomes:

1. The primary objective is: Is it possible to employ the penalty method for clustering on the
model nonparametric cubic B-spline with longitudinal data by penalizing pairwise distances of
the cubic B-spline coefficient?

2. The researcher seeks to apply the method through simulated longitudinally balanced data.
Then comparing it with the k-means method of clustering.
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2. Material and Methods

2.1 The model for longitudinal data
In general, the subject-wise model for longitudinal data as follows:

vij = fi(xp) + & €Y

Where yj; is the response variable for subject i™ i=1,2,...n , which repeats in jth times, where
Jj=1 2, ..., nj, fi(x;) is denoted for a function for each subject, and assumed that x; , /=1, 2, ...,p
is the corresponding covariate of time that can be scaled to compact interval y € [0,1]. And ;j
are i.i.d error (noise) with mean 0 and variance o2.

Many different types of functions can be used in longitudinal data analysis, but spline based
functions are commonly used in many applications. These functions are made of smooth
connections between polynomials with many definitions at specific points called nodes. These
nodes are denoted by k={ ko < k; < ... <kq }, and the number of base functions used depends on
the number of nodes chosen. (Coffey, 2014)

2.2 Cubic B-Spline

The degree g of a spline basis function refers to the highest power of the polynomial used in
the local intervals between adjacent knots. For example, a cubic B-spline uses cubic polynomials
(g =3) in each interval.

The order r of a spline basis function equals to the degree plus one. This is because the
number of coefficients needed to represent the basis function equals to the degree plus one. For
example, a cubic B-spline has four coefficients (r = 3+1) multiplied by the knots' values and the
polynomial terms in each interval (Chaudhuri, 2013). Let r be the r" order B-spline with a set of
m knots sequences k={ 0 =k, < k; < ... <ky =113}, and the values k are monotonically
increasing values which may be either equally spaced, integers or positive. The B-spline is
defined by (Carl De Boor, 1972) as follow:

ki+q—X

—ki _
BI() =Bl (0 +

Bl (%), )

Kipqtkiyy 111

fori=0,+1,+2,43 ,..... The basis functions B?(x), define by (2), are called B-spline of
degree g. and there are p=m + r-1 normalized B-spline basis functions of order r for each
outcome.

We introduce a special kind of spline function of degree 3, called (cubic B-spline) is given by
(Munguia and Bhatta, 2015):
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B} (%)
(x— ki)3
(ki — k) (kiyp — k) (kiyr — ki)

if ki < x < Kigq

(x = ki)?(Kijs2 — %) n (x = ki) (kizz — ) (x — ki41)
(ki+3 - ki)(ki+2 - ki)(ki+2 - ki+1) (ki+3 - ki)(ki+3 - ki+1)(ki+2 - ki+1)
" (Kirs — %) (x — Kjy1)?
(Ki+a — ki) (Kivz — Kip1) (Kirz — Kiy1)

if ki+1 <x< ki+2

3)
(x = ki) (kijyp — X)z Kiya — )X — Kiy1) Kiyz — %)
+ if kipp <x<Kk;
(kirs — kD (Kivz = Kis ) (Kirs —Kivz)  (Kira — Kiv1) Kivs — Kiz) Kigz — Kiy2) 2 3
Kips =) (X — ki+2)2

+
(Kits — Kir1) (Kizs — Kiz2) (Kiyz — kiy2)

(x— ki)3
(Kitrs — Kir1) (Kizs — Kiz2)(Kiga — Kiy3)
0 otherwise

if ki+3 <x< ki+4-

Then, we can write the cubic spline function as an approximation of f;,, (x)
fin(0) = Wi (x) = X BY (xi;)Bin = B(X)TB; 1),

where f; = (fi(xi1), o, fi(xin, )T ¥ = (¥] W5, ., ¥), Wi =B,

B =diag(By,B;,...,By,) , B; = (B(x;1),B(xi2), - ,B(xl-ni))T is @ matrix n; x p for each
subject i.

and B=(BT,BT,.....BY), BT is a p-dimensional coefficient vector with p=m-+g.

