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Abstract:

Many Research and clinical studies have addressed the occurrence of failure (death). As
a result of other (external) factors, which may introduce additional risks that compete with the
event under study. The resulting data refers to the complete data on Competing risks, which are
affected by time differences. The exact times of occurrence of these risks are known, meaning
the times of failure are observed for all observations with certainty. The impact of these risks on
the hazard function is estimated based on the Cox proportional hazards model, which is
estimated using the partial maximum likelihood method and numerical algorithms for parameter
estimation. This includes the effect of variables on the Cox hazard function and the
nonparametric part, estimated by assessing the effect of time on the hazard function using the
Kaplan-Meier formula and calculating competing risks through the cumulative hazard function.
These methods were applied to experimental data through large-scale simulations of different
sizes and parameters and for several arithmetic means and standard deviations models.
Moreover, applied to real data from a sample of 80 individuals with breast cancer. Analyzing the
simulation results and real data revealed that the Downhill algorithm outperforms the Newton-
Raphson algorithm in terms of estimation accuracy and efficiency, based on the statistical
criterion for comparison, the root mean square error. In addition, competitive risks explained the
effect of common variables in increasing competitive risks beyond the hazard function of the
Cox model of the Newton-Raphson estimator. While it is converging to the hazard function of
the Cox model for the Downhill estimator .

Paper type: Research paper
Keywords: Hazard function, Complete data, Cox proportional hazards model, partial Maximum
likelihood, Newton-Raphson algorithm, Downhill algorithm.
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1. Introduction:

Reliability and its applications are important topics with significant impact and
relevance in various aspects of life. This importance is reflected in the study of survival and
hazard functions for devices, equipment, and medical conditions under surveillance.

Competing risk methods are commonly used in biomedical Research, particularly in
cancer, where dealing with multiple possible outcomes is crucial. For example, cancer-related
deaths may be the primary event of interest. However, deaths due to other causes (e.g., liver
function, diabetes, kidney function, etc.) are typical examples of competing risks. These risks
vary depending on the specific condition under study, and the data rely on continuous
monitoring during the specified study period.

Reliability has taken on an important and prominent role in estimating the effect of
shared (external) variables and time on the hazard and survival functions. These functions
depend on competing risk variables, the time of event discovery under study, and the time of
study end.

Complexities arise when multiple time-varying covariates re[present various types or
causes of failure that influence the cumulative event function. The application of the Cox
proportional hazards model,was first proposed in 1972 by the renowned statistician D.R. Cox for
estimating the impact of these shared variables on the hazard function. The most important thing
that makes this model commonly used in analysis is the possibility of benefiting from it to
estimate only part of its mediators.

The primary objective of estimating parameters in any model is to select the best-fitting
model that yields good parameter estimates. This is achieved by choosing the optimal method
and formula for obtaining parameter estimates based on the comparison criterion used in the
study. There are several methods for estimating parameters in the Cox proportional hazards
model to assess the impact of variables and time on the hazard function, affecting the survival
function for the cases under study. By estimating the parametric part of (), represented by the
effect of variables on the risk function, using the partial maximum likelihood method, and to
obtain the parameter results, used numerical algorithms (Newton Raphson - Down Hill).

The nonparametric part is estimated by assessing the effect of time on the baseline
hazard function. Subsequently, competing risks are estimated using the cumulative hazard
function, which is applied to Real complete data .

1.1 Literature review:

Many studies have discussed the issue of competing risks and their impact on the event
function, including: Jewell et al. (2003) conducted a study on estimating survival distributions
for current state data in the context of competing risks and observations were presented
regarding the nonparametric maximum likelihood estimate, which is the estimate from the age

distribution in both natural and surgical menopause. Groeneboom et al. (2008) used the
nonparametric estimation of current status data with competing risks; The main focus was on the
maximum likelihood estimator (MLE) and the naive estimator. It has been proven that both
estimators converge globally and locally at a rate of n*(1/3). Tang et al. (2013) applied the Cox
proportional hazards model was applied to analyze early failure data in power cables; The Cox
model analyzes a set of common variables simultaneously and identifies the variables that have
significant effects on cable failure. Hudgens et al. (2014) Studied the Parametric estimation of
the cumulative event function (CIF) for interval observation competing risk data, which is based
on prior nonparametric estimation, as well as the simple probability estimator, which uses only
part of the observed data. The simple estimator gives a separate estimate for the models for each
cause, unlike the complete maximum likelihood, which fits all models at one time. Mao and Lin
(2017) used a semi-parametric regression model to formulate the effects of shared variables on
the cumulative event function that needed estimation. They employed a wide range of semi-
parametric transformation models that extend to Fine and Gray models. Do and Yang (2017)
Suggested several ways to analyze competing risk data. In case of loss of failure causes and

