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Abstract: 

In high-dimensional data, classification performance is a crucial consideration. One 

method of interest is the penalized binary logistic regression. However, (Least Absolute 

Shrinkage and Selection Operator) Lasso method may face problems when the appropriate 

penalty for each coefficient is not determined. For this reason, different weights are used in 

weighted Lasso estimates to address this issue and improve classification performance. To 

overcome this limitation, we employ various Weighted Lasso Estimates, each with unique 

weight assignments, and compare their performance with our fifth proposed weight 

configuration. This application of Lasso weighting schemes aims to uncover the most effective 

approach for high-dimensional classification tasks while considering the optimal set of variables. 

The evaluation criteria for these methods include the number of selected variables, 

classification accuracy, and mean squared error. We then apply these techniques to real-world 

data to identify the most effective classification mode and select the optimal set of variables. 

This rigorous and precise investigation aims to provide a robust and reliable classification 

approach for high-dimensional systems. 
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1. Introduction: 
       In recent years, the rapid advancements in modern science and technology have led to the 

prevalence of high-throughput and non-parametric complex data in various scientific fields such 

as gene-biology, chemometrics, and neuroscience. This has resulted in challenges like the "large 

p, small n" paradigm, where the number of covariates (p) exceeds the sample size (n), making it 

difficult classify data and select optimal explanatory variables effectively. Researchers have 

been exploring various regularization techniques to address these challenges. 

    This paper focuses on regression cases involving binary responses (or dichotomous 

responses). The responses {  } can take only two values: "1, 0", "1, -1" or some other codes 

representing dichotomous responses such as: good and bad, big and small, win and lose, alive 

and dead, or healthy and sick. The challenge arises when classifying this type of data, as the 

number of explanatory variables (p) exceeds the sample size (n), leading to increased model 

complexity. This increased in complexity makes it difficult to effectively classify the data and 

select the optimal set of explanatory variables. 

 

1.1 Literature review: 

Many studies discussed the Least Absolute Shrinkage and Selection Operator (Lasso). 

Tibshirani (1996) used Lasso for variable selection and estimation in high-dimensional data. 

Subsequent advancements, such as the Adaptive Lasso proposed by Zou and Hastie (2005) 

improved the accuracy of variable by using data-driven weights. Sun and Wang (2012) 

developed a penalized logistic regression model specifically for high-dimensional DNA 

methylation data, outperforming existing regularization techniques.  

El Anbari and Mkhadri (2014) introduced the (lasso-Correlation Based Penalty) L1CP 

method, which combined the L1 criteria and correlation-based penalty criteria to improve 

variable selection and estimation in partial regression models.  

Algamal and Lee (2015) proposed the Adjusted Adaptive Elastic Net penalty for gene 

selection in high-dimensional cancer classification, demonstrating competitive results in 

classification accuracy and gene selection consistency. Saleh (2016) employed semi-parametric 

methods, such as (Least Absolute Shrinkage and Selection Operator -Minimum average variance 

estimation) LASSO-MAVE, to enhance estimation accuracy and flexibility in single-index 

models.  

Sur (2019) developed inferential tools for determining the correct number of principal 

components under a general noisy latent variable model, including the noisy independent 

component model as a special case. The problem is approached using hypothesis testing. 

Araveeporn (2021) presented an interesting exploration of Lasso and elastic net 

methods, as well as their higher-order adaptive counterparts, in the context of high dimensional 

data classification using logistic regression models. The author conducts a series of simulations 

with varying numbers of independent variables and sample sizes smaller than the number of 

independent variables to study the performance of these methods. 

The main problem in this research is the challenge of dealing with high-dimensional 

data, where an extensive number of variables are present, making it difficult to identify the most 

relevant variables for model building. And choose the best set of variables for the classification 

of the observation. 

