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Abstract:

In a Poisson mixture regression model for latent class, observations come from different
sub-sources or classes, and the observed data are assumed to be generated by a specific (finite)
mixture of unobserved or latent classes. The problem lies in the optimal assignment of
observations to their respective classes. This requires sophisticated methods for estimating the
parameters in the model. Usually, the model parameters are estimated by the conventional EM
algorithm. The research aims to compare the EM algorithm and the genetic algorithm GA. Using
simulation, the two algorithms were compared based on the MSE criterion, with different sample
sizes (n =50, 90, 120) and three scenarios (S1, S2, S3) for default values of the parameters. The
results showed the superiority of the GA genetic algorithm over the EM algorithm, as the GA
genetic algorithm gave the lowest MSE values.
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1. Introduction:

In contemporary statistical analysis, sophisticated algorithms play a pivotal role in
enhancing the accuracy and reliability of parameter estimation in regression models. This
research paper embarks on a journey into the realm of regression analysis, specifically focusing
on estimating parameters within the mixture Poisson regression model for the latent class. The
amalgamation of two potent algorithms, namely the Expectation Maximization (EM) algorithm
and the Genetic Algorithm (GA), forms the cornerstone of our analytical approach.

The regression analysis has witnessed an unparalleled surge in significance across
various domains; due to its intrinsic capacity to elucidate relationships between dependent and
independent variables. While conventional regression models have been extensively explored
and utilized, the complexity and nuance of real-world data often necessitate the exploration of
more intricate techniques. This paper seeks to bridge this gap by delving into the innovative
fusion of EM and GA in the context of the mixture Poisson regression model.

Counting data, characterized by discrete and non-negative outcomes, is omnipresent in
numerous fields, including but not limited to epidemiology, finance, and social sciences. The
statistical modeling of counting data has profound implications for decision-making processes,
policy formulation, and scientific discovery. The mixture Poisson regression model, with its
capacity to capture unobserved latent classes within the data, presents a robust framework for
modeling such data.

1.1 Literature Review:

Pernkopf and Bouchaffra (2005) proposed a genetic-based expectation-maximization
(GA-EM) algorithm for learning Gaussian mixture models from multivariate data.The
experiments on simulated and real data show that the GA-EM outperforms the EM method.
Sundararajan and Mengshoel (2016) suggested a genetic algorithm for expectation maximization
(GAEM) for learning parameters in Bayesian networks. It combined the global search property
of the genetic algorithm with the local search property of EM. The global convergence of
GAEM has been demonstrated theoretically, empirically, GAEM has been shown to provide
significant speedups because it tends to select fitter individuals, who converge faster, as parents
of the next. Papastamoulis et al (2016) used the EM algorithm to estimate the parameters of a
zero-inflated bivariate Poisson mixture regression model, and the method was applied to a car
insurance claims dataset, and the results showed that this algorithm significantly improved the
modelling of the dataset. Tzougas (2020) presented an inverse Poisson-Gamma regression model
used with data with a long tail and high dispersion; .The researcher developed an EM algorithm
to estimate the parameters of the inverse Poisson-Gamma model, and the researcher applied it to
car insurance data in order to verify the efficiency of the algorithm. AlKhafaji and AlBakri
(2021) used the genetic algorithm (GA) and the iterative reweighting (IR) algorithm to estimate
the parameters of the skewed normal distribution; the results proved, using Monte Carlo
simulation, that the genetic algorithm is best when the sample size is small, and that the iterative
reweighting algorithm is best when the sample size is large. Kareem and Hashim (2021)
compared three methods (FlexMix, MixTLE, MixLP) for estimating the mixed linear regression
model, and the simulation results proved that the (FlexMix) method is more efficient than other
methods. Gongalves et al (2022) presented a latent Poisson-Birnbaum-Saunders regression
model in which observations within the same group are driven by the same latent random effect
that follows a Birnbaum-Saunders distribution. The Expectation Maximization (EM) algorithm
was used to estimate the model parameters and a simulation was conducted to evaluate the
performance of the estimators. Radam and Hameed (2023) compared the Poisson regression
model and the Conway-Maxwell-Poisson model using simulation and with different sample
sizes, and the researchers demonstrated through the results the superiority of the Poisson model
through the Akaike criterion and the mean square error criterion.
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The problem of this research is that Poisson regression models often need to adequately
capture the complex structure of data, especially when the data is heterogeneous, that is, when
observations come from different subgroups or sources. Poisson mixture regression models have
been used to address this problem, but determining the number of mixture components and
appropriate assignment of observations to classes can be difficult due to the complex structure of
the data. Particularly with the use of latent classes, sophisticated parameter estimation methods
are required.

