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Abstract: 

Purpose: The research aims to estimate models representing phenomena that follow the logic of 

circular (angular) data, accounting for the 24-hour periodicity in measurement. 

Theoretical framework: The regression model is developed to account for the periodic nature 

of the circular scale, considering the periodicity in the dependent variable y, the explanatory 

variables x, or both. 

Design/methodology/approach: Two estimation methods were applied: a parametric model, 

represented by the Simple Circular Regression (SCR) model, and a nonparametric model, 

represented by the Nadaraya-Watson Circular Regression (NW) model. The analysis used real 

data from 50 patients at Al-Kindi Teaching Hospital in Baghdad. 

Findings: The Mean Circular Error (MCE) criterion was used to compare the two models, 

leading to the conclusion that the Nadaraya-Watson (NW) circular model outperformed the 

parametric model in estimating the parameters of the circular regression model. 

Research, Practical & Social Implications: The recommendation emphasized using the 

Nadaraya-Watson nonparametric smoothing method to capture the nonlinearity in the data.  

Originality/value: The results indicated that the Nadaraya-Watson circular model (NW) 

outperformed the parametric model.       
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1.Introduction: 
        Over the past two decades, the use of modified regression analysis has expanded 

significantly to address the complexities of circular or angular data, particularly in disciplines 

like medicine, agriculture, social sciences, finance, and more. In these contexts, the regression 

model largely relies on the values taken by the dependent variable. Consequently, many applied 

fields handling circular data—such as crystallography, biology, meteorology, and medicine—

have grown more complex. Various methods have been developed for detecting linear circular 

regression models, such as Gould's approach (1969). In 1989, Bai et al. proposed a kernel 

estimator for directional data,       , under the conditions of pointwise and uniform strong 

consistency. Expanding on this area, Choi and Lim (2000) presented a generalization of the 

Möbius transformation on the complex plane.  

       The maximum likelihood estimator for the Cauchy regression model was derived using 

harmonic patterns and the Möbius transformation within a fractional regression framework 

(McCullagh, 1996). This approach highlights the suitability of Möbius transformation for 

regression curve fitting, particularly when both the dependent and explanatory variables are 

angular, as demonstrated in wind direction data applications (Kato et al., 2008). Additionally, a 

notable extension to angular regression was introduced through a link function addressing 

multiple cases (Downs & Mardia, 2002). 

       Abuzaid et al. (2008) proposed a novel method for outlier detection using simulation 

experiments, while Abuzaid et al. (2011) developed cut-off points for the COVARATIO 

statistical test, facilitating both outlier detection and model estimation. Further, Abuzaid and 

Allahham (2015) analyzed wind direction data from two major cities in the Gaza Strip, 

Palestine, estimating a new model via the maximum likelihood method and comparing it to an 

iterative suggested approach. 

      Follmann and Proschan (1999) explored Rayleigh null hypothesis testing for circular data 

using simulation, while Hornik and Grün (2014) detailed the implementation of fitting functions 

in R, employing the EM algorithm for maximum likelihood estimation and addressing 

normalization of the von Mises-Fisher distribution constant. Abbas and Abood (2022) compared 

the circular S-estimator to circular least squares using simulation experiments under three 

contamination scenarios: covariate contamination, dependent variable contamination, and both. 

Their comparison criteria included the median standard error, the median mean square error, and 

the median mean cosine of circular residuals. 

      Finally, Meilán-Vila et al. (2024) conducted a study on climate change, focusing on the 

Atlantic region across four seasons. By monitoring daily temperatures, they employed 

nonparametric kernel estimation and used asymptotic bias as the comparison criterion. 

 

2.Methodology: 

2.1 Mobius Transformations: 

      Transformations, in general, refer to processes that alter the position, size, or shape of two-

dimensional figures or three-dimensional objects. In engineering mathematics, common types of 

transformations include translations, rotations, reflections, and glide reflections. These 

transformations involve repositioning shapes or objects over a specified distance and in a 

particular direction. Rotation involves turning shapes or objects around a specific point or axis, 

while reflection entails flipping shapes or objects across a defined line or plane. Glide reflections 

combine translation and reflection along a given direction. Such transformations are essential in 

engineering mathematics for analysing, comparing, and classifying shapes and objects. 

       The Möbius transformation, also known as Möbius rotation, can be described as a process 

that fully rotates a plane onto itself by moving a single point. Alternatively, it can be understood 

as a transformation of two-dimensional spaces in different planes by shifting the plane’s axis. 