2.3 Penalized B-spline

In order to estimate the smoothing function, which reduces the sum of the squares of the
penalized error, the penalty limit is added. Both indicated this in the following equation (Hmood
and Burhan, 2017):

t

1 2
b= Ae)l + 2 | [0 o] a ®)
j=1

Equation (5) comprises two components: the first component penalizes the lack of fit, which
can be considered as modeling bias, while the second component imposes a Roughness Penalty
(RP) that addresses the issue of over-parameterization. We introduce the penalty function to
address the fact that the least sum of squares in our model adds unnecessary complexity, leading
to a large variance in the estimated parameters. In this approach, the residuals y;; — fl-(xl- ﬂ)) are
zero, which contradicts our model. For this approach is zero, which contradicts our model, (Fan
and Gijbels, 1996).

So the appropriate way to introduce this punishment is through coarseness, which is

2
commonly measured A, fol [ﬁl(”)(x)] dx, so that differentiable for the time (v=2), A, is the

tuning parameter, often called the smoothing parameter, which variates with the change of
coefficient functions.
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We can rewrite the objective function of penalized regression spline given the r"-order
difference penalty as a matrix equation:

1 1
o(B) =§||Y_Bﬁ||%+5/11ﬁiTGﬁi» (6)

where ||.]|%isan L, norm, G = diag(G, ,G,, ..., G,), is penalty matrix with size (p x p), and
G, = ACA" , A = [a;] is a matrix has (px(p-r)) and G, can be written as:

[1 0 0 0 0 0 0
ho 2(hg+ hy) hy 0 0 0 0

c =0 hy 2(hy + hy) hy 0 0 0

L : : P00 : :
|lo 0 0 0 o hyy 20+ hyy) hn_1J|
0 0 0 0 0 0 1 by

By minimizing equation (6), we are obtaining the penalized B-spline coefficient estimator as
follows:

B = arg min ¢(B) = (B'B + 1,G,)"'B'Y. (7
pesh

Where 6% = {B: B € R™} is the B-spline coefficients subspace, which corresponds to the group
partition.

2.4 Clustering the Subjects
We assumed that each subject has a unique unknown smoothing function and is denoted by
fi(x) € C"(x), if the subjects share the same smoothing function form if they are the same group,
that is f; = f; if the subject i and j are from the same cluster group.
Let9 = {9;,9,, ..., 9}, Wwhere W < n is the number of distance groups, then we can define the

nonparametric function subspace 63; corresponding to the group partition (Zhu, 2012):

8) ={f:f. = fam, fi € CI(x), forany i € 9,1 <w < W},

and the subspace of the B-spline coefficients corresponding to the group partition as:
85 = (B: Bi = Buwy Bi € RI(X), forany i € 9, 1<w < W }.

We use the B-spline approach to estimate B-spline coefficients simultaneously and perform
clustering into subgroups (Zhu and Qu, 2018). This involves applying a penalty to the differences
between their B-spline coefficients to encourage subjects to be in the same group, which leads to the
following objective function as follow:

v
LB = 0B+ ) p(Bi— o) ®
i,jev
Where p(.,4,) is a penalty function with a tuning parameter A, to determine the number of
subgroups. Also, V is the index set containing a total number of possible pairs |V| = nnl) of

2
{d=(@,):1<i<j<n}

152



Journal of Economics and Administrative Sciences Vol.29 (NO. 138) 2023, pp. 147-160

We will use a Minimax Concave Penalty (MCP) which is proposed by Zhang (2010) as a
penalty concave function for penalizing a cubic smoothing B-spline, the MCP form is as follows:

(
!mm - Bl <y
pa(BI) = y C)]
—, > 1
5 1Bl = Ay

The value of y is the tuning parameter; it provides the least value of unbiasedness and
more concavity. The parameter y>1 controls the unbiasedness of the penalty function, ensuring it
possesses continuous and scattering properties (Choon, 2012). To achieve nonparametric
coefficient estimations and subgroup subjects, we attempt to minimize equation (8). However, we
encountered challenges while optimizing the objective function £(B) directly, and thus, we
transform it into the following constrained problem:

v
ming(8)+ )" (B~ B 22).
i,jEV
Which is equivalent to:

\
ming(8) + ) pa,(DB)a-
d

Where is DA=(B1-fa fr-f ... Poa-fn)’ , D € RMM~1/2XP g the transformation matrix of
pairwise differences (Park and Shin, 2022).