The research’s objective is to compare the EM algorithm and the genetic algorithm used
to estimate the parameters of the mixture Poisson regression model for latent class.

2. Material and Methods:
2.1 Poisson Regression Model:

The classical linear regression model assumes that the response variable depends on the
explanatory variables, which can be either continuous or countable. However, when the response
variable takes the form of countable data, the assumptions of linear regression are not met. The
Poisson regression model was introduced as a suitable alternative for such cases (Algama and
Abdalteef, 2019). The Poisson regression model is a form of regression analysis specifically
designed for modeling countable data, making it well-suited for analyzing rare events. The
Poisson regression model is mathematically expressed using the following formula (Cameron
and Trivedi, 2013):

y = eXB+U (1)

Where:

y : The response vector is a variable with dimensions of (nx1).

B : The matrix containing the explanatory variables has a size of (nx(L+1)), where n represents
the number of observations, and (L+1) indicates the number of explanatory variables, including
the constant term.

U : The random error vector has dimensions of (nx1).

The Poisson regression model assumes that the response variable (y) follows a Poisson
distribution with a mean and variance of (1) (Algama and Abdalteef, 2019). Additionally, it is
assumed that the logarithm of the expected value of the response variable can be represented as a
linear combination involving several unknown parameters. Because of this property, the
Poisson regression model is often referred to as the log-linear model (McCullagh and Nelder,
1989):

E(y)=1=xpB (2)

According to this linear formula, the explanatory variables allow for any real value of
the mean of response variable y, which contradicts the nature of the Poisson distribution
parameter (A) since it must take positive values. To overcome this issue, we employ the
logarithmic link function to establish a relationship between the mean (A) and the explanatory
variables (x), thereby adopting the generalized linear model (McCullagh and Nelder, 1989):

LOg/l = ﬁo + B1x1 + "'ﬁLxL Where xO = 1
A=exp (Bo + Prx1 + - Prxr) 3)
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2.2 Mixture Poisson Regression For Latent Class :

We will work with the dependent variable y; which denotes the total number of events
measured in a sample comprising (n) observations. The independent observations y, _y, are
assumed to be organized into (c) classes, and each observation y; belonging to class k follows a
Poisson distribution with the parameter ;) as follows :

A .
e L|k(A. k)yl ]
Pk(yil/lilk):y—"ll' i=1l..n.k=1....c 5)

!
In Py (vi| i) = yi In(Aipk) — Ay — In(y; )

As per the generalized linear model (McCullagh and Nelder, 1989), the conventional parameter
is expressed as follows:

Q(Aijk) = In Ay

In A, = Bok + Xi1 Pk + -+ XiBrk (6)

The latent class model is commonly employed to analyse grouped discrete data,
presumed to adhere to a mixture distribution (Clapperton, 2022). Consequently, the Poisson
regression model for the latent class incorporates a blend of linear logarithmic (Poisson)
regression distributions with a latent variable k (k = 1, 2, ..., ¢) as depicted below:

C

P(yila.p) = Z ay P (vi|Aigx) ™
k=1
The parameter (a;) can be understood as the unconditional probability of an individual
belonging to class k. This probability is based on the assumption that, given an individual i
belongs to class k, the number of events for that individual follows a Poisson distribution with
parameter ;. (Yang and Lai, 2005).

To address heterogeneity across individuals, we employ two approaches (Lin and Tsai, 2022):
Firstly, we use a formula where the average event rate takes on a discrete patchwork distribution,
which varies across a finite number of unobserved populations.

Secondly, the average event rate within each category also varies based on the explanatory
variables.

