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Abstract: 

In a Poisson mixture regression model for latent class, observations come from different 

sub-sources or classes, and the observed data are assumed to be generated by a specific (finite) 

mixture of unobserved or latent classes. The problem lies in the optimal assignment of 

observations to their respective classes. This requires sophisticated methods for estimating the 

parameters in the model. Usually, the model parameters are estimated by the conventional EM 

algorithm. The research aims to compare the EM algorithm and the genetic algorithm GA. Using 

simulation, the two algorithms were compared based on the MSE criterion, with different sample 

sizes (n = 50, 90, 120) and three scenarios (S1, S2, S3) for default values of the parameters. The 

results showed the superiority of the GA genetic algorithm over the EM algorithm, as the GA 

genetic algorithm gave the lowest MSE values. 
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1. Introduction:  
In contemporary statistical analysis, sophisticated algorithms play a pivotal role in 

enhancing the accuracy and reliability of parameter estimation in regression models. This 

research paper embarks on a journey into the realm of regression analysis, specifically focusing 

on estimating parameters within the mixture Poisson regression model for the latent class. The 

amalgamation of two potent algorithms, namely the Expectation Maximization (EM) algorithm 

and the Genetic Algorithm (GA), forms the cornerstone of our analytical approach. 

The regression analysis has witnessed an unparalleled surge in significance across 

various domains, due to its intrinsic capacity to elucidate relationships between dependent and 

independent variables. While conventional regression models have been extensively explored 

and utilized, the complexity and nuance of real-world data often necessitate the exploration of 

more intricate techniques. This paper seeks to bridge this gap by delving into the innovative 

fusion of EM and GA in the context of the mixture Poisson regression model. 

Counting data, characterized by discrete and non-negative outcomes, is omnipresent in 

numerous fields, including but not limited to epidemiology, finance, and social sciences. The 

statistical modeling of counting data has profound implications for decision-making processes, 

policy formulation, and scientific discovery. The mixture Poisson regression model, with its 

capacity to capture unobserved latent classes within the data, presents a robust framework for 

modeling such data.  

 
1.1 Literature Review: 

Pernkopf and Bouchaffra (2005) proposed a genetic-based expectation-maximization 

(GA-EM) algorithm for learning Gaussian mixture models from multivariate data.The 

experiments on simulated and real data show that the GA-EM outperforms the EM method. 

Sundararajan and Mengshoel (2016) suggested a genetic algorithm for expectation maximization 

(GAEM) for learning parameters in Bayesian networks. It combined the global search property 

of the genetic algorithm with the local search property of EM. The global convergence of 

GAEM has been demonstrated theoretically, empirically, GAEM has been shown to provide 

significant speedups because it tends to select fitter individuals, who converge faster, as parents 

of the next. Papastamoulis et al (2016) used the EM algorithm to estimate the parameters of a 

zero-inflated bivariate Poisson mixture regression model, and the method was applied to a car 

insurance claims dataset, and the results showed that this algorithm significantly improved the 

modelling of the dataset. Tzougas (2020) presented an inverse Poisson-Gamma regression model 

used with data with a long tail and high dispersion, .The researcher developed an EM algorithm 

to estimate the parameters of the inverse Poisson-Gamma model, and the researcher applied it to 

car insurance data in order to verify the efficiency of the algorithm. AlKhafaji and AlBakri 

(2021) used the genetic algorithm (GA) and the iterative reweighting (IR) algorithm to estimate 

the parameters of the skewed normal distribution; the results proved, using Monte Carlo 

simulation, that the genetic algorithm is best when the sample size is small, and that the iterative 

reweighting algorithm is best when the sample size is large. Kareem and Hashim (2021) 

compared three methods (FlexMix, MixTLE, MixLP) for estimating the mixed linear regression 

model, and the simulation results proved that the (FlexMix) method is more efficient than other 

methods. Gonçalves et al (2022) presented a latent Poisson-Birnbaum-Saunders regression 

model in which observations within the same group are driven by the same latent random effect 

that follows a Birnbaum-Saunders distribution. The Expectation Maximization (EM) algorithm 

was used to estimate the model parameters and a simulation was conducted to evaluate the 

performance of the estimators. Radam and Hameed (2023) compared the Poisson regression 

model and the Conway-Maxwell-Poisson model using simulation and with different sample 

sizes, and the researchers demonstrated through the results the superiority of the Poisson model 

through the Akaike criterion and the mean square error criterion. 
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The problem of this research is that Poisson regression models often need to adequately 

capture the complex structure of data, especially when the data is heterogeneous, that is, when 

observations come from different subgroups or sources. Poisson mixture regression models have 

been used to address this problem, but determining the number of mixture components and 

appropriate assignment of observations to classes can be difficult due to the complex structure of 

the data. Particularly with the use of latent classes, sophisticated parameter estimation methods 

are required.  