451



Journal of Economics and Administrative Sciences P-1SSN 2518-5764
2024; 30(140), pp. 450-465 E-ISSN 2227-703X

failure time, the (Klein—Andersen’s) pseudo-value approach was applied; The proposed method
was evaluated through comparison with full case analysis in several simulation settings.
Thackham and Ma (2020) proposed to apply the Cox model to deal with non-proportional
hazards by estimating the partial likelihood of time-varying covariates. The lack of precision in
estimating regression coefficients in small samples was addressed by developing the maximum
likelihood. To estimate the regression coefficients and the basic hazard, shown through
simulation to have increased accuracy compared to partial likelihood (PL) estimates in small
samples. Guerrero et al. (2023) conducted an individual patient data (IPD) meta-analysis to
assess the effect of anticoagulation on all-cause mortality in patients with cirrhosis and portal
vein thrombosis; previous meta-analyses demonstrated the safety and efficacy of anticoagulation
in the recanalization of portal vein thrombosis in patients with cirrhosis Whether this benefit
translates into improved survival is unknown.

The problem Research is the occurrence of additional risks that affect the risk function,
taking into account the actual failure time; these risks also affect the increase in the cumulative
risk function represented by Competing risks over the model's risk function.

The Objective of Research is to estimate the effect of covariates represented by
Competing risks on the model's risk function for complete data and determine the best method
based on the statistical criterion, root mean square error.

2. Material and Methods:
2.1 Cox Proportional Hazards Model:

It is one of the widely used models in survival analysis and hazard function estimation
for Censored data in the experiment, and in the mainly time-dependent areas of study. It is an
alternative to commonly used models such, as the linear and logistic regression models, which
are unsuitable for use with Censored data. This model is one of the popular models that study
Censored data due to the ease of dealing with the data (Tang et al, 2013).

The Cox model is considered a semi-parametric model because it consists of two parts.
The first part is parametric, representing the exponential function to estimate the parameter, and
the other part is nonparametric, representing the effect of time on the basic hazard function. It is
possible to benefit from the Cox model by estimating only part of its mediators, which makes it
widely used. The mathematical formula for the Cox proportional hazards model is typically
expressed as follows (Thackham et al., 2020).

h(t, x) = ho(t).exp(B"X) 1)
Where:
h,(t) The baseline hazard function represents; § Cox Model Parameters Vector, X Matrix of
Independent Variables Expected to Impact the Hazard Function h(t, x)

If you have two independent variables, X1 and X2, the Hazard Ratio for the first variable, X1,
to the second variable, X2, is calculated as follows (Scheike and Sun, 2007).

ht,x1) _ ho(t). exp(Bxy)

th, xz% ho(t). exp(Bxz)
t,

h(t, iz) = eXp[B(xl - xZ)]

After taking the natural logarithm, it becomes:
h(t, xq)
[h(t, 2) B(xl )

This means that B represents the increase in the natural logarithm of the first variable’s hazard

h(txq)

h(txy)

ratio to the second variable’s hazard by one unit.
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2.1.1 Estimation Methods for the Cox Model:
2.1.1.1 Partial Maximum Likelihood Method:

In 1980, the scientist Cox proposed a method for estimating the parameters f3, called the
Partial Maximum Likelihood Method. It is a widely used method that depends on the order of
events (death) as follows: t(y) t(2), -+, t) » The sum of the elements under danger (death) at t is F
(ti) The formula that illustrates the Partial Likelihood Method for parameter estimation is as
follow (Cox, 1975).

fB) = LSO
* Yjerce Mtw, )
Where h(t(;, xx) represents the studied event function at time t(i), and
> JEF(tw) h(t), x;) represents the function of the occurrence of the event of interest (death) for
each element under the risk set F ;).