2.3 Estimation of Model Parameters Using Expectation Maximization Algorithm:

The EM algorithm is an iterative algorithm for an estimation of the parameters. Instead
of maximizing the log-likelihood function for dataset Y containing n observations, it maximizes
the complete-data log-likelihood. The complete data are assembled from the observed data Y
(sampled dataset) and the missing data (Pani¢ at el., 2020) .The expectation-maximization (EM)
algorithm is developed by (Yang and Lai, 2005) by considering {y;.....y,}as an incomplete
data set, with the latent class variable z;;, = (z;;.....z;c)" being treated as missing. The variable
z;;, signifies whether the observation y; belongs to latent class k, and it takes on two possible
values (0, 1) , as follows:

_ _ (L if y; € kthclass
Zi = 2 (i) = {0. otherwise

It is assumed that z,; is a polynomial i.i.d with probabilities «; since with its distribution
function, it is (Yang and Lai, 2005):
Cc

Pz = | g ®

k=1
Where P(z;) represents the probability of observing i belonging to one of the classes.

If z,; equals 0, it signifies that the observation y; does not belong to class k, resulting in
a probability of 1 — «a;, for belonging to class k. Conversely, if z;; equals 1, it indicates that the
observation y; belongs to class k, resulting in a probability of «; for belonging to class k. As a
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result, we calculate the probability of observing y; belonging to class k by raising a;, to the
power of z;.
Cc

PGilz) = | [Py ©)

k=1
P(y;|z;) represents the probability of observation y; , given class membership z; . And
P, (y:|Bi) represents the probability mass function of the Poisson distribution of observation y;
when it belongs to class k, whose parameters are determined by the class-specific parameters Sy,

n n
PGy 71w 2n) = | [PORz0 = | [POalz0P@
i=1 i=1

n

PG oY 2 ez) = | | (]_[(Pkmwk))z’“ ak) (10)
k=1

=1

Therefore, the logarithmic maximum likelihood function will be as follows:

n C n C
InL = ZZ Zyi In P (v By) +ZZ Z; Inay (11)

i=1k=1 i=1k=1

During the E -step, we utilized E (z;|y;. a. B)) to estimate z; this is because z; is missing data.

P(yi.zr))  P(ilzki) P(Zri)

KV TP < a Py | B)
1=z
(P | B (S= s 1 )
P(ziily) = = (12)
falt Y as By | Bs)
. aPr (i | Br)
Zii = Elzyily; ca.Br] = 1% +0
e = Elzaly:. o - e a, POy | o)
agPr (y;
Ps = _ kP Vi | Br) (13)
s=1 s Ps(yi | Bs)
Therefore;
n (s n C
EMn)= ) > 2P OilB)+) Y 2 Ina
i=1 k=1 i=1k=1

During the M-step, we aim to maximize E(InL) with the restriction Y-, a, = 1;
considering the Lagrange multiplier multiplication, we subsequently take the derivative with
respect to a;, and set the resulting equation to zero.

Cc

d
5 (E(nL) —y(; @ —1)) =0

n A
& = E—‘—Tll “ (14)
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i=1 k?ll i=1k=1
d 0 In P (y;|4i 04
—L(ﬁ) _ ZZAki< n k(yll l|k)>( L|k>
9B 7 T

i=1

Where:

In P il i) = i In(Ag) — Aipe — In(yi!)
L

In /1i|k = Z XitBu

=1

ILB) _ (v e o
0k Aijk ' 0Bk ik
a n n
R Vi R
ﬁL(ﬁ) = szi (/1_ - 1> Xl = szi i — i) xa
Lk i=1 ik i=1
Fisher Matrix is:
n
—E M :ZZA A Xt X = {X'W X} r
aBlkaﬁl’k - ki Mk Al Al kA sl
1=
Where:
1 xp X2 o Xy 21?1)11|k 0
X=|: L and W, = : : (15)
1 Xn1 Xn2 7 XpL 0 ZAIgnlnlk

Typically, the Newton-Raphson process or method is employed to adjust or modify InA;, and
subsequently estimate fy.

dlnA;
Vi = I A + (i = i) d,lilklk
1
=InAye + (yi — /1i|k)m (16)
X' Wi XBi = X' Wy v
Br = (X' W)™ X' Wi vy 17)
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Below is a diagram of the EM algorithm:

/inputZSCSn /

¥
/ input € /
!

