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Abstract: 

Many Research and clinical studies have addressed the occurrence of failure (death). As 

a result of other (external) factors, which may introduce additional risks that compete with the 

event under study. The resulting data refers to the complete data on Competing risks, which are 

affected by time differences. The exact times of occurrence of these risks are known, meaning 

the times of failure are observed for all observations with certainty. The impact of these risks on 

the hazard function is estimated based on the Cox proportional hazards model, which is 

estimated using the partial maximum likelihood method and numerical algorithms for parameter 

estimation. This includes the effect of variables on the Cox hazard function and the 

nonparametric part, estimated by assessing the effect of time on the hazard function using the 

Kaplan-Meier formula and calculating competing risks through the cumulative hazard function. 

These methods were applied to experimental data through large-scale simulations of different 

sizes and parameters and for several arithmetic means and standard deviations models. 

Moreover, applied to real data from a sample of 80 individuals with breast cancer. Analyzing the 

simulation results and real data revealed that the Downhill algorithm outperforms the Newton-

Raphson algorithm in terms of estimation accuracy and efficiency, based on the statistical 

criterion for comparison, the root mean square error. In addition, competitive risks explained the 

effect of common variables in increasing competitive risks beyond the hazard function of the 

Cox model of the Newton-Raphson estimator. While it is converging to the hazard function of 

the Cox model for the Downhill estimator . 
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1. Introduction: 
Reliability and its applications are important topics with significant impact and 

relevance in various aspects of life. This importance is reflected in the study of survival and 

hazard functions for devices, equipment, and medical conditions under surveillance. 

Competing risk methods are commonly used in biomedical Research, particularly in 

cancer, where dealing with multiple possible outcomes is crucial. For example, cancer-related 

deaths may be the primary event of interest. However, deaths due to other causes (e.g., liver 

function, diabetes, kidney function, etc.) are typical examples of competing risks. These risks 

vary depending on the specific condition under study, and the data rely on continuous 

monitoring during the specified study period. 

Reliability has taken on an important and prominent role in estimating the effect of 

shared (external) variables and time on the hazard and survival functions. These functions 

depend on competing risk variables, the time of event discovery under study, and the time of 

study end. 

  Complexities arise when multiple time-varying covariates re[present various types or 

causes of failure that influence the cumulative event function. The application of the Cox 

proportional hazards model,was first proposed in 1972 by the renowned statistician D.R. Cox for 

estimating the impact of these shared variables on the hazard function. The most important thing 

that makes this model commonly used in analysis is the possibility of benefiting from it to 

estimate only part of its mediators.  

The primary objective of estimating parameters in any model is to select the best-fitting 

model that yields good parameter estimates. This is achieved by choosing the optimal method 

and formula for obtaining parameter estimates based on the comparison criterion used in the 

study. There are several methods for estimating parameters in the Cox proportional hazards 

model to assess the impact of variables and time on the hazard function, affecting the survival 

function for the cases under study. By estimating the parametric part of (β), represented by the 

effect of variables on the risk function, using the partial maximum likelihood method, and to 

obtain the parameter results, used numerical algorithms (Newton Raphson - Down Hill).  

The nonparametric part is estimated by assessing the effect of time on the baseline 

hazard function. Subsequently, competing risks are estimated using the cumulative hazard 

function, which is applied to Real  complete data .  

1.1 Literature review: 
Many studies have discussed the issue of competing risks and their impact on the event 

function, including: Jewell et al. (2003) conducted a study on estimating survival distributions 

for current state data in the context of competing risks and observations were presented 

regarding the nonparametric maximum likelihood estimate, which is the estimate from the age 

distribution in both natural and surgical menopause. Groeneboom et al. (2008) used the 

nonparametric estimation of current status data with competing risks; The main focus was on the 

maximum likelihood estimator (MLE) and the naive estimator. It has been proven that both 

estimators converge globally and locally at a rate of n^(1/3). Tang et al. (2013) applied the Cox 

proportional hazards model was applied to analyze early failure data in power cables; The Cox 

model analyzes a set of common variables simultaneously and identifies the variables that have 

significant effects on cable failure. Hudgens et al. (2014) Studied the Parametric estimation of 

the cumulative event function (CIF) for interval observation competing risk data, which is based 

on prior nonparametric estimation, as well as the simple probability estimator, which uses only 

part of the observed data. The simple estimator gives a separate estimate for the models for each 

cause, unlike the complete maximum likelihood, which fits all models at one time. Mao and Lin 