This research aims to reduce the high dimensions of the data and choose the optimal set 

of explanatory variables by using the latest penal methods to impose a different penalty on the 

transactions. In addition, the main objective is to classify the binary response variable (y) into 

two categories (0 or 1). 

 

 

 

 



 

 

 

 

 
Journal of Economics and Administrative Sciences 

2024; 30 (139), pp. 149-160 

P-ISSN 2518-5764 

E-ISSN 2227-703X 
   

  

959  

 

   

 

 

 

2. Material and Methods: 

2.1 Data set: 

The data set used in the study is a binary cancer classification data set which contains 

100 samples, 53 of which are prostate tumor samples and 47 are non-tumor tissues (Ghaddar and 

Naoum-Sawaya, 2018). 

 The dataset was used to evaluate the effectiveness of penalty methods for the binary 

logistic model for classification purposes, where multicollinearity and overfitting were observed 

as major problems. Each sample in the data set contains information on 12600 genes. The 

prostate cancer data set is commonly used in research on cancer classification due to its large 

number of genes and its suitability for evaluating classification models.  

The small sample consisted of 40 women with breast cancer at the Oncology Hospital. 

The researcher collected the sample at the Cancer Oncology Hospital in (Thi Qar) Governorate, 

and it was found that the sample included 27 females with breast cancer and 13 females who 

were not infected. The sample was subjected to a total of 49 medical examinations (variables). 

 

2.2 Penalized logistic regression model: 

Penalized logistic regression imposes a penalty on the logistic model for having too 

many variables. This results in shrinking the coefficients from the less contributive variables 

toward zero. We will select an optimal subset of explanatory variables in order to improve the 

classification accuracy and to make the model’s interpretation easier is the main objective of the 

variable selection in high dimensional data (James, 2013).  

Although logistic regression is one of the most popular classification methods, it does 

not choose variables (Huang, 2016). 

A procedure called penalization, which is always used in variable selection in high 

dimensional data, attaches a penalty term Pλ(β) to the log-likelihood function to get a better 

estimate of the prediction error by avoiding overfitting for parameters. Lately, there is growing 

interest in applying the penalization method in the logistic regression model (Sun and Wang, 

2012).  

In order to extract the most important explanatory variables in classification problems, a 

series of penalized logistic regression many methods have been proposed. and There are 

varieties of different forms of the penalty term, depending on the application requirement for the 

main target Penalized logistic regression adds a nonnegative regularization term to the negative 

log-likelihood function, ℓ(β), such that (Algamal, 2015). 

The size of variables coefficients in high-dimension can be controlled. Because there are 

many more variables than observations, conventional logistic regression does not apply to high 

dimensions. Also, there Multicollinearity and overfitting are specific issues. Because of this, we 

have used penalized logistic regression. When attempting to forecast whether or not an event has 

a place, such as when determining whether a person was sick, healthy, or failed, logistic 

regression analysis is utilized. From the vector of probability estimates after logistic 

transformation (Algamal and Lee, 2015). 

 

The general formula of logistic regression is written by: 

 

     = π (x i ) + εi  ,  i=1,2,….,n                                                                               (1) 

 

Where     denotes the value of a dichotomous outcome variable,      denotes the 

probability of the Bernoulli distribution dependent or independent variable, Xi, and εi is called 

the error and follows a normal distribution with mean zero and variance equal to  

 

       [1-      ],                                                                                                     (2) 
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the logistic regression model is considered as the probability by:  

 

P (Xt; β0, β1… βj)=p (yi=1|Xij; β0 , β1… βj)=  

       = 
          

      

             
     

                                                                                (3) 

 

   p(   =1|Xi) = 
          

      

             
     

                                                                      (4( 

 

     = p(yi=1|xi) is modeled by a linear function, logit transformation: 

 

   Ln  
     

         
  =    ∑       

 
   

T             
i=1,2…..,n,                             (5)  

 

   :  the intercept terms 

   : p*1 vector of unknown coefficients.  