Input initial values z” and B

andlet s=1

v

—
Compute In A9, = Box ™ + By 2By
4
n _(s-1)
Compute o = ==22k
v
(s—=1)4(s)
Zer M 0
Compute W, = : :
(5=1)4(s)
0 "t Zgn Anlk
L 2
1
Compute ¥ =In Afls,z + (yi - lff,i)rls;
7
Update B to B
) = (X' W X)X W v
L 2
Update 2z to z(”
4O _ ar P (i | Br)
t £=1 as Ps(yi | ﬁs)
\4
YES no
Print s=s+1

Figure 1:- Diagram of EM algorithm
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2.4 Genetic algorithm:

Genetic algorithm is one of the most important tools in artificial intelligence and
machine learning (Seretis et al, 2018). It is based on biological evolution and is used in many
applications in various fields. One of these important applications is using genetic algorithms to
improve the parameters of regression models in general. Latent class mixture Poisson regression
is also one of the models in which the genetic algorithm can be applied to improve the values of
its parameters, Below is a diagram of the genetic algorithm (Mahdavi et al, 2009) :

Create an initial generation

v
Find objective function

v
Find fitness value

v

Create initial generation function

‘4

Parent Selection function

L J

Crossover function

L J

Function Mutation
Regeneration . 7

Process

Find objective function

2

Find fitness value

vy
Find the Probability of Contribution

Print the near-
optimal
solution

Stopping
criteria

The results The results are not appropriate,

and the improvement process

@ appropriate continues

Figure 2: Diagram of a genetic algorithm

are
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2.5 Applying the genetic algorithm to estimate the parameters of the Poisson mixture
regression model for latent classes

We apply the steps of the genetic algorithm to the objective function equation of a
Poisson mixture regression model for the latent class to estimate the model parameters
1- Start: The chromosome is formed by the parameter values, where the genes represent the
chromosome.
2- Initialization: Generating the first generation (or initial) by assigning initial values to the
genes, generated randomly.
3- In the objective function, the chromosome is evaluated, and the one possessing a smaller
objective function value corresponding to a higher likelihood is selected. Then, the evaluation

function is determined using the following equation:
1

1 + objective function

fitness function =

The probability of the evaluation function (best evaluation) can be calculated using the following
formula:

Ci = zvfL
2i=1/ )

Where:

C; : represents the probability of chromosome i.

fi : represents the evaluation function for chromosome i.

N :is the population size.

And using one of the selection criteria known as the "roulette wheel," a random number, denoted

as 7, is generated within the interval [0,1]. This number is then compared to the first
chromosome, denoted as c(;).~The first chromosome is selected if 7., is less than ¢4y . This

process is repeated for each iteration, and it determines one chromosome for the new population
based on the evaluation function.

4- Selected chromosomes are hybridized through mating between two chromosomes, employing
one of the hybridization criteria known as regulated hybridization. This is done based on the
hybridization probability, denoted as P. , and this probability value is determined by the
researcher, typically falling within the range P. = 0 - 25. This value is then compared with the
genetic values of the chromosomes (parents) to generate the new generation (offspring), and the
exchange occurs when the gene value is greater than or equal to the specified P,.

5- The mutation process, which depends on the probability value P_m for the parameters, and
this probability value is calculated using the following formula:

Fitvalue — fiean

_)0-09— if Fitvalue > fhnean

Pn

fmax
0-09 otherwise

Where: Fitvalue represents the evaluation function value, f,,.q, represents the population mean.
fmax represents the maximum value in the population.

By replacing randomly selected genes with new values also generated randomly, we obtain them
using the following formula:

The sum of genes = (number of genes in the chromosome) x (population size).

6- We refer back to step three until the separate achievement criterion is met.

442



Journal of Economics and Administrative Sciences P-1SSN 2518-5764
2024; 30(140), pp. 434-449 E-ISSN 2227-703X

7- The evaluation of parameters is carried out based on the value of the objective function to
estimate the parameters of a Poisson mixture regression model for the latent class.