 

The research‟s objective is to compare the EM algorithm and the genetic algorithm used 

to estimate the parameters of the mixture Poisson regression model for latent class. 

 

2. Material and Methods: 

2.1 Poisson Regression Model: 
The classical linear regression model assumes that the response variable depends on the 

explanatory variables, which can be either continuous or countable. However, when the response 

variable takes the form of countable data, the assumptions of linear regression are not met. The 

Poisson regression model was introduced as a suitable alternative for such cases (Algama and 

Abdalteef, 2019). The Poisson regression model is a form of regression analysis specifically 

designed for modeling countable data, making it well-suited for analyzing rare events. The 

Poisson regression model is mathematically expressed using the following formula (Cameron 

and Trivedi, 2013): 

 

                                                                                                              
 

Where: 
 

  : The response vector is a variable with dimensions of (n×1). 

  : The matrix containing the explanatory variables has a size of (n×( +1)), where n represents 

the number of observations, and ( +1) indicates the number of explanatory variables, including 
the constant term. 

  : The random error vector has dimensions of (n×1). 
 

The Poisson regression model assumes that the response variable     follows a Poisson 

distribution with a mean and variance of ( ) (Algama and Abdalteef, 2019). Additionally, it is 
assumed that the logarithm of the expected value of the response variable can be represented as a 

linear combination involving several unknown parameters. Because of this property, the 

Poisson regression model is often referred to as the log-linear model (McCullagh and Nelder, 
1989):  

 

                                                                                                                                          
 

According to this linear formula, the explanatory variables allow for any real value of 

the mean of response variable  , which contradicts the nature of the Poisson distribution 

parameter (λ) since it must take positive values. To overcome this issue, we employ the 
logarithmic link function to establish a relationship between the mean (λ) and the explanatory 

variables ( ), thereby adopting the generalized linear model (McCullagh and Nelder, 1989):  
 

                               Where:             
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2.2 Mixture Poisson Regression For Latent Class  : 

We will work with the dependent variable      which denotes the total number of events 

measured in a sample comprising (n) observations. The independent observations        are 

assumed to be organized into ( ) classes, and each observation    belonging to class   follows a 

Poisson distribution with the parameter        as follows : 

  (  |    )  
            

  

   
                                                                             

    (  |    )      (    )               

As per the generalized linear model (McCullagh and Nelder, 1989), the conventional parameter 

is expressed as follows: 

 (    )         

                                                                                                                  

The latent class model is commonly employed to analyse grouped discrete data, 

presumed to adhere to a mixture distribution (Clapperton, 2022). Consequently, the Poisson 

regression model for the latent class incorporates a blend of linear logarithmic (Poisson) 

regression distributions with a latent variable   (  = 1, 2, ...,  ) as depicted below:  

          ∑  

 

   

  (  |    )                                                                                              

The parameter (  ) can be understood as the unconditional probability of an individual 

belonging to class  . This probability is based on the assumption that, given an individual   
belongs to class  , the number of events for that individual follows a Poisson distribution with 

parameter      (Yang and Lai, 2005). 

 

To address heterogeneity across individuals, we employ two approaches (Lin and Tsai, 2022): 

Firstly, we use a formula where the average event rate takes on a discrete patchwork distribution, 
which varies across a finite number of unobserved populations. 

Secondly, the average event rate within each category also varies based on the explanatory 
variables. 

2.3 Estimation of Model Parameters Using Expectation Maximization Algorithm: 
The EM algorithm is an iterative algorithm for an estimation of the parameters. Instead 

of maximizing the log-likelihood function for dataset Y containing n observations, it maximizes 
the complete-data log-likelihood. The complete data  are assembled from the observed data Y 

(sampled dataset) and the missing data (Panić at el.,  2020) .The expectation-maximization (EM) 

algorithm is developed by (Yang and Lai, 2005) by considering           as an incomplete 

data set, with the latent class variable                
   being treated as missing. The variable 

    signifies whether the observation    belongs to latent class  , and it takes on two possible 
values (0, 1) , as follows: 

            {
                                     
                                            

 

It is assumed that      is a polynomial i.i.d with probabilities    since with its distribution 

function, it is (Yang and Lai, 2005): 

      ∏  
   

 

   

                                                                                                                        

Where       represents the probability of observing   belonging to one of the classes. 