To solve equation (8), we use the Alternative Direction Method of Multipliers (ADMM)
algorithm (Boyd et al., 2010), which is a variant of the Augmented Lagrangian Multipliers (ALM)
method.

So, we can rewrite the equation as follows:

\4
ming(8) + > pz, (1zalD). (10)
d

Subjectto DB = z.
The scaled version of (ALM) of (10) is given by
v

_ 0 0
L(B,z,2;) = ming(B) + ZPAZ(IZdI) + EIIDB —z° +ull3 +5 llull3 (11)
d

Whereu = 4,/6
We update the estimation of f, z, 4, at the (s+1)th iteration step as follows:

ﬁs‘l'l = argminﬁ L(ﬂp ZSI ﬂ-ZS)
1 6
g+l = argmﬁln §”Y_B'B”%+5”D'B_Zs+u”% (12)

z5*tt = argmin L(55%1, 2, 1,°)
Z

v
z5*1 = arg mi 6 DB —z5 2 13
= argmin PAZ(|Zd|)+2|| p—z°+ull3 (13)

a
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2% = 2,° + DBt — z541, (14)
First, the solution of equation (12) for $ has a closed-form solution as follows:
ps*1 = (BTB + 2,G, + 6DTD)"Y(BTY + 6D7 (25 — u¥)). (15)

In order to update z -equation (13) - we use the soft threshold operations of the penalty function
Sy4r ) to approximate the MCP as follows (Pang et al., 2020):

0, |z| < 2y4,
. 2y(Iz| — 43)
Syg’(z) = { sign(z) 2]/—_12, Ay < |z| < 2y4,.
Z, |z| = 2y4,
Then
AS
ZS+1 — S,ﬂ,/{gf(DﬁS“ +72)_ (16)

Then, we substitute the equations (15) and (16) in (14) to get values 1,*** (the number of
clusters).

Now, we can summarize the ADMM algorithm as follows:
ADMM algorithm

Initialize A°=0 and °=0, § and y > 5 are fixed.
Stepl: update

BS*t = (B"B + 4,G, + 0DTD)"*(BTY + D" (z° — u%))
Step2: for all d=1, 2, 3, ...,|V| , update

0' |Z| < 12
. 2y(lz| = 22)
SYir = 1 sign(z) <2y——12 ;A <|z| < 2y2,.
z, |z| > 4,

AS
Where z5** = SJITP(DBs*! + 2
And 1,51 = 1,% + DBSHL — z5+1
Step3: iterate step 1-2 until stopping criteria are met.

2.5 Select the tuning parameter:

There are various methods for choosing the tuning parameters, such as the Generalized Cross-
Validation (GCV) method, the Akaike Information Criterion (AIC), and the Bayesian Information
Criterion (BIC) (Wang and Zhu, 2011). These methods aim to balance the goodness of fit and the
complexity of the model.

We used BIC for selecting the tuning parameters A;, which controls the smoothness of B-
spline approximation, and A, controls the number of clusters. This is done by a two-step procedure
that is proposed by (Zhu and Xiaolu, 2018) as follows:

Step 1: We select the optimal A, by minimizing
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= REE; 1
BICM:Zlog —L+ ~log(ny) df;. 17)
i=1 t L

Step2: given A, =0, then we select A, given the optimal A, in equation (17) by minimizing:
REE | 1 w
BIC), = logT+n—ilog(n) df,where df =?Z?:1dfi. (18)

3.Discussion of results
3.1 Data generation

We used the R program to generate data for n= {60, 100} subjects, explanatory variables
were generated based on four common models: The first two models were using the Box-Muller
method fy(x)=cos(2rx), fp)(x)=sin(2nx), the third function was fg)(x) =2(1 -2 exp(-6x)), and
fuy(X) = 1-2 exp(-4x). For each subject i in a subgroup, nj=10 equally spaced times points in the
interval [0, 1]. The longitudinal data have the autocorrelation problem in the subject, but it is
independent between subjects. We generated the random error ¢; is independently and
identically distributed according to a normal distribution with mean 0 and variance o2, where
0~(0,0.4), which is estimated by generalized least squares GLS. The continuous response y; for
subject i at time point j is calculated using the corresponding functional pattern f)(x;), where
C=1, 2, 3, 4 represents the subgroup, i.e. y;; = f(c)(xij) + &;j. To obtain robust and reliable
results, we conducted 100 simulations.