3. Discussion of Results:
3.1 Simulation Preparation:

This paper’s simulation experiments involved writing several MATLAB programs to
generate simulated data to compare methods across different sample sizes. Three sample sizes
were adopted for generating the data, namely (n; = 50,n, = 90,n3 = 130). The independent
variables were generated from a uniform distribution:

x,~U(0,2) , x,~U(0,32)

The model will include two independent variables, x; and x; , so we will use:
In A = Bok + Birxin + BarXiz
The generation values are based on three scenarios for default parameter values:

Table 1: Represents the three scenarios, S1,S2, and S3, the default parameter values in the
presence of x;,x5.

Scenario | Bo1 | Bi1 | P21 | Boz | Biz | B2z

S1 1 2 -2 05 3 -1
S2 2 -1 -3 0.8 1 -2
S3 0.3 1 -1 1.5 2 -3

Alpha (a) is selected to be 0.3 of the sample size (n), where data will be generated in the amount
of 0.3n according to the first class:
ln Aill = ‘801 + ‘811Xi1 i = 1,2,3 (03 n)

As for the observations of the second class, they are generated from the remaining 0.7n based on
the model:
In2y2 = Boz + Pr2xin i=03n+1).. n

We calculate a parameter of the Poisson distribution from the equation:
Aijie = eBok+BikXi1

After that, y; is generated from a Poisson distribution.
yl-~poisson(/1i|k)

Then, estimation methods, represented by the Expectation Maximization (EM) algorithm and the
genetic (GA) algorithm, are applied to the generated data.

3.2 Results of Simulation :

Each experiment was repeated 500 times. The estimated parameter Z,; is used to
determine the observation's membership. The number of observations correctly classified
according to the Rate equation is calculated. The Mean Squared Error (MSE) is used as a
statistical measure for comparison between the estimation methods, which are the Expectation
Maximization (EM) algorithm and the Genetic Algorithm (GA).
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Table 2: Represents the Mean Squared Error (MSE) for the estimators and the three scenarios
(S1, S2, S3) with respect to sample size n=50 and a = 0.3 when considering x; , x,

scenario a 1-«a Bo1 B11 B21 Boz Bz B2z Rate
s1 EM 0.31 0.31 0.21 0.36 0.25 0.53 0.42 0.34 0.54
GA 0.21 0.21 0.17 0.29 0.18 0.43 0.31 0.14 0.62

$2 EM 0.37 0.37 0.25 0.32 0.33 0.49 0.27 0.41 0.57
GA | 0.29 0.29 0.21 0.28 0.31 0.41 0.27 0.40 0.63

s3 EM 0.19 0.19 0.29 0.36 0.31 0.28 0.34 0.33 0.57
GA | 0.12 0.12 0.22 0.31 0.27 0.15 0.32 0.31 0.68

By looking at Table 2, we observe that for a sample size of n=50 and across all three
scenarios (S1, S2, S3), the genetic algorithm outperformed the EM algorithm for all parameter
values, as indicated by the Mean Squared Error (MSE) values for each parameter. Significantly,
in the genetic algorithm, the MSE values for all parameters are lower than the MSE values in
the EM algorithm. This indicates that the genetic algorithm has indeed improved parameter
estimation at n=50.
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Figure 3 : represents the true function f(x) and the estimated functions f (x) obtained using the
EM algorithm and the Genetic Algorithm (GA) for all three scenarios (S1, S2, S3) for x; and x,

when the sample size is n=50.




Journal of Economics and Administrative Sciences

2024; 30(140), pp. 434-449

P-ISSN 2518-5764
E-ISSN 2227-703X

Through Figure (3), we notice the closeness of the real values and the values estimated
by the EM and genetic algorithms when the sample size is n=50.