If      equals 0, it signifies that the observation    does not belong to class  , resulting in 

a probability of      for belonging to class  . Conversely, if      equals 1, it indicates that the 

observation    belongs to class  , resulting in a probability of    for belonging to class  . As a 



 

 

 

 

 
Journal of Economics and Administrative Sciences 

2024; 30(140), pp. 434-449 
P-ISSN 2518-5764 

E-ISSN 2227-703X 
   

  

438  

 

   

 

 

 

result, we calculate the probability of observing    belonging to class   by raising    to the 

power of     . 

         ∏           
   

 

   

                                                                                           

         represents the probability of observation    , given class membership     . And 

          represents the probability mass function of the Poisson distribution of observation    
when it belongs to class  , whose parameters are determined by the class-specific parameters    

. 

                       ∏         ∏             

 

   

 

   

 

                                             

                       ∏(∏(         )
   

 

   

  
   )

 

   

                                        

 

Therefore, the logarithmic maximum likelihood function will be as follows: 

    ∑∑                 

 

   

 

   

∑∑                

 

   

                                            

 

   

 

 

During the E -step, we utilized                to estimate     this is because     is missing data. 
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Therefore: 
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During the M-step, we aim to maximize        with the restriction ∑       
   ; 

considering the Lagrange multiplier multiplication, we subsequently take the derivative with 

respect to    and set the resulting equation to zero. 
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Where:  

                  (    )                

       ∑         

 

   

 

      

     
   (

  
      

  )    
     

    
            

   

 

    
     ∑ ̂  (

  
      

  )        ∑ ̂  

 

   

            

 

   

 

Fisher Matrix is:  

  *
      

         
+  ∑ ̂                 

 

   

           

Where:  

  (
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 ̂  
       

   
   ̂  
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Typically, the Newton-Raphson process or method is employed to adjust or modify ln     and 

subsequently estimate   .  
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Below is a diagram of the EM algorithm:  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 
                  

    
Figure 1:- Diagram of EM algorithm 
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2.4 Genetic algorithm: 

Genetic algorithm is one of the most important tools in artificial intelligence and 
machine learning (Seretis et al, 2018). It is based on biological evolution and is used in many 

applications in various fields. One of these important applications is using genetic algorithms to 
improve the parameters of regression models in general. Latent class mixture Poisson regression 

is also one of the models in which the genetic algorithm can be applied to improve the values of 
its parameters, Below is a diagram of the genetic algorithm (Mahdavi et al, 2009) : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Diagram of a genetic algorithm 
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2.5 Applying the genetic algorithm to estimate the parameters of the Poisson mixture 

regression model for latent classes 
We apply the steps of the genetic algorithm to the objective function equation of a 

Poisson mixture regression model for the latent class to estimate the model parameters   :  

1- Start: The chromosome is formed by the parameter values, where the genes represent the 

chromosome. 
2- Initialization: Generating the first generation (or initial) by assigning initial values to the 

genes, generated randomly. 
3- In the objective function, the chromosome is evaluated, and the one possessing a smaller 

objective function value corresponding to a higher likelihood is selected. Then, the evaluation 
function is determined using the following equation: 

                 
 

                     
 

 

The probability of the evaluation function (best evaluation) can be calculated using the following 

formula: 

  

   
    

∑     
 
   

 

Where:  

   : represents the probability of chromosome i. 

    : represents the evaluation function for chromosome i. 

   : is the population size. 

And using one of the selection criteria known as the "roulette wheel," a random number, denoted 

as     , is generated within the interval [0,1]. This number is then compared to the first 

chromosome, denoted as     . The first chromosome is selected if      is less than      . This 

process is repeated for each iteration, and it determines one chromosome for the new population 
based on the evaluation function. 

 
4- Selected chromosomes are hybridized through mating between two chromosomes, employing 

one of the hybridization criteria known as regulated hybridization. This is done based on the 

hybridization probability, denoted as     , and this probability value is determined by the 

researcher, typically falling within the range        . This value is then compared with the 

genetic values of the chromosomes (parents) to generate the new generation (offspring), and the 

exchange occurs when the gene value is greater than or equal to the specified   . 

 
5- The mutation process, which depends on the probability value P_m for the parameters, and 

this probability value is calculated using the following formula:  
 

   {
     

              

    
                                 

                                                                                        

 

Where: Fitvalue represents the evaluation function value,       represents the population mean. 

     represents the maximum value in the population. 

By replacing randomly selected genes with new values also generated randomly, we obtain them 

using the following formula: 

The sum of genes = (number of genes in the chromosome) × (population size). 