(2017) used a semi-parametric regression model to formulate the effects of shared variables on 

the cumulative event function that needed estimation. They employed a wide range of semi-

parametric transformation models that extend to Fine and Gray models. Do and Yang (2017) 

Suggested several ways to analyze competing risk data. In case of loss of failure causes and 
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failure time, the (Klein–Andersen’s) pseudo-value approach was applied; The proposed method 

was evaluated through comparison with full case analysis in several simulation settings. 

Thackham and Ma (2020) proposed to apply the Cox model to deal with non-proportional 

hazards by estimating the partial likelihood of time-varying covariates. The lack of precision in 

estimating regression coefficients in small samples was addressed by developing the maximum 

likelihood. To estimate the regression coefficients and the basic hazard, shown through 

simulation to have increased accuracy compared to partial likelihood (PL) estimates in small 

samples. Guerrero et al. (2023) conducted an individual patient data (IPD) meta-analysis to 

assess the effect of anticoagulation on all-cause mortality in patients with cirrhosis and portal 

vein thrombosis; previous meta-analyses demonstrated the safety and efficacy of anticoagulation 

in the recanalization of portal vein thrombosis in patients with cirrhosis Whether this benefit 

translates into improved survival is unknown.  

The problem Research is the occurrence of additional risks that affect the risk function, 

taking into account the actual failure time; these risks also affect the increase in the cumulative 

risk function represented by Competing risks over the model's risk function.   

The Objective of Research is to estimate the effect of covariates represented by 

Competing risks on the model's risk function for complete data and determine the best method 

based on the statistical criterion, root mean square error. 

2. Material and Methods: 

2.1 Cox Proportional Hazards Model: 

It is one of the widely used models in survival analysis and hazard function estimation 

for Censored data in the experiment, and in the mainly time-dependent areas of study. It is an 

alternative to commonly used models such, as the linear and logistic regression models, which 

are unsuitable for use with Censored data. This model is one of the popular models that study 

Censored data due to the ease of dealing with the data (Tang et al, 2013). 

The Cox model is considered a semi-parametric model because it consists of two parts. 

The first part is parametric, representing the exponential function to estimate the parameter, and 

the other part is nonparametric, representing the effect of time on the basic hazard function. It is 

possible to benefit from the Cox model by estimating only part of its mediators, which makes it 

widely used. The mathematical formula for the Cox proportional hazards model is typically 

expressed as follows (Thackham et al., 2020). 

(1    )                                                                               (   )    ( )    ( 
  ) 

Where: 

  ( ) The baseline hazard function represents,   Cox Model Parameters Vector, X Matrix of 

Independent Variables Expected to Impact the Hazard Function  (   ) 
   If you have two independent variables, X1 and X2, the Hazard Ratio for the first variable, X1, 

to the second variable, X2, is calculated as follows (Scheike and Sun, 2007). 

 
 (    )

 (    )
 
  ( )    (   )

  ( )    (   )
   

 (    )

 (    )
    , (     )- 

After taking the natural logarithm, it becomes: 

  *
 (    )

 (    )
+   (     ) 

This means that β represents the increase in the natural logarithm of the first variable’s hazard 

ratio to the second variable’s hazard by one unit. 
 (    )

 (    )
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2.1.1 Estimation Methods for the Cox Model: 

2.1.1.1 Partial Maximum Likelihood Method: 

In 1980, the scientist Cox proposed a method for estimating the parameters β, called the 

Partial Maximum Likelihood Method. It is a widely used method that depends on the order of 

events (death) as follows:  ( )  ( )     ( ) , The sum of the elements under danger (death) at t is F 

(ti) The formula that illustrates the Partial Likelihood Method for parameter estimation is as 

follow (Cox, 1975). 