Table 3: Represents the Mean Squared Error (MSE) for the estimators and the three scenarios
(S1, S2, S3) with respect to sample size n=90 and a = 0.3 when considering x, , x,

scenario a 1-«a Bo1 P11 B21 Boz Bz B2z Rate
s1 EM 0.034 | 0.034 | 0.068 | 0.048 | 0.036 | 0.042 | 0.037 | 0.031 0.67
GA | 0.027 | 0.027 | 0.059 | 0.041 | 0.031 | 0.039 | 0.032 | 0.028 0.79

$2 EM | 0.027 | 0.027 0.054 | 0.032 0.037 | 0.027 0.022 | 0.017 0.66
GA | 0.021 | 0.021 | 0.043 | 0.026 | 0.030 | 0.025 | 0.018 | 0.016 0.81

s3 EM | 0.033 | 0.024 | 0.055 | 0.042 0.033 | 0.048 | 0.039 | 0.037 0.68
GA | 0.028 | 0.024 | 0.050 | 0.041 | 0.031 | 0.039 | 0.031 | 0.032 0.83

By looking at Table 3, we observe that for a sample size of n=90 and across all three
scenarios (S1, S2, S3), the genetic algorithm outperformed the EM algorithm for all parameter
values, as indicated by the Mean Squared Error (MSE) values for each parameter. Significantly,
in the genetic algorithm, the MSE values for all parameters are lower than the MSE values in the
EM algorithm. This indicates that the genetic algorithm has indeed improved parameter

estimation at n=90.
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Figure 4: represents the true function f(x) and the estimated functions f (x) obtained using the
EM algorithm and the Genetic Algorithm (GA) for all three scenarios (S1, S2, S3) for x; and x,

when the sample size is n=90.
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Through Figure (4), we notice the closeness of the real values and the values estimated by the
EM algorithm and the genetic algorithm when the sample size is n=90.

Table 4: Represents the Mean Squared Error (MSE) for the estimators and the three scenarios
S1, S2, S3) with respect to sample size n=130 and a = 0.3 when considering x, , x,

scenario a 1-«a Bo1 Bi1 B21 Boz P12 B2z Rate
s1 EM | 0.0087 | 0.0087 | 0.0076 | 0.0058 | 0.0053 | 0.0062 | 0.0066 | 0.0048 | 0.76
GA | 0.0079 | 0.0079 | 0.0068 | 0.0051 | 0.0051 | 0.0043 | 0.0038 | 0.0032 | 0.84

s EM | 0.0062 | 0.0062 | 0.0058 | 0.0049 | 0.0036 | 0.0033 | 0.0032 | 0.0029 | 0.76
GA | 0.0058 | 0.0058 | 0.0053 | 0.0041 | 0.0031 | 0.0022 | 0.0029 | 0.0025 | 0.84

s3 EM | 0.0031 | 0.0031 | 0.0053 | 0.0045 | 0.0038 | 0.0033 | 0.0032 | 0.0029 | 0.79
GA | 0.0029 | 0.0029 | 0.0048 | 0.0037 | 0.0032 | 0.0028 | 0.0029 | 0.0025 | 0.88

By looking at Table 3, we observe that for a sample size of n=130 and across all three
scenarios (S1, S2, S3), the genetic algorithm outperformed the EM algorithm for all parameter
values, as indicated by the Mean Squared Error (MSE) values for each parameter. Significantly,
in the genetic algorithm, the MSE values for all parameters are lower than the MSE values in the
EM algorithm. This indicates that the genetic algorithm has indeed improved parameter
estimation at n=130.
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Figure 5: represents the true function f(x) and the estimated functions f (x) obtained using the
EM algorithm and the Genetic Algorithm (GA) for all three scenarios (S1, S2, S3) for x;, and x,
when the sample size is n=130 .




Journal of Economics and Administrative Sciences P-1SSN 2518-5764
2024; 30(140), pp. 434-449 E-ISSN 2227-703X

Through Figure (5), we notice the closeness of the real values and the values estimated by the
EM algorithm and the genetic algorithm when the sample size is n=130.

4.Conclusion:

1- Through simulation and for different sample sizes (50, 90, 130), we observe the superiority of
the Genetic Algorithm over the Expectation Maximization (EM) algorithm, as the Genetic
Algorithm (GA) vyielded lower Mean Squared Error (MSE) values for all parameters at all
sample sizes and for all three scenarios (S1, S2, S3), This indicates that the genetic algorithm has
improved the parameter values.

2- As the sample size increases, there is an increase in the convergence of the real observations
belonging to each class, and the observations are estimated using both the EM algorithm and the
genetic algorithm (GA) for the first and second variables.
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