Möbius transformations have widespread applications in mathematical and engineering fields, 

including design, technical drawing, and three-dimensional modelling.  
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They also play a significant role in disciplines such as physics and advanced 

mathematics. Named after the German mathematician August Ferdinand Möbius, these 

transformations are sometimes referred to as homogeneous or homogeneity transformations, as 

well as partial linear or rotational transformations (McCullagh, 1996). 

The general form of Möbius transforms is: 

      
    

    
 

Since: 

 Z is a nodal variable. 

 a, b, c, d are complex numbers. 

 ad - bc ≠ 0. 

 

         By applying the Möbius transformation geometrically, it is possible to achieve three-

dimensional projection transformations. This process is defined as a specific function that 

projects a sphere onto a plane, excluding one point on the sphere, known as the point of 

projection. The result of this transformation is angle-preserving, meaning it maintains the angles 

formed by intersecting curves. Stereographic projection, a key application of this concept, is 

widely utilized in various fields, including complex analysis, cartography, geology, and 

photography. 

         Practically, the projection can be carried out either computationally or manually, often 

using specialized graph paper designed for such tasks. In the case of the two-unit sphere, the 

transformation involves rotating the sphere and relocating it to a new position and orientation in 

space. The stereographic projection is then performed from the sphere’s new position. These 

transformations preserve angles, map straight lines to lines or circles, and convert circles into 

either lines or other circles. 

2.2 Circular Normal Distribution: 

         The circular normal distribution, also known as the Von Mises distribution, is a continuous 

probability distribution analogous to the normal distribution, except that it is defined on a 

circular domain spanning [0,2π]. It serves a central role in analyzing circular data, much like the 

normal distribution does for linear data. The Von Mises distribution can also be viewed as a 

specific case of the Von Mises-Fisher distribution, which extends to multi-dimensional or multi-

domain contexts. 

This distribution is widely favored due to its flexibility regarding parameter influence and its 

ease of interpretation. Originally described by Richard Von Mises in 1918 to model the 

distribution of atomic weights (Hornik & Grün, 2014), the Von Mises distribution has since 

found applications in modelling a variety of phenomena across different fields. An example is 

provided below: 

 Rotational motion (physics). 

 Epidemiology (spread of disease). The general form of the probability density function of the 

Von Mises distribution is (Mahmood, E.A. et al. , 2019): 

           
 

       
   [         ]               

where: 

 θ represents a circular observation, 

 µ is the mean direction, 

 k is the concentration parameter, 

        denotes the modified Bessel function of the first kind and order zero. 

The modified Bessel function,        , is defined as: 
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        This formulation establishes the mathematical foundation for the Von Mises distribution, 

which is critical for modelling circular data. When the values of k are large and approach 

infinity, the data becomes increasingly clustered, and the distribution converges toward the 

envelope Cauchy distribution with a mean and variance of 1/k. In this case, a high concentration 

parameter (k) corresponds to low variance, while a low concentration indicates higher variance. 

Conversely, if k=0, the distribution becomes uniform. 

         The Von Mises distribution was pioneering in enabling scientists to model circular 

response data using linear predictors. Researchers proposed that a circular response (θ), which 

follows the Von Mises distribution, creates a distinctive pattern resembling a "barber’s pole"—

spirals wrapped around an infinite unit cylinder. This cylinder represents the average direction of 

the circular response (θ) conditioned on a real-valued predictor (x). 

2.3 Trigonometric Transformation Functions: 

         Trigonometric transformation functions, also known as trigonometric, angular, or circular 

functions, are a set of real functions that relate the angles of a right triangle to the ratios of its 

sides. The most well-known basic trigonometric functions include the sine function (sin), the 

cosine function (cos), and the tangent function (tan). Additionally, their reciprocal functions 

cosecant (csc), secant (sec), and cotangent (cot) are also classified as trigonometric function: 

 Cosecant (csc). 

 Categor (sec). 

 Cotangent (cot). 

        The reciprocal of the sine function is the cosecant (csc), and the reciprocal of the cosine 

function is the secant (sec). Trigonometric functions can generally be defined as the ratios 

between the sides of a right triangle containing the given angle or, more broadly, as coordinates 

on the unit circle. 

        When referring to triangles, it typically implies triangles on a flat, Euclidean surface, where 

the sum of the interior angles is always (180˚). Trigonometric functions can also be defined 

using integrals, power series, and differential equations, each of which has its specific 

applications. The variable for trigonometric functions can be an angle or a real number. These 

functions exhibit unique properties, including being even or odd, periodic, continuous, and 

orthogonal. Their primary application is in calculating the lengths of sides, angles, and related 

factors in triangles. This capability is widely utilized across various fields, such as surveying, 

navigation, and physics. 