Therefore, the partial likelihood function under the assumption of the event of interest (death)
occurring at time t(i) can be written as follows (Sinha et al., 2003).

(2)

2.

exp(B”xx)

L(B) = 3
) L_l[Zjep(t(i)) exp(BTx;) @)
By taking the logarithm of the partial likelihood function:

T
nl(B) = ) (" — In[) exp(xiM]} )
i=1 JEF

The parameter estimates from the partial likelihood can be obtained using numerical
methods, and two commonly used numerical methods are the Newton-Raphson algorithm and
the Downbhill algorithm (DH) for the function (4).

a) Newton-Raphson Algorithm:

The Newton-Raphson algorithm is efficient for finding roots of real-valued functions
and solving linear equations. It is also commonly used to solve nonlinear equations that may be
complex and cannot be easily solved using traditional methods. This algorithm was originally
proposed by Isaac Newton and Joseph Raphson in 1960( Yalginkaya et al., 2018).

Using the Newton-Raphson algorithm in this context is to obtain the best parameter
estimates B based on initial estimates (Initial estimates are obtained from the partial maximum
Likelihood method). using the newton-Raphson algorithm’s iterative approach for the partial
likelihood equation defined in formula (4), the NR algorithm can be expressed mathematically
as follows (Akram and Ann, 2015).
p(r+1) — p((r) F(r) 5
.B - .8 - p ( )

In the context of the Newton-Raphson algorithm:

e 1 represents the number of iterations.

o B(r+Drepresents the new parameter estimates

o BMrepresents the parameter estimates obtained in the r.

« FMrepresents the first derivative vector of the logarithm of the partial likelihood function in
the r-th iteration.( Casella and Bachmann, 2021).

(oL . Txedh
F_< B >_;xl ZjEFeij

P The matrix that represents the second derivative of the logarithm of the partial likelihood
function for the r
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_ [aZLnL(m -y [(z,-EFeXfﬁ(z,-EFijexfﬁ) ~ (Bjer XjeF)’
o°p = Sjere?)’

After calculating the absolute difference between the new and previous parameter
estimates, the algorithm checks whether this absolute difference is smaller than a predefined
threshold value c. If the absolute difference is smaller than c, the algorithm stops, and the
optimal solution is printed.
|,3(T+1) _ B(r)l <c (6)

Where c is an extremely small constant value.

b) Downhill Algorithm:

This algorithm is one of the numerical algorithms proposed by the two scientists Nelder-

Mead in 1965. Which works to find the optimal solution to the objective function, that is, to
obtain the minimum limit of the objective function in complex functions, which depends on
guessing several points of the objective function (Fajfar et al., 2017). Moreover, because it does
not need derivatives, it is very popular in many fields of science and technology, especially
chemistry and medicine. The Downhill Algorithm is based on a geometric shape with several
geometric forms of n dimensions and n+1 points represented as (Z4, Z5, ..., Z,+1). These points
represent the order of values of the objective function at each test, as follows (Galantai , 2021).
for S fry S < frn 7)

Where Z1 represents the best point; and Z,, ., represents the worst point. Here are the steps for
parameter estimation:

1.Choose the partial likelihood function, represented by the objective function, which is the
negative logarithm of Equation (4).

f, = —InL(z) , where Z = ()

2.Fixing the algorithm parameters. Reflection « = 1, Expansion € = 2, Contraction y = 0.5,
Contraction ¢ = —0.5.

3.Create an initial solution matrix S with dimensions of ((n+1)*1).

B1
5= [ s ] @
Br+1

4.Estimate the objective function for each row of the matrix S and arrange the estimates from
lowest to highest.

fo, S fzy S S frns

5.The reflection point (r) is calculated using the following formula:

Zy =S+ a(S—Zny) €))

After calculating the reflection point, we compute the objective function (f; ). If:

fo, < [z, <+ < f, We setZ, = Z,,and then proceed to step (9). Otherwise, we move on to
the next step.

6.Calculate the expansion point (e) according to the following formula:

Z,=S+¢&(Z,-5) (10)

Calculate the value of the objective function (f;,) after expansion. If:

f2, < f, Calculate the point of contraction (c) using the formula: Z, = Z,,,Proceed to step 9.