To determine of the number of knots for each subject by choosing the minimum of n/4,
where n; is the number of observations for subject i, i.e. n;=10, then the number of knots will be
k=3 for all subjects. Additionally, we use a B-spline with an order of 4. Figure (1) shows the
curve of one subject of data [0,1] vs. the number of coefficient = 7.

08
L

06

04

02
I

00
-
=
-

Figure 1: Curve of B-cubic spline for one of the subjects, where x-axis is the time=10, y-axis
represents the coefficients =7

By adopting this simulation framework, we can generate data capturing diverse functional
patterns that resemble real-world scenarios commonly encountered in scientific studies. In our
simulation study, we choose the optimal tuning parameters value by the equations (17) and (18),
respectively. A= 0.74 and 1,=0.08 in case 1 (n=60), and we set the values of 6 =1, 1.25, 1.5 and
fixed y =1, 2 to ensure the convexity of our objective function.
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Case 2: When (n=100), the optimal tuning parameters value, A,;= 0.8, A,=0.05 and we put

0=1.25,1.5andy = 2.

3.2 The Results

By applying the nonparametric cubic B-spline pairwise grouping, we performed penalty
functions MCP, and the results for case 1 are shown in Table (1):
Table (1): The number of clusters and the number of elements in each cluster with y =1, 2 and different

values of 0
M=0.74 0=1 0=1.25 0=1.5
2»=0.08 y=1 y=1 y=1
Number of clusters 60 clusters 5 clusters 3 clusters
17 elements
15 elements 18 elements
Number in each 1 element in each 26 elements 16 elements
cluster cluster The other 2 cluster, 26 elements
every one has 1
element
y=2 y=2 y=2
Number of clusters 3 clusters 3 clusters 3 clusters
. 18 elements 18 elements 18 elements
Numairstlgreach 16 elements 16 elements 16 elements
26 elements 26 elements 26 elements

We calculated the sum of squares within clustering by the cubic B-spline pairwise grouping
of 3 clusters, and the result is 8.94772, 12.00920 and 11.91577, and the Mean Squared Error

(MSE) is 0.4789956.

And compared it with the MSE for k-means for 3 clusters, which is equal to 0.897 that seems
from the Mean Squared Error (MSE), the nonparametric cubic B-spline pairwise grouping is the

better than k-means .

15

10

05
1

-05
L

-10

-15

time

Figure 2: The clusters for 60 subjects, 3 clusters by cubic B-spline, the x-axis representing the
repeating(time) and y-axis are the function’s curve y, and the curves represented the functions
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For the implementation of our study, we utilize the R software. R provides a comprehensive
and flexible environment for statistical analysis and algorithm development, making it suitable for
our purposes.

In Figure 3, we can see the dendrogram for the clusters of the subjects; we used the
(dendextend) R package, which uses to hierarchical cluster analysis.

Dendrogram of Clusters

Height

53
54
'17

Ome) =
OULANW

chuster 1 cluster 2 cluster 3
16 elements 18 elements 26 elements

Nodes
helust (*, "complete”)

Figure 3: The distribution of 60 subjects using cubic B-spline with MCP penalty function,
Having 3 clusters

When we repeated the simulation n=100 subjects (case 2), the results are shown in Table (2):

Table (2): The number of clusters in case 2

A=0.8 0=1.25 0=1.5
k2=0.05 Yy = 2 y = 2
Number of clusters 4 clusters 3 clusters
30 elements 30 elements
Number in each cluster 27 elements 27 elements
32 elements 43 elements
11 elements

4. Conclusion

By employing the cubic B-spline function to group the longitudinal trajectories over time,
we conclude that we can group the subjects into subgroups by penalizing the pairwise distances
of the cubic B-spline coefficient vectors, and this method proved successful in grouping by
applying it to the generated data of different sizes. For subjects n = 100 and 60, choose the
optimal values for the tuning parameters A, and A, and fix the values of both 6 and y suitable for
each n, because the characteristic of this sub-grouping method is that it determines the number
of clusters by selecting the suitable tuning parameter.

In addition, by comparing this way with k-means through MSE, where we chose the
number of clusters as three, we found the nonparametric pairwise grouping was superior to k-
means.
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