 ( )  
 ( ( )   )

∑  ( ( )   )   ( ( ))
                                                                                           ( ) 

Where  ( ( )   ) represents the studied event function at time t(i), and 

∑  ( ( )   )   ( ( ))
 represents the function of the occurrence of the event of interest (death) for 

each element under the risk set  ( ( )). 

Therefore, the partial likelihood function under the assumption of the event of interest (death) 

occurring at time t(i) can be written as follows (Sinha et al., 2003). 

 ( )  ∏
    (    )

∑     (    )   ( ( ))
                                                                                  ( )

 

   

 

By taking the logarithm of the partial likelihood function: 

   ( )  ∑*   
    ,∑    (   

 )-+                                                                  ( )

   

 

   

 

The parameter estimates from the partial likelihood can be obtained using numerical 

methods, and two commonly used numerical methods are the Newton-Raphson algorithm and 

the Downhill algorithm (DH) for the function (4). 

a) Newton-Raphson Algorithm: 

The Newton-Raphson algorithm is efficient for finding roots of real-valued functions 

and solving linear equations. It is also commonly used to solve nonlinear equations that may be 

complex and cannot be easily solved using traditional methods. This algorithm was originally 

proposed by Isaac Newton and Joseph Raphson in 1960( Yalçınkaya et al., 2018). 

Using the Newton-Raphson algorithm in this context is to obtain the best parameter 

estimates β based on initial estimates (Initial estimates are obtained from the partial maximum 

Likelihood method). using the newton-Raphson algorithm’s iterative approach for the partial 

likelihood equation defined in formula (4), the NR algorithm can be expressed mathematically 

as follows (Akram and Ann , 2015). 

 ̂(   )   ̂( )  
 ( )

 ( )
                                                                                                        ( ) 

In the context of the Newton-Raphson algorithm: 

 r represents the number of iterations. 

  ̂(   )represents the new parameter estimates  

  ̂( )represents the parameter estimates obtained in the r. 

   ( )represents the first derivative vector of the logarithm of the partial likelihood function in 

the r-th iteration.( Casella and Bachmann, 2021). 

  (
    ( )

  
 )  ∑   

∑   
   

∑        

 

   

 

 ( )The matrix that represents the second derivative of the logarithm of the partial likelihood 

function for the r  
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After calculating the absolute difference between the new and previous parameter 

estimates, the algorithm checks whether this absolute difference is smaller than a predefined 

threshold value c. If the absolute difference is smaller than c, the algorithm stops, and the 

optimal solution is printed. 

| (   )   ( )|                                                                                                              ( ) 
Where c is an extremely small constant value. 

b) Downhill Algorithm: 

This algorithm is one of the numerical algorithms proposed by the two scientists Nelder-

Mead in 1965. Which works to find the optimal solution to the objective function, that is, to 

obtain the minimum limit of the objective function in complex functions, which depends on 

guessing several points of the objective function (Fajfar et al., 2017). Moreover, because it does 

not need derivatives, it is very popular in many fields of science and technology, especially 

chemistry and medicine. The Downhill Algorithm is based on a geometric shape with several 

geometric forms of n dimensions and n+1 points represented as (            ). These points 

represent the order of values of the objective function at each test, as follows (Galántai , 2021). 

                                                                                                                     ( ) 

Where Z1 represents the best point, and     represents the worst point. Here are the steps for 

parameter estimation: 

1. Choose the partial likelihood function, represented by the objective function, which is the 

negative logarithm of Equation (4). 

       ( )                                                   ( ) 
2. Fixing the algorithm parameters. Reflection    , Expansion    , Contraction      , 

Contraction       . 

3. Create an initial solution matrix S with dimensions of ((n+1)*1). 

  [
  
 

    

]                                                                                                                         ( ) 

4. Estimate the objective function for each row of the matrix S and arrange the estimates from 

lowest to highest. 