7.Calculate the contraction point (c) using the formula:

Ze=S+y(Zn41-9) (11)
Calculate the objective function f, after the contraction. If:

fz, < [z, Exactly, Z, = Z,, . ,and proceed to step 9. If not, you move on to the next step.
8. Calculates the contraction point (Sh) based on the formula mentioned.

Zsp =21 +Y(Z; — Zy) (12)




Journal of Economics and Administrative Sciences P-1SSN 2518-5764
2024; 30(140), pp. 450-465 E-ISSN 2227-703X

9.Applied when the stopping condition is met in the previous steps, as indicated by the formula.
max(f) — min(f)
max(f)

If the stopping condition is met, the algorithm proceeds to print the solution; otherwise,
it returns to Step 5. This iterative process continues until the desired convergence is achieved
(Mehta, 2020).
2.1.1.2 Kaplan-Meier:

The Kaplan-Meier estimator is a non-parametric estimator used to estimate the survival
function. This estimator is known for its ease of calculation and interpretation. In medical
research, it is often used to measure the proportion of patients who survive for a certain period
after treatment. In other fields, it can be used to estimate the length of time individuals remain
unemployed after job loss. It was named after Edward L. Kaplan and Paul Meier in 1958 (Smith
and Smith, 2003).

The visual representation of this function is typically called the Kaplan-Meier curve,
which shows the survival probability on the Y-axis and time on the X-axis. Kaplan assumed that
the event of interest occurred at a specific time, and the probability of survival for all
observations was the same, regardless of when they entered the study. Observations Submissive
Censored have the same probability of survival.

The following formula defines the Kaplan-Meier survival function (KM) (Andrade, 2023).
k

A n; —d;
“szlln : k=12,..,71 (13)
i=1 L

the definition
n; represents the number of individuals who have survived until time t;.
d; represents the number of events (deaths) at time t;.
The following formula gives the cumulative failure distribution function:
F®)=1-5@
The probability density function is estimated using the non-parametric empirical method
according to the following formula:

_ S(tiv1) — S(&)

(1) =
! tiv1 — 4
= t; . 14
(G- 7 s a
The following formula gives the failure time hazard function ( Teoh, 2008).
~ o J@® 1
h(t) = for tice<t;,, (15)

S (tipa—td)(n+1-dy)
2.2 Competing risk

Competing risks arise when there are multiple possible outcomes in clinical research
during survival analysis. For example, cancer-related deaths may be of primary interest, but
deaths due to other causes not related to cancer are typical examples of competing risks. In such
cases, death can occur before the disease onset (Sildnes, 2015). Competing risks can be
estimated using the Cumulative Incidence Function (CIF), which can be estimated using the
Nelson-Aalen estimator through the following formula (Groeneboom et al., 2008).

~ d;
Aw =) (16)

Where d; is the number of individuals who die during the period t;, and r; is the number of
individuals at risk during t;.
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3.Discussion of Results :
3.1 Simulation:

Simulation is representing or mimicking the real world, obtaining a similar or analogous
model or system without relying on the same model or system. Often, we encounter complex
processes in the real world that are difficult to analyze logically, leading to the translation of
statistical theories through simulation to obtain results (estimates) that mimic the real world.
Samples of different sizes (small, medium, large) are taken to visually represents the studied
process or the real-world scenario through simulation. Simulation is used to compare different
estimation methods and determine which is best for estimation (Thackham and Ma, 2020).

3.1.1 Simulation involves the following steps:
Stage 1:

Generating common variable values (X, X,, X3)for the complete data in the first stage
involves random generation based on a uniform distribution over the interval (0, 1) for the initial
value. Afterwards, the data is generated using a normal distribution with arithmetic means and

standard deviations that have been assumed, as described by the following formula:
X— |

fo) = pll

Where p represents the arithmetic mean, ¢ represents the standard deviation.

As for time t, it was generated in vector form t=1,2,....,n .

Stage 2:

This stage is one of the most crucial, where the initial assumed values are determined. The

values are specified as follows:

o Assumption of the required sample size: n=(20, 50, 90, 120).