The log-likelihood function: 

 

L (β0, β ) = ∑ {                             }
 
                                    (6) 

 

Where:  

     = p(   =1|Xi)                                                                                           (7)  

    

          = p(   =0|Xi)                                                                        (8) 

 

The probability of classifying (i=1, 2,.n )  for the sample in class 1 is estimated by  

 

      =        ∑       
  

                ∑    
 
      

                           (9) 

 

and the predicted class is then obtained by I (      > 0.5), where I(.) is an indicator function. 

 The penalized method for the logistic regression is obtained by adding the penalty term 

to the negative log-likelihood function:  

 

PLR =- ∑ {                              }
 
                                 (10)     

 

     is the penalty term that penalizes the estimates. The penalty term depends on the positive 

tuning parameter, λ the tuning parameter should find the right balance between the bias and the 

variance to minimize the misclassification error (Sun and Wang, 2012). 

 The estimation of the vector  is obtained by minimizing: 

 

  ̂PLR= arg minβ [∑ {                              }
 
          ]                  (11)  

 

The tradeoff between fitting the data to the model and the penalty's effect is controlled by the 

positive tuning parameter. 
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2.3 Tuning parameter : 

    The tuning parameter is a crucial component in selecting the best-fitting model. It is a 

non-negative parameter, and the penalty limit depends on the value of λ and a control quantity 

that influences the degree of shrinkage of the parameters. When λ = 0, the tuning parameter 

reduces to the maximum likelihood estimation (MLE) estimator, while as λ approaches 1, the 

regularization term forces all variable coefficients to be zero. 

In classification problems, the tuning parameter's role is to find the right balance 

between bias and variance to minimize misclassification errors. To determine the optimal value, 

cross-validation is employed. In this thesis, 10-fold cross-validation was conducted based on the 

training set to find the optimal value of λ (Algamal, 2015). 

Cross-validation involves dividing the dataset into multiple smaller subsets or "folds." 

The model is then trained on the majority of these folds and tested on the remaining fold. This 

process is repeated, each fold is used as a test set once, resulting in a collection of performance 

metrics that can be averaged to estimate the model's performance. 

By varying the value of the tuning parameter λ, different models can be compared and 

evaluated using cross-validation. The optimal value of λ is the one that yields the lowest average 

misclassification error or another appropriate performance metric. This optimal λ value will 

balance the trade-off between model complexity and prediction accuracy, resulting in a model 

that performs well on new (Sun and Wang, 2012). 

 

2.4 Weighted Lasso Estimates:  

The limitations of the Lasso (Least Absolute Shrinkage and Selection Operator) method 

for variable selection and regularization in linear regression models. Lasso can have difficulties 

when the penalties of different coefficients are the same and not related to the data. This can lead 

to suboptimal performance in certain cases, particularly with high-dimensional data. 

To address these shortcomings, researchers have proposed various improvements and 

extensions to the Lasso method. One such improvement is the weighted Lasso, which involves 

assigning different weights to the penalties of the coefficients. These weights can be data-

dependent, and they typically consist of an unknown constant and a tuning parameter. The 

weighted Lasso aims to provide better convergence rates and more accurate variable selection 

compared to the ordinary Lasso (Algamal, 2017). 

However, it's essential to note that the weighted Lasso is not a perfect solution either. 

Like any other method, it comes with its own set of assumptions and limitations. For instance, 

selecting appropriate weights can be challenging, and the method's performance can be sensitive 

to the choice of weights. Moreover, the weighted Lasso still may not be suitable for all types of 

data or problems, and researchers should consider alternative regularization methods or model 

selection techniques depending on the specific context. 

In summary, the weighted Lasso improves the ordinary Lasso, aiming to provide better 

convergence rates and more accurate variable selection. However, it has its limitations, and 

researchers should consider the appropriateness of this method depending on the specific 

problem and data at hand (Huang, 2021). 