        In surveying, triangulation is used to calculate the coordinates of specific points, a method 

now commonly employed in optical measurement. In navigation, trigonometric functions are 

applied to determine ship coordinates, plot routes, and calculate distances. In geography, they 

are used to compute distances between two points on the Earth's surface and to determine the 

Qibla direction by calculating its angle relative to the north. In optics, these functions are 

integral in studying light refraction. 

        Trigonometric functions are periodic, meaning their values repeat over regular intervals. 

This characteristic makes them essential for representing cyclical phenomena such as waves and 

forms the basis of the Fourier transform resulting in a mathematical process that transforms a 

function with real variables and complex values into another function of the same type. 

Additional applications include the study of alternating currents and sine wave estimations in the 

electric power and communications industries. 

        All trigonometric functions are periodic, with the smallest period being (2π), except for 

tangent (tan) and cotangent (cot), whose smallest period is (π). 
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        The equation             represents a fundamental law used to calculate the length of 

the third side of a triangle when the other two sides and the enclosed angle are known. This 

relationship is a cornerstone of trigonometry and geometry. 

2.4 Simple Circular Regression (SCR) Model 

           Several simple linear cyclic regression models have been proposed. In 2004, Hussin et al. 

introduced a basic cyclic regression model, which is conceptually similar to the simple linear 

regression model, with its framework adapted from earlier work (A. Abuzaid et al., 2011; 

Mahmood et al., 2019), as previously mentioned. The model can be expressed as: 

                                
Where: 

    represents the dependent variable. 

    represents the independent variable 

    represents the constant term of the model 

    represents the marginal slope of the model 

    represents the random error that follows a Von Mises distribution with a circular mean of 

zero and a concentration parameter (k). 

For a sample size n, the dependent variable   has the following observations: (  ,   ,…,   ). 

The probability density function (p.d.f.) for all observations of the dependent variable is 

expressed as: 

       
 

       
 {              }                            

       
 

       
 {              }                           

       
 

       
 {              }                           

Assuming that the observations of the dependent variable are independent, the joint probability 

density function (j.p.d.f.) is the product of the individual p.d.f.s of each observation, which is 

written as: 

  (             )  
 

(       )
  ∑ {              }

 
                   

Taking the logarithm of this equation yields: 

                                                    ∑          
                             
Where       is the zero-order modified Bessel function. 

To estimate the parameters, we take the first derivatives of the log-likelihood function with 

respect to each parameter: 

                 

   
 ∑ {              }      

 
                     

                 

   
 ∑ {               }

 
                          

                 

   
 

        

     
 ∑ {              }

 
           

Where       is the first derivative of      . 
Setting the derivatives equal to zero results in the following equations: 

  ∑ {             }    
                                                 

  ∑ {              }    
   

        

     
 ∑ {              }                 
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From these equations, the estimation of  ̂  is derived as: 

  ̂  {

        ⁄                             

        ⁄                                

        ⁄                      

                               

Where: 

   ∑                                           

   ∑             

    is the initial estimate of β. 

The parameter β̂  can be estimated as: 

  ̂   ̂   
∑     (    ̂  ̂   )

∑   
    (    ̂  ̂   )

                                              

Finally, the concentration parameter k is estimated by: 

  ̂     (
 

 
 ∑    (    ̂ –  ̂   ))                                   

 

Where     is the inverse of the Bessel function of the first kind of order 1, approximated by: 

        
        

      
                                                           

 

Here, w is a real number and is defined as: 

   
 

 
 ∑    (    ̂ –  ̂   )                                                           

 

2.5 Circular Nonparametric Regression Model: 

          Circular data refers to measurements taken on a circle in either degrees or radians, and it 

exhibits periodicity in various applied fields, such as biology (e.g., animal movement direction), 

meteorology (wind direction), and oceanography (ocean currents). In this context, the circular 

nonparametric regression estimator plays a crucial role, as traditional parametric circular models 

may lack the flexibility to capture complex data distributions. These distributions are represented 

as points on the circumference of a unit circle. Specifically, we present an estimator derived 

from asymptotic precision measures similar to those in Euclidean space. Nonparametric 

regression methods, such as the Nadaraya-Watson (NW) estimator (Rasheed et al., 2012), are 

widely used in this context. 