 Determination of repetitions for each experimental unit: 1000

« Determine initial parameter values 3 for the Newton-Raphson estimator: (0.242, 1.342, 0.842)

and for the Downbhill estimator: (1.1778, 0.7661, 2.1023). The arithmetic means and variances

are shown in the following table.

Table 1: Displays the arithmetic means and standard deviations of the common variables

Model | Mean(t) | u(X;) | p(Xp) | u(X3) | Std(t) | o(Xy) | 0(Xz) | 0(X3)
I 1584.35 | 585 | 23.03 | 483 | 318.36 | 1.87 | 16.57 | 1.68
1 174279 | 6.44 | 2533 | 531 | 350.20 | 2.05 | 18.23 | 1.85
"l 142592 | 527 | 20.73 | 434 | 28653 | 1.68 | 1491 | 151

Where p(t) represents an arithmetic mean of time close to the time mean of real data.
Stage 3:

The parameters were estimated using numerical algorithms (Newton-Raphson and
Downhill simplex) for the partial likelihood method, which is the parametric part. The non-
parametric part was estimated automatically for different sample sizes using Kaplan-Meier. This
was done to obtain the hazard function for the Cox model as indicated in Equation (1) and to
calculate competitive risk and the reliability function based on Equations (16) and (13),
respectively.

Stage 4:

Comparison between the studied estimation methods and determining the best approach was
carried out based on the statistical measure Root Mean Square Error (RMSE) for the Cox model,
according to the following formula:

RMSE = /MSEh(t,x) (17)

where

A .2
T (hy—h
MSEh ;) = Zl—l(t—f) (18)
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Where:
o I: represents the number of repetitions for each experiment.
e h, : is the estimated hazard function for the initial assumed values.

e h, :is the estimated hazard function for the Cox model.

3.1.2 Simulation Experiment Results:

Based on the results obtained from the various methods, different sample sizes, and different
parameters models, a comparison will be made to determine the best approach based on the Root
Mean Square Error (RMSE). These results are presented in the following tables:

The first case: In this scenario, the assumed parameters S(NR) = (0.242,1.342,0.842)are
used with three different models of arithmetic means and standard deviations denoted by
symbols (1IN (IN(1) for various sample sizes shown in Table 2 .

Table 2: Shows the RMSE values for the parameters and the hazard function of the Cox model
for the assumed parameters and three different models, along with various sample sizes. For
comparison between estimation methods.

Models of Best
the initial N | Methods | RMSE(B;) | RMSE(B;) | RMSE(B3) | RMSEhryy | p1oe o
parameters
20 NR 0.8451 0.6087 0.4761 0.3018 DH
DH 0.7761 0.9014 0.7889 0.0027
50 NR 0.8037 0.6287 0.4574 0.1787 DH
I DH 0.8086 0.8564 0.8708 0.0015
90 NR 0.7633 0.6616 0.4512 0.6378 DH
DH 0.8235 0.8672 0.7966 0.0041
120 NR 0.7879 0.6396 0.4531 0.1366 DH
DH 0.8202 0.8540 0.7937 0.0010
20 NR 0.7774 0.6494 0.4524 2.1849 DH
DH 0.7881 0.7617 0.8389 0.0063
50 NR 0.8388 0.6038 0.4676 5.2208 DH
Il DH 0.8586 0.8389 0.8959 0.0042
90 NR 0.7921 0.6388 0.4558 2.1726 DH
DH 0.8681 0.8007 0.8077 0.0024
120 NR 0.7426 0.6802 0.4506 1.3282 DH
DH 0.7951 0.8092 0.8439 0.0033
20 NR 0.8372 0.6135 0.4732 1.4089 DH
DH 0.8279 0.8533 0.9114 0.0055
50 NR 0.7662 0.6595 0.4518 0.4023 DH
111 DH 0.8266 0.7942 0.8779 0.0025
90 NR 0.7697 0.6546 0.4506 0.0768 DH
DH 0.8535 0.8684 0.8630 0.0010
120 NR 0.7564 0.6665 0.4499 0.3569 DH
DH 0.7709 0.7313 0.8106 0.0043

From Table (2), we observe that in all the models mentioned in Table (1), the vast
majority of the estimates and risks are for the Cox model. The larger the sample size, the lower
the estimator (RMSE), is consistent with statistical theory. Our results show that the Downhill
algorithm outperforms the Newton-Raphson algorithm estimation accuracy and efficiency.
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The second case: represents the assumed parameters S(DH) = (1.1778,0.7661,2.1023) with
the three models for computational environments, standard deviations, and identified by symbols
(N n(n) for different sample sizes shown in Table 3 .