 
6- We refer back to step three until the separate achievement criterion is met. 
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7- The evaluation of parameters is carried out based on the value of the objective function to 
estimate the parameters of a Poisson mixture regression model for the latent class. 

 

3. Discussion of Results: 

3.1 Simulation Preparation: 
This paper‟s simulation experiments involved writing several MATLAB programs to 

generate simulated data to compare methods across different sample sizes. Three sample sizes 

were adopted for generating the data, namely                       . The independent 

variables were generated from a uniform distribution: 

                                       

The model will include two independent variables,    and    , so we will use: 
 

                         

The generation values are based on three scenarios for default parameter values: 

 
Table 1: Represents the three scenarios, S1,S2, and S3, the default parameter values in the 

presence of   ,  . 

                        Scenario 

-1 3 0.5 -2 2 1 S1 

-2 1 0.8 -3 -1 2 S2 

-3 2 1.5 -1 1 0.3 S3 

 
Alpha (α) is selected to be 0.3 of the sample size (n), where data will be generated in the amount 

of 0.3n according to the first class: 

                                                 

As for the observations of the second class, they are generated from the remaining 0.7n based on 
the model:  

                                                 

We calculate a parameter of the Poisson distribution from the equation:  

           1   1 

After that,    is generated from a Poisson distribution. 

          (    ) 

Then, estimation methods, represented by the Expectation Maximization )EM( algorithm and the 
genetic (GA) algorithm, are applied to the generated data. 

 
3.2 Results of Simulation : 

Each experiment was repeated 500 times. The estimated parameter  ̂   is used to 
determine the observation's membership. The number of observations correctly classified 

according to the Rate equation is calculated. The Mean Squared Error (MSE) is used as a 
statistical measure for comparison between the estimation methods, which are the Expectation 

Maximization (EM) algorithm and the Genetic Algorithm (GA). 
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Table 2: Represents the Mean Squared Error (MSE) for the estimators and the three scenarios 

(S1, S2, S3) with respect to sample size n=50 and       when considering        

scenario                                Rate 

S1 
EM 0.31 0.31 0.21 0.36 0.25 0.53 0.42 0.34 0.54 

GA 0.21 0.21 0.17 0.29 0.18 0.43 0.31 0.14 0.62 

S2 
EM 0.37 0.37 0.25 0.32 0.33 0.49 0.27 0.41 0.57 

GA 0.29 0.29 0.21 0.28 0.31 0.41 0.27 0.40 0.63 

S3 
EM 0.19 0.19 0.29 0.36 0.31 0.28 0.34 0.33 0.57 

GA 0.12 0.12 0.22 0.31 0.27 0.15 0.32 0.31 0.68 

 

By looking at Table 2, we observe that for a sample size of n=50 and across all three 
scenarios (S1, S2, S3), the genetic algorithm outperformed the EM algorithm for all parameter 

values, as indicated by the Mean Squared Error (MSE) values for each parameter. Significantly, 

in the genetic algorithm, the MSE values for all parameters are lower than the MSE values in 

the EM algorithm. This indicates that the genetic algorithm has indeed improved parameter 

estimation at n=50. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Figure 3 : represents the true function      and the estimated functions      obtained using the 

EM algorithm and the Genetic Algorithm (GA) for all three scenarios (S1, S2, S3) for           

when the sample size is n=50. 
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Through Figure (3), we notice the closeness of the real values and the values estimated 

by the EM and genetic algorithms when the sample size is n=50. 

 
Table 3: Represents the Mean Squared Error (MSE) for the estimators and the three scenarios 

(S1, S2, S3) with respect to sample size n=90 and       when considering        

scenario                                Rate 

S1 
EM 0.034 0.034 0.068 0.048 0.036 0.042 0.037 0.031 0.67 

GA 0.027 0.027 0.059 0.041 0.031 0.039 0.032 0.028 0.79 

S2 
EM 0.027 0.027 0.054 0.032 0.037 0.027 0.022 0.017 0.66 

GA 0.021 0.021 0.043 0.026 0.030 0.025 0.018 0.016 0.81 

S3 
EM 0.033 0.024 0.055 0.042 0.033 0.048 0.039 0.037 0.68 

GA 0.028 0.024 0.050 0.041 0.031 0.039 0.031 0.032 0.83 

 
By looking at Table 3, we observe that for a sample size of n=90 and across all three 

scenarios (S1, S2, S3), the genetic algorithm outperformed the EM algorithm for all parameter 

values, as indicated by the Mean Squared Error (MSE) values for each parameter. Significantly, 
in the genetic algorithm, the MSE values for all parameters are lower than the MSE values in the 

EM algorithm. This indicates that the genetic algorithm has indeed improved parameter 
estimation at n=90. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4: represents the true function      and the estimated functions      obtained using the 

EM algorithm and the Genetic Algorithm (GA) for all three scenarios (S1, S2, S3) for           

when the sample size is n=90. 
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Through Figure (4), we notice the closeness of the real values and the values estimated by the 

EM algorithm and the genetic algorithm when the sample size is n=90. 