The objective is to propose and study a nonparametric regression estimator for a model 

involving a circular response variable and a covariate. When the response variable is circular, 

the regression function is defined as the minimizer of the circular hazard function. It has been 

shown that the minimizer of this risk function corresponds to the inverse tangent of the ratio 

between the conditional expectations of the sine and cosine of the response variable (Bai et al., 

1989). We introduce two regression models: one for the sine and one for the cosine of the 

response variable. Subsequently, a nonparametric estimator of the regression function is 

obtained by calculating the inverse tangent of the ratio of the NW estimators for the sine and 

cosine functions. 

Let {       } be a simple random sample from the vector {     }, 
Where:  

( ) is a circular random variable taking values in   [     , and X is a random variable on E. 

We assume that the circular random variable Θ depends on X via the following regression 

model: 

    [        ]                                           
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Here, (m) is the regression function mapping E onto T. The circular regression function is 

defined as the minimizer of the risk function: 

  [      |   |    

  {     [      ]}|   | 
The sine function is minimized by the following equation: 

           [           ]                                              
Where: 

        [      |   | 

        [       |   | 
 

The function            returns the angle between the x-axis and the vector from the origin to 

the point (x,y). Using this formula, m1(x) and m2(x) act as regression functions for the sine and 

cosine models, respectively. The model assumes: 

                                                                        

                                                                        

         

where m1 and m2 are regression functions over the interval [−1,1] and,    and    are the 

independent angular errors. Assuming that both models hold simultaneously with Equation (18) 

leads to relationships between the variances and covariances of the errors in these models. Using 

the sine and cosine formulas from Equation (18), we derive: 

             [     ]            [     ]                             

            [     ]            [     ]                              
Thus, the functions          [    ] and          [    ]are defined, leading to: 

                                                                          
Where      and       correspond to       and      , and      is defined as: 

      [  
       

    ]
  ⁄  

The error terms in Equations (19) and (20) are expressed in terms of the conditional variances 

and the covariance of the Cartesian coordinates of ε: 

          
      

                         
      

                               

          
      

                         
      

                               
The variance between the error terms is given by: 

                  
       

             
                       

                       
The NW estimator for the circular regression function in Equation (18) is presented as: 

  ̂          [ ̂        ̂      ]                                       

where ( ̂      ) and ( ̂      )  are the NW estimators for       and      , respectively. 

The asymptotic properties of this estimator, including bias, variance, and asymptotic normality, 

are derived assuming that Equations (19) and (20) hold. The NW estimator is given by: 

  ̂       {

∑  (   ‖    ‖)       
 
   

∑      ‖    ‖  
   

            

∑  (   ‖    ‖)       
 
   

∑      ‖    ‖  
   

           
                       

 Where k represents the symmetric kernel function, while h (or     ) is the smoothing 

parameter, also referred to as the bandwidth. The bandwidth is a positive real value that 

determines the smoothness of the estimator. While the choice of the kernel function is generally 
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of secondary importance, the bandwidth plays a critical role in the performance of the Nadaraya-

Watson (NW) estimators. 

For the regression estimator described in Equation (18), if the bandwidth h is too large, 

an excessive number of observations are included in the estimation process, resulting in an 

oversmoothed estimator. Conversely, if h is too small, only a limited number of observations are 

considered, leading to a highly variable estimator. Hence, bandwidth selection is essential for 

obtaining reliable estimates. In practice, data-driven methods are employed to determine the 

optimal bandwidth. For consistency, the same bandwidth is used to calculate ( ̂   ) and ( ̂   ) 

in Equation (19). Using different bandwidths for the sine and cosine components would result in 

inconsistent regression estimators, as the Cartesian coordinates correspond directly to the same 

angular measure. 

To derive the bias and variance of the estimator in Equation (18), the properties of NW 

estimators are utilized. From these properties, the following definitions and results are obtained: 

                       

are the functions defined for each (   ) Vintage: 

         {[         ]|‖   ‖   }                                    

           {[           ]|‖   ‖   }                              

 

We denote the cumulative distribution functions of the random variable, (   ) as: 

          ‖   ‖         

          
       

      
   ‖   ‖     |‖   ‖     

Which leads to: 

  [ ̂            ]   ́       
    

    
   *

 

      
+       

    [ ̂      ]  
  
    

      

    

    
     *

 

      
+ 

    [ ̂        ̂      ]  
    

      

    

    
   *

 

      
+ 

           ∫ [     ] 
 

 
           

           ∫      
 

 
           

            ∫         
 

 
           

From the above equations, we end up with the two equations: 

  [ ̂          ]   ́      
    

    
   *

 

      
+                        

    [ ̂     ]  
 

      

  
    

     

    

    
    *

 

      
+                                        

As for the bandwidth parameter or smoothing parameter (h), it can be calculated from the 

equation: 

      ∑,     *    ̂ 
       +-                                            

 

   

 

Where ( ̂ 
   

)denotes estimator (NW). 