In high-dimensional settings, where the number of variables (p) is much larger than the 

number of observations (n), the Lasso and its variants, including the weighted Lasso, can be 

quite useful. These methods help in variable selection, shrinkage, and regularization, leading to 

more interpretable and accurate models.in high-dimensional data, the ordinary Lasso may 

struggle to identify the correct set of variables due to the equal penalty assigned to all 

coefficients. This issue can be mitigated by using the weighted Lasso, as it allows for data-

dependent weights on the penalties of the coefficients. This flexibility can lead to better 

performance in variable selection and prediction in high-dimensional settings. 
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However, it is crucial to remember that the performance of the weighted Lasso depends 

on the choice of weights, which can be challenging to determine in practice. Additionally, high-

dimensional data can present other challenges, such as multicollinearity, sparsity, or noise, 

which may require alternative methods or additional preprocessing steps. 

Weighted lasso: 

1.4.9  The first Weighted :[Adaptive LASSO]  

      Lasso is one of the most popular penalization terms.  where gained popularity and 

became a basis for other penalized methods because of its ability to simultaneously perform 

continuous shrinkages of the descriptor coefficient and descriptor selection. This method 

appeared to overcome the shortcomings and his idea is to multiply the penalty function by a 

certain weight. 

As we observe, Zou and Zhang pointed out that the adaptive LASSO outperforms LASSO in 

terms of achieving the oracle property, even though the grouping effect problem for adaptive 

LASSO remains (Algamal, 2017). 

           The value of this weight is the reciprocal of the absolute value of the parameters 

estimated in an elementary way appeared Lasso from (Tibshirani, 1996) is a method for 

estimation parameters in the linear model by minimizing the residual sum of the square to the 

sum of the absolute values of the coefficients. (Lin, 2009) 

 The Lasso estimate β is defined by: 

 

 ̂LASSO=argBmin [∑       
   0 – ∑        

 
   

2 
+λ∑ |  | 

                                             (12) 

 

where λ ∑ |  | 
    is the penalty function. 

For the binary dependent variable, the Lasso estimate β is regularized from: 

 

 ̂ LASSO= argminβ [  ∑
 

{                               
 
   }+λ ∑ |  | 

   ]                    

(13) 

 

 The Adaptive LASSO proposed weights are used for penalizing different coefficients in 

the L1-penalty. The main idea behind the Adaptive LASSO is that by assigning inga higher 

weight to the small coefficients and a lower weight to the large coefficients it is possible to 

reduce the bias. 

 

The Adaptive LASSO is defined as: 

 

  ̂APLR= argminβ [ ∑
 

{                                
 
   } 

+λ∑   |  |
 
   ]                                                                                                               (14) 

P  λ ( |   | ) =   ∑  
 
   wj |    |                                                                                            (15) 

   : represents the weights dependent on the data and is calculated as follows: 

   = 
 

|  ̂       |
         ,         0    positive constant. 

 

     : shrinkage parameter  

  =(w1, w2,….,wp)
T
    is p*1 
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    Since there is no presented information about model parameters, we cannot directly 

compare the selection and prediction accuracy. The comparison will be done by model size and 

prediction error, formerly lots of coefficients estimated by weighted Lasso methods, four are 

very small but not zero (Algamal, 2017; Huang, 2021). 

2.4.2 The second Weighted: 

wj             |   | √ 
 

 
                                                                            (16) 

   i=1,….n            j=1,…..p 

   (Where r > 0 is a constant.) 

2.4.3The third Weighted: 

 

wj  √
 

 
 ∑    

  
     . √ 

 

 
              ,     r=1                                      

(17) 

 (Where r > 0 is a constant.)  

i=1,….n     j=1,…..p 

 

2.4.4 The fourth Weighted: 

 

wj ={ 
 

 
∑ (     ̅  )

  
    }

-1                                                       

(18) 

wj= [s ̂ ]
-γ 

                               i=1,….n                       j=1,2, 3,..,p 

where s dj is the standard deviation for each variable. 