 

Table 4: Represents the Mean Squared Error (MSE) for the estimators and the three scenarios 

(S1, S2, S3) with respect to sample size n=130 and       when considering        

scenario                                Rate 

S1 
EM 0.0087 0.0087 0.0076 0.0058 0.0053 0.0062 0.0066 0.0048 0.76 

GA 0.0079 0.0079 0.0068 0.0051 0.0051 0.0043 0.0038 0.0032 0.84 

S2 
EM 0.0062 0.0062 0.0058 0.0049 0.0036 0.0033 0.0032 0.0029 0.76 

GA 0.0058 0.0058 0.0053 0.0041 0.0031 0.0022 0.0029 0.0025 0.84 

S3 
EM 0.0031 0.0031 0.0053 0.0045 0.0038 0.0033 0.0032 0.0029 0.79 

GA 0.0029 0.0029 0.0048 0.0037 0.0032 0.0028 0.0029 0.0025 0.88 

 
By looking at Table 3, we observe that for a sample size of n=130 and across all three 

scenarios (S1, S2, S3), the genetic algorithm outperformed the EM algorithm for all parameter 
values, as indicated by the Mean Squared Error (MSE) values for each parameter. Significantly, 

in the genetic algorithm, the MSE values for all parameters are lower than the MSE values in the 
EM algorithm. This indicates that the genetic algorithm has indeed improved parameter 

estimation at n=130. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: represents the true function      and the estimated functions      obtained using the 

EM algorithm and the Genetic Algorithm (GA) for all three scenarios (S1, S2, S3) for           

when the sample size is n=130 .  
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Through Figure (5), we notice the closeness of the real values and the values estimated by the 

EM algorithm and the genetic algorithm when the sample size is n=130. 

4.Conclusion: 

1- Through simulation and for different sample sizes (50, 90, 130), we observe the superiority of 
the Genetic Algorithm over the Expectation Maximization (EM) algorithm, as the Genetic 

Algorithm (GA) yielded lower Mean Squared Error (MSE) values for all parameters at all 
sample sizes and for all three scenarios (S1, S2, S3), This indicates that the genetic algorithm has 

improved the parameter values. 
2- As the sample size increases, there is an increase in the convergence of the real observations 

belonging to each class, and the observations are estimated using both the EM algorithm and the 
genetic algorithm (GA) for the first and second variables. 
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 :البحث هسحخلص

في أًوىرج اًحذاس خليط بىاسىى للفئت الكبهٌت حأحي الوشبهذاث هي هصبدس فشعيت أو فئبث هخخلفت ،. حيث يفخشض 

هي الفئبث غيش الوشصىدة أو الكبهٌت حيث حكىى الوشكلت في  أى البيبًبث الخي حن هشبهذحهب يخن إًشبؤهب بىاسطت خليط هحذود

الخخصيص الوٌبسب للولاحظبث الى كل فئت ويخطلب هزا الاهش أسبليب هعقذة لخقذيش الوعلوبث في الاًوىرج . عبدة، يخن حقذيش 

ىسقت البحثيت إلى الوقبسًت  الخقليذيت . حهذف ال EMالوعلوبث في ًوىرج اًحذاس خليط بىاسىى للفئت الكبهٌت بىاسطت خىاسصهيت 

 MSE. ببسخخذام الوحبكبة حوج هقبسًت الخىاسصهيخيي بٌبءً على هعيبس  GAو الخىاسصهيت الديٌيت  EMبيي خىاسصهيت 

للقين الافخشاضيت للوعلوبث . أثبخج الٌخبئح حفىق  (S1,S2,S3)( وبثلاثت سيٌبسيىهبث n=50,90,120وبأحدبم عيٌبث هخخلفت )

 ( .  (MSE حوخلك اقل قين  GA، حيث كبًج الخىاسصهيت الديٌيت EMعلى خىاسصهيت  GAديٌيت الخىاسصهيت ال

 

 
 وسقت بحثيت.  :ًوع البحث 

 
 . اًحذاس خليط بىاسىى ، الفئت الكبهٌت ، خىاسصهيت حعظين الخىقعبث ، الخىاسصهيت الديٌيت .: الوصطلحبت الشئيسة للبحث
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