The bandwidth parameter h is typically determined using automated software routines, which 

iteratively search within a specified range to converge on the optimal value, eliminating 

subjective bias in its selection. 
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2.6 Comparison Criterion 
After reviewing the various estimation methods for circular regression, their performance can be 

compared using the Mean Circular Error (MCE) criterion, defined as: 

      
 

 
∑    (

  

 
) 

                                                                          

Where: 

 (    ) represents the average circular error. 

      |  |    ̂ || 

      [   ] 
3. Data Collection: 

        The data were collected from Al-Kindi Teaching Hospital in Baghdad during April 2023. A 

sample of 50 patients with systolic blood pressure readings was used. The time of blood pressure 

measurement was recorded at peak times, with the study period divided into two sections. The 

first section corresponds to the time of blood pressure measurement during the first week, while 

the second section corresponds to the second week. The estimation methods presented in the 

theoretical section were applied, and the parameters of both parametric and nonparametric 

circular regression models were estimated using these methods. 

4. Results: 

        The data were collected in the form of two daily readings for each patient in the sample 

(n=50). Systolic blood pressure readings were recorded separately for each patient in degrees, 

twice per day during rest periods. The independent (explanatory) variable was denoted as u, 

while the dependent variable (peak systolic blood pressure) was denoted as v. The relationship 

between these variables was examined based on Mardia’s theory, which assumes that conditions 

must remain similar at the time of measurement. The day was divided into two periods of 12 

hours each. The first period ran from midnight (12:00 AM) to noon (12:00 PM), and the second 

period from noon (12:00 PM) to midnight (12:00 AM). The measurement time at midnight was 

considered the starting point, corresponding to an angle of 0°, while noon corresponded to 180°. 

The second period began at noon, with the angle progressing back to 0° by midnight. The 180° 

span was divided by the number of hours (12 hours), giving an angle increment of 15° per hour. 

Data were recorded for two groups, labelled S1 and S2. 

 

 

  
Figure 1: Real data distribution (S1) Figure 2: Distribution of real data (S2)            
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Figure 3: Distribution of real data within the unit circle (S1, S2) 

 

 

Table (1) Real data for patients with systolic blood pressure 

10 9 8 7 6 5 4 3 2 1 t 

-114 -17 -144 -156 -80 -50 -45 -95 55 45 S1 

1 -154 -100 -120 -102 -91 -34 -32 -138 15 S2 

 

20 19 18 17 16 15 14 13 12 11 t 

-135 -65 23 -23 -17 30 -102 -77 -44 2 S1 

2 -17 -102 -39 -98 -76 -48 -32 -13 -14 S2 

 

30 29 28 27 26 25 24 23 22 21 t 

-13 -76 -14 62 -46 -124 -137 -84 -120 -126 S1 

-180 -121 -180 -95 -65 -77 -45 -17 -23 -44 S2 

 

40 39 38 37 36 35 34 33 32 31 t 

12 90 -120 -150 -33 -102 2 -47 -98 -32 S1 

-95 -13 -45 -48 -17 -102 -136 -165 -30 -162 S2 

 

50 49 48 47 46 45 44 43 42 41 t 

-132 -61 -35 -45 -167 -98 165 -162 -61 36 S1 

-77 -108 -93 -166 -140 2 -136 -1 -17 -39 S2 

To evaluate and compare the efficiency of the estimated parametric and nonparametric models, 

we will use the Mean Circular Error (MCE) as the standard metric, as previously defined in 

Equation (35). The results of this comparison are summarized in the table below: 

 

Table (2): Results of comparison between models for real data 

MCE Model 

0.2089918 SCR 

0.1104407 NW 
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The second column of the table above represents the mean circular error. It is evident 

that the lowest value corresponds to the Nadaraya-Watson circular model (NW), demonstrating 

its superior performance in practical applications. This model outperformed the circular least 

squares (SCR) model, likely due to the nonlinear nature of the data. Based on these results, the 

Nadaraya-Watson circular model (NW) is identified as the most effective model. In other words, 

circular nonparametric models are shown to be the most suitable for analyzing circular data. 

 

5.  Conclusion: 

Based on our findings, the following conclusions were drawn: 

i. The applied experiment demonstrated the superior performance of the Nadaraya-Watson 

circular model (NW) compared to the circular least squares model (SCR) in fitting the circular 

regression model. 

ii.  The sample size significantly influences the statistical testing of parametric models. Larger 

sample sizes enhance the likelihood of obtaining statistically significant models. 
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