  > 0    positive constant. (Huang, 2021) 

 

2.4.5 The fifth weighted: based mean (suggestion method) 

     Despite the ongoing issue of the aggregation effect of weighted averages, we have yet 

to find a weight that relies on the arithmetic mean of each column in the data. Therefore, we 

propose this weight to assess its performance compared to other weights. 

   = 
                  

                      
                                                                                                   (19) 

          : max value in col. 

min (     ): min value in col. 

 

All of the above weights (w1, w2, w3, w4, w5)   are substituted into the following equation (14): 

 

 ̂APLR=argminβ[ ∑
 

{                                
 
   }+λ∑   |  |

 
   ]       

2.5 Evaluation criteria of classification performance: 

        The classification performance of the model, classification accuracy (CA), sensitivity (Sen), 

and specificity (SP): 

 

   
     

           
                                                                 (20) 

 

    
  

     
                                                                                                (21)  

 

      
  

     
                                                                          (22) 
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                                                              (23) 

 

              
  

     
                                                                                   (24) 

 

TP (True Positive), FP (False Positive), TN (True Negative), FN (False Negative). 

3. Discussion of Results:  
In this section, we apply weights estimates and we propose to analyze prostate data, our target is 

to select useful genes for specifying 0 and 1. 

Table (1) presents the results of applying different Lasso weights (Type 1 to 5) to a dataset to 

select a subset of important genes (variables) and evaluate the important genes (variables) and 

evaluating the performance of each method. The performance is measured using classification 

accuracy (CA), sensitivity (Sen.), and specificity (Sep.). Let's go through each method and 

explain the results. 

1. The Type First Weight method selects 23 genes and achieves the highest classification 

accuracy of 0.9. The sensitivity and specificity are also high at 0.93 and 0.85, respectively. This 

method strikes a balance between the number of selected genes and performance metrics. 

2. The Type Two Weight method selects 142 genes and achieves a classification accuracy of 0.5 

The sensitivity and specificity are 0.6 and 0.47, respectively. This method identifies many genes 

but has relatively low performance metrics compared to other methods. 

3. The Type third Weight method selects 53 genes and achieves a classification accuracy of 

0.7The sensitivity is quite high at 0.63, but the specificity is 0.90. This method identifies fewer 

genes and performs better than Type two Weight. 

4.   The Type Fourth Weight method selects only 8 genes and achieves a classification accuracy 

of 0.7 The sensitivity and specificity are 0.71 and 0.77, respectively. This method identifies the 

fewest genes and has a balanced performance in terms of sensitivity and specificity.  

5. Type Fifth Weight method selects 24 genes and achieves the highest classification accuracy of 

0.9 this method is outstanding for classification. The sensitivity and specificity are also high at 

0.93 and 0.86, 

In summary, the tables show that different Lasso weight types result in different 

numbers of selected genes and performance metrics. Type IV Weight appears to be the best-

performing method, with a balanced number of selected genes and the highest classification 

accuracy, sensitivity, and specificity. These results highlight the importance of selecting 

appropriate weights in the weighted Lasso method to achieve the best performance in a given 

application.  

Table 1: The number of variables and accuracy for all weights for big sample 

Statistics  

Methods     specificity sensitivity           C.A                         Selected genes                

          0.85 0.93              0.9 23 Adaptive Lasso1 

0.47 0.6 0.5 142 Weighted Lasso 2 

0.90 0.63 0.7 53 Weighted Lasso 3 

0.77 0.71 0.7 8 Weighted Lasso 4 

0.86 0.93 0.9 24 Weighted Lasso 5 

 

    Table 2 provides performance metrics for different methods using Lasso weights. The 

table includes the precision, false positive (FP) rate, false negative (FN), true negative (TN), 

false positive (FP), and true positive (TP) values for each method. 
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In summary, the table shows the performance of several variations of weighted Lasso 

methods, along with an adaptive Lasso method. The precision values range from 0. 5 to 0.9, 

indicating the proportion of correctly identified positive cases. The FP rates vary from 0.6 to 1, 

representing the proportion of falsely identified negative cases. The FN values range from 0 to 7, 

indicating the number of incorrectly identified positive cases. The TN values range from 7 to 13, 

representing the number of correctly identified negative cases. The FP values range from 1 to 3, 

only Lasso 2 has 9 false negatives representing the number of falsely identified negative cases. 