Table 3: Presents the (RMSE) values for the parameters and the hazard function for the Cox
model with the assumed parameters and the three models of computational environments for
various sample sizes for comparison between estimation methods.

Models of Best
the initial N | Methods | RMSE(B;) | RMSE(B;) | RMSE(Bs) | RMSEhryy | p1oei o
parameters
20 NR 0.6139 0.8685 0.8744 0.4925 DH
DH 1.3932 1.3239 1.3425 0.0074
50 NR 0.6209 0.8813 0.8617 0.3031 DH
| DH 1.3660 1.3120 1.3349 0.0026
90 NR 0.6408 0.9112 0.8388 0.2420 DH
DH 1.4150 1.3482 1.3691 0.0009
120 NR 0.6313 0.8978 0.8478 0.2724 DH
DH 1.3849 1.3824 1.3599 0.0007
20 NR 0.6273 0.8897 0.8574 1.5389 DH
DH 1.3714 1.3853 1.4064 0.0023
50 NR 0.6533 0.9347 0.8118 0.4272 DH
Il DH 1.4214 1.3307 1.2541 0.0048
90 NR 0.6468 0.9233 0.8239 3.6767 DH
DH 1.3921 1.3319 1.3706 0.0257
120 NR 0.6128 0.8653 0.8791 0.3605 DH
DH 1.2863 1.4036 1.3936 0.0009
20 NR 0.6979 0.9909 0.7818 0.8350 DH
DH 1.3328 1.3799 1.4413 0.0097
50 NR 0.6627 0.9393 0.8241 0.2751 DH
111 DH 1.3370 1.3888 1.3421 0.0023
90 NR 0.6447 0.9219 0.8221 0.2112 DH
DH 1.3692 1.3665 1.3383 0.0002
120 NR 0.6892 0.9869 0.7680 0.3162 DH
DH 1.3424 1.3589 1.2639 0.0008

From Table (3), we observe that in all the models mentioned in Table (1), the majority
of estimations and the hazard for the Cox model, the larger the sample size, the lower the
(RMSE) estimator, which is consistent with statistical theory. The results show that the Downhill
algorithm is the best, while the Newton-Raphson algorithm performed the worst in terms of
estimation accuracy and efficiency.

3.2 Application of Real Data:

Data was collected from the Ministry of Health / Al-Amal Cancer Hospital for a sample
of size n=80 individuals with breast cancer. Three variables (X;: Blood Sugar, X,: Liver
Functions, X5: Kidney Functions) represent competing risks, and the specified study period was
from 2019 to 2023. Initial values for the parameters (8; = 0.4, §, = 15,53 = 1) were
determined to obtain the initial estimator for the Cox model's hazard function. Afterwards,
estimation methods were applied to obtain parameter estimators and the baseline hazard function
for the time effect. The best method among the estimation techniques was determined based on
the comparison criterion (RMSE) for the Cox model with formula (1) and is presented in the

table (4) below:
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Table 4: Presents the estimated parameters and RMSE for the Cox model's hazard function:

Beta estimated
Methods RMSEh
p1 B2 B3 (&%)
Newton 0.2360 1.3360 0.8360 6.2085-06
Raphson
Downhill 1.1778 0.7661 2.1023 2.4107-06

Estimated hazard
function
o
D
(@)
o

0.000 . . . . .
0 20 40 60 80 100
Figure 1: Illustrates the parameter estimates and the hazard function for the estimated
parameters using complete data.
Based on Table (4) and using the RMSEh, ,,comparison metric, it is evident that the Downhill
Simplex (DH) algorithm outperforms the Newton-Raphson (NR) algorithm in parameter
estimation.

Subsequently, the survival function (S(t)), was estimated for all cancer patients and the
specified time in days. Table (5) and Figure (5) illustrate the estimated survival functions for
both methods. From the estimates and the figure, we can observe that the survival function
exhibits a decreasing behavior as the hazard function increases over the study period, which
aligns with the concept of reliability.

Table 5 : lllustrates the estimation of the survival functionS(t)

T S(NR) S(DH) T S(NR) S(DH)

1 0.958275 | 0.952344 41 0.494577 0.406607
2 0.956826 | 0.950662 42 0.492497 0.404296
3 0.955261 | 0.948863 43 0.482161 0.394157
4 0.954656 | 0.948088 44 0.416118 0.318842
5 0.881152 | 0.858335 45 0.413264 0.315522
6 0.869381 | 0.844382 46 0.4078 0.308846
7 0.85842 0.831029 47 0.406557 0.307367
8 0.856037 | 0.827965 48 0.403838 0.304192
9 0.845668 | 0.815164 49 0.398249 0.297076
10 | 0.844685 0.81397 50 0.387232 0.283957
11 0.83448 0.801371 51 0.383583 0.279304
12 0.746514 0.71217 52 0.377803 0.272027
13 0.744964 | 0.710318 53 0.374264 0.267366
14 | 0.671544 | 0.618789 54 0.373245 0.266176
15 0.670326 0.61748 55 0.307014 0.194992
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16 | 0670174 | 0.617309 56 0.305879 0.193599
17 | 0666524 | 0.612699 57 0.30306 0.190087
18 | 065648 | 0.600563 58 0.301343 0.187989
19 | 0645463 | 0.586844 59 0.300148 0.18659
20 | 0.645161 | 0586442 60 0.298609 0.184754
21 | 0.644904 | 0586078 61 0.297389 0.183302
22 | 064353 | 0584447 62 0.293186 0.178507
23 | 0.638135 | 0577716 63 0.292225 0.177303
24 0.634571 0.573721 64 0.281412 0.165079
25 | 0.625167 | 0.562805 65 0.281354 0.165006
26 0.557165 0.48358 66 0.279731 0.163036
27 0.551569 0.476055 67 0.268537 0.149903
28 | 0547867 | 0.471401 68 0.268188 0.149458
20 | 054523 | 0.468445 69 0.265331 0.145879
30 0.545166 0.468372 70 0.253412 0.131696
31 0.545049 0.468236 71 0.247386 0.124094
32 0.544859 0.468007 12 0.181385 0.038317
33 | 0542993 | 0.465771 73 0.179402 0.036249
34 | 0537485 | 0.459595 74 0.177314 0.033719
35 0.533811 0.454708 75 0.171517 0.026037
36 0.532413 0.45317 76 0.162387 0.015384
37 0.521434 0.441222 77 0.151135 0.003136
38 | 0516204 | 0.434631 78 0.147581 0.003126
39 | 0513563 | 0.431257 79 0.138505 0.003136
40 0.503467 0.418176 80 0.138274 0.003036
L survival SR
= S(DH)

0.8 k
0.6 \:\“\
0.2 \\\\.\\\

0 T T T D 1

0 20 40 60 80 100

The figure 2: Shows the survival function for the patients.
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The Cox model’s hazard function for the estimators is shown in the following table and chart.
Table 6 : Shows the hazard function for the model.