The TP values range from 12 to 15, indicating the number of correctly identified positive cases. 

 

In general, the methods achieve relatively high precision values, ranging from 0.8 to 0.9, 

indicating a high proportion of correctly identified positive cases. However, the FP rates vary, 

suggesting differences in the proportion of falsely identified negative cases among the methods. 

The FN values also differ, indicating variations in the number of incorrectly identified positive 

cases. The TN, FP, and TP values show variations in the number of correctly and falsely 

identified negative and positive cases among the methods. 

 
Table 2: Performance Metrics for Lasso Weights 

  Statistics  

Methods Precision FP rate     FN TN           FP                         TP               

0.8 0.6 1 12 2 15 Adaptive Lasso1 

0.5 0.6 4 8 9 9 Weighted Lasso 2 

0.9 0.12 7 10 1 12 Weighted Lasso 3 

0.8 0.25 6 7 2 15 Weighted Lasso 4 

0.8 1 0 13 2 15 Weighted Lasso 5 

        * Tables and results from the researcher's work on the R program. 

 

The following Tables 2 and 1 represent the number of variables and accuracy  and the 

confusion matrix for classification, which is used as evaluation metrics for the model calculated 

from 30% of the data. The matrix elements were calculated for 30 samples out of a total of 100, 

where it included 17 within Class 1 and 13 within Class 0, where the actual model was built 

using 70% of the data. This is indicated by all the weights that were chosen, including our 

suggested weight, which proves the efficiency, quality and accuracy of the proposed weight (Liu 

and Wong, 2019).
 

 

Applying all methods with breast cancer (small sample n=40, p=49): 

 

Table 1: The number of variables and accuracy for all weights for a small sample 
Statistics  

Methods     Specificity sensitivity           C.A                         Selected genes                

           77 100              83.3 4 Adaptive Lasso1 

77 100 83.3 5 Weighted Lasso 2 

77 100 83.3 6 Weighted Lasso 3 

60 100 83.3 2 Weighted Lasso 4 

87 100 91 5 Weighted Lasso 5 

 

 

 

 

 

 

 



 

 

 

 

 
Journal of Economics and Administrative Sciences 

2024; 30 (139), pp. 149-160 

P-ISSN 2518-5764 

E-ISSN 2227-703X 
   

  

958  

 

   

 

 

 

Table 4: Performance Metrics for Lasso Weights for small sample 
  Statistics  

Methods Precision FP rate     FN TN           FP                         TP               

0.8 1  0 4 1 7 Adaptive Lasso1 

0.7 0.7 0 3 2 7 Weighted Lasso 2 

0.7 1 0 3 2 7 Weighted Lasso 3 

0.7 1 0 3 2 7 Weighted Lasso 4 

1 1 1 4 0 7 Weighted Lasso 5 

  

       Tables and results from the researcher's work on the R program. The results of a 

proposed method in a small sample application.  In The tables (3) and ( 4 ), we notice that 

proposed method had a high classification accuracy in the third table. 

And the proposed method also gave results similar to the previous weights in the table (3). These 

observations indicate the quality and strength of the method in classification. 

The following tables 1 and 4 represent the number of variables and accuracy and the 

confusion matrix for classification, which is used as evaluation metrics for the model calculated 

from 30% of the data. The matrix elements were calculated for 12 samples out of a total of 40, 

where it included 7 within Class 1 and 5 within Class 0, where the actual model was built using 

70% of the data. This is indicated by all the weights that were chosen, including our suggested 

weight, which proves the efficiency, quality and accuracy of the proposed weight. 