t h(NR) h(DH) t h(NR) h(DH)
1 0.042 0.048 41 0.505 0.593
2 0.043 0.049 42 0.508 0.596
3 0.045 0.051 43 0518 0.606
4 0.045 0.052 44 0.584 0.681
5 0.119 0.142 45 0.587 0.684
6 0.131 0.156 46 0.592 0.691
7 0.142 0.169 47 0.593 0.693
8 0.144 0.172 48 0.596 0.696
9 0.154 0.185 49 0.602 0.703
10 0.155 0.186 50 0.613 0.716
11 0.166 0.199 51 0.616 0.721
12 0.253 0.288 52 0.622 0.728
13 0.255 0.290 53 0.626 0.733
14 0.328 0.381 54 0.627 0.734
15 0.330 0.383 55 0.693 0.805
16 0.330 0.383 56 0.694 0.806
17 0.333 0.387 57 0.697 0.810
18 0.344 0.399 58 0.699 0.812
19 0.355 0.413 59 0.700 0.813
20 0.355 0.414 60 0.701 0.815
21 0.355 0.414 61 0.703 0.817
22 0.356 0.416 62 0.707 0.821
23 0.362 0.422 63 0.708 0.823
24 0.365 0.426 64 0.719 0.835
25 0.375 0.437 65 0.719 0.835
26 0.443 0516 66 0.720 0.837
27 0.448 0.524 67 0.731 0.850
28 0.452 0.529 68 0.732 0.851
29 0.455 0.532 69 0.735 0.854
30 0.455 0.532 70 0.747 0.868
31 0.455 0.532 71 0.753 0.876
32 0.455 0.532 72 0.819 0.962
33 0.457 0.534 73 0.821 0.964
34 0.463 0.540 74 0.823 0.966
35 0.466 0.545 75 0.828 0.974
36 0.468 0.547 76 0.838 0.985
37 0.479 0.559 77 0.849 0.997
38 0.484 0.565 78 0.852 1.002
39 0.486 0.569 79 0.861 1.013
40 0.497 0.582 80 0.862 1.013
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Figure 3: lllustrates the hazard function for the model.

Estimated hazard function

Following that, competitive risks were estimated through the Cumulative Incidence
Function (CIF), which is defined as the probability of an event occurring at any time point
between the baseline and the specific time. CIF at a time 't' is calculated by the ratio of the
individuals who experienced the event (death) divided by the total number of individuals at risk
during the time 'ti". As time progresses, CIF increases from zero to the cumulative proportion of
events, as illustrated in the following table.

Table 7: Illustrates the competitive risks for the complete data.

t H(t) t H(t) t H(t) t H(t)
1 0.05 21 0.379999 41 0.558413 61 0.794286
2 0.051764 22 0.381542 42 0.560913 62 0.798401
3 0.053527 23 0.387715 43 0.573259 63 0.799523
4 0.054145 24 0.391831 44 0.653259 64 0.812023
5 0.134145 25 0.404176 45 0.656345 65 0.812089
6 0.14649 26 0.484176 46 0.662518 66 0.813632
7 0.158836 27 0.490426 47 0.66389 67 0.825978
8 0.161336 28 0.494541 48 0.666976 68 0.82639
9 0.173682 29 0.497628 49 0.673149 69 0.829476
10 0.174723 30 0.497703 50 0.685494 70 0.841822
11 0.187069 31 0.497839 51 0.68961 71 0.847994
12 0.267069 32 0.498035 52 0.695783 72 0.927994
13 0.268833 33 0.500092 53 0.701955 73 0.930052
14 0.348833 34 0.506265 54 0.70319 74 0.93211
15 0.350204 35 0.51038 55 0.78319 75 0.938283
16 0.350367 36 0.511924 56 0.784579 76 0.950628
17 0.354482 37 0.524269 57 0.787704 77 0.962974
18 0.366828 38 0.530442 58 0.789468 78 0.967089
19 0.379328 39 0.533567 59 0.790839 79 0.979435
20 0.379666 40 0.545913 60 0.792897 80 0.979685
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Figure 4: Illustrates the cumulative hazard function for competitive risks.
Through Table (7) on competitive risks and compared with Table (6) on the risk function for the
Cox model and its dependent figures, we notice that competitive risks are greater than the risk
function for the estimator. Newton Raphson (NR) indicates the effect of common variables in
increasing risks function on the hazard function, while competitive risks converge with the
hazard function of the estimator and Downhill (Dh).

4.Conclusion:

1.The Down-Hill algorithm demonstrated its superiority in estimating the Cox model for both
cases of parameters that were assumed and for various models of means, standard deviations,
and different sample sizes in the simulation.

2.The preference for the methods of the applied side coincided with the simulation. The results
of the applied side showed that the Downhill algorithm is also the best in estimation.
3.Simulation experiments show that the statistical standard error (RMSE) of the Cox model
decreases as the sample size increases.

4. Through the results of Competing risks for real data, | explained the effect of common
variables in increasing the risk over the hazard function of the Cox model in some estimators
and their convergence in other estimators.

5.From the applied aspect, we notice that the longer the time, the greater the risk for the model,
which leads to a decrease in the survival function.
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