 

 Predicted Positive           Predicted Negative  

 Actual Positive             True Positive (TP)       False Negative (FN) 

 

 Actual Negative          False Positive (FP)      True Negative (TN)  

 

In this context, "Positive" and "Negative" refer to the predicted classification of the 

model, while "True" and "False" indicate the accuracy of the predictions compared to the actual 

values. The confusion matrix assess the model’s performance by measuring quantities such as 

true positives, false negatives, false positives, and true negatives. 

3. Conclusion: 

1. The performance of various Lasso weight types on this particular task demonstrates the 

importance of selecting the appropriate weight type based on classification with penalized 

logistic regression.  

2. Both Type first and Type fifth weights exhibit strong performance in terms of classification 

accuracy. 

3. The choice of the ideal Lasso weight type should be determined by considering the trade-offs 

between classification accuracy and number variables, and any other relevant factors or metrics 

that are crucial to the particular problem. 

4. The fifth weight method, proposed by us, exhibits remarkable performance when dealing with 

high-dimensional data in both big data and small data scenarios. with penalized logistic 

regression model for classification tasks.  

The effectiveness and success of our method are clearly evident in the results obtained. 

With a good classification matrix, high classification accuracy, and the fulfillment of criteria 

such as sensitivity, specificity, and other classification metrics, our method establishes its 

reliability and demonstrates immense potential for practical applications. 

4. Further Work: 

Applying this weighted with other models and using our proposal in multi-response model. 
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 :البحث مسحخلص

ٌعذ أداء اٌخصٍٕف ِعٍاساً  اٌّخغٍشاث راث الاهٍّت ٌزٌه هٕان ِشىٍت عذَ ِعشفت اخخٍاس فً اٌبٍأاث راث الأبعاد اٌعاٌٍت          

اٌذاخٍت فً إٌّىرج حٍث ٌٍخص هزا اٌبحث اداء حصٍٕف ِخغٍش الاسخدابت ٌٍبٍأاث عاٌٍت الابعاد  ِهّاً ٌّعشفت اهُ اٌّخغٍشاث

ِٓ خلاي حطبٍك اوصاْ ِخخٍفت ٌلاسى ِع اٌىصْ اٌّمخشذ ِٓ لبً اٌباحث ِع أّىرج الأحذاس اٌٍىخسخً اٌدضائً  وحُ حطبٍك 

وعٍٕت صغٍشة حُ خّعها ِٓ لبً اٌباحثت  ِشاهذة 100ت ِٓ خٍٓ ٌعٍٕت ِؤٌف 12600هزٖ الاصواْ عٍى بٍأاث حمٍمٍت حضّٕج 

ٌٍحصىي عٍى إٌخائح حٍث حُ اٌخىصً  Rوحُ اسخخذاَ بشٔاِح ) غٍش ِصابت 13ِصابت و 27(أثى ِصٕفت  40حٍث حضّٕج 

افضً اٌى اْ الاوصاْ حعًّ بذلت عاٌٍت وخٍذة ٌغشض اٌخصٍٕف وحممج اٌطشٌمت اٌّمخشحت ٔخائح خٍذة وعٍٍّت فً اخخٍاس 

 اٌّخغٍشاث اٌخىضٍحٍت ٌخصٍٕف ِخغٍش الاسخدابت .

 

 

 ِسخً ِٓ اطشوحت دوخىساٖ . :ووع البحث

 

الأحذاس اٌٍىخسخً اٌثٕائً ، اٌبٍأاث عاٌٍت الابعاد ، اوصاْ لاسى ،  اٌدضاء ، اٌخصٍٕف ، أّىرج المصطلحات الشئيسة للبحث:

 ِعٍّت اٌضبط.
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