                

5. The reflection point (r) is calculated using the following formula: 

    ̅   ( ̅      )                                                                                                     ( ) 
After calculating the reflection point, we compute the objective function (   ). If: 

              We set        and then proceed to step (9). Otherwise, we move on to 

the next step. 

6. Calculate the expansion point (e) according to the following formula: 

    ̅   (    ̅)                                                                                                         (  ) 
Calculate the value of the objective function (   ) after expansion. If: 

        Calculate the point of contraction (c) using the formula:        Proceed to step 9. 

7. Calculate the contraction point (c) using the formula: 

    ̅   (      ̅)                                                                                                    (  ) 
Calculate the objective function    after the contraction. If: 

        Exactly,        and proceed to step 9. If not, you move on to the next step. 

8.  Calculates the contraction point (Sh) based on the formula mentioned. 

        (     )                                                                                                  (  ) 
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9. Applied when the stopping condition is met in the previous steps, as indicated by the formula. 

|
   ( )      ( )

    ( )
|                              

If the stopping condition is met, the algorithm proceeds to print the solution; otherwise, 

it returns to Step 5. This iterative process continues until the desired convergence is achieved 

(Mehta, 2020). 

2.1.1.2 Kaplan-Meier: 

The Kaplan-Meier estimator is a non-parametric estimator used to estimate the survival 

function. This estimator is known for its ease of calculation and interpretation. In medical 

research, it is often used to measure the proportion of patients who survive for a certain period 

after treatment. In other fields, it can be used to estimate the length of time individuals remain 

unemployed after job loss. It was named after Edward L. Kaplan and Paul Meier in 1958 (Smith 

and  Smith, 2003). 

The visual representation of this function is typically called the Kaplan-Meier curve, 

which shows the survival probability on the Y-axis and time on the X-axis. Kaplan assumed that 

the event of interest occurred at a specific time, and the probability of survival for all 

observations was the same, regardless of when they entered the study. Observations Submissive 

Censored have the same probability of survival. 

The following formula defines the Kaplan-Meier survival function (KM) (Andrade, 2023). 

 ̂( )  ∏
     
  

                                                                                         (  )

 

   

 

 
the definition 

ni represents the number of individuals who have survived until time ti. 

di represents the number of events (deaths) at time ti. 

The following formula gives the cumulative failure distribution function: 

 ̂( )     ̂( ) 
The probability density function is estimated using the non-parametric empirical method 

according to the following formula: 

 ̂( )   
 ̂(    )   ̂(  )

       
                                                                   

 
 

(       )(   )
                                                                                           (  )  

The following formula gives the failure time hazard function ( Teoh,  2008). 

 ̂( )  
 ̂( )

 ̂( )
  

 

(       )(       )
                                                        (  ) 

2.2 Competing risk 

Competing risks arise when there are multiple possible outcomes in clinical research 

during survival analysis. For example, cancer-related deaths may be of primary interest, but 

deaths due to other causes not related to cancer are typical examples of competing risks. In such 

cases, death can occur before the disease onset (Sildnes, 2015). Competing risks can be 

estimated using the Cumulative Incidence Function (CIF), which can be estimated using the 

Nelson-Aalen estimator through the following formula (Groeneboom et al., 2008). 

 ̂( )  ∑
  
  
                                                                                                                   (  ) 

Where    is the number of individuals who die during the period   , and    is the number of 

individuals at risk during   . 
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3. Discussion of Results : 

3.1 Simulation: 

Simulation is representing or mimicking the real world, obtaining a similar or analogous 

model or system without relying on the same model or system. Often, we encounter complex 

processes in the real world that are difficult to analyze logically, leading to the translation of 

statistical theories through simulation to obtain results (estimates) that mimic the real world. 

Samples of different sizes (small, medium, large) are taken to visually represents the studied 

process or the real-world scenario through simulation. Simulation is used to compare different 

estimation methods and determine which is best for estimation (Thackham and Ma, 2020). 

3.1.1 Simulation involves the following steps: 

Stage 1: 

Generating common variable values (        )for the complete data in the first stage 

involves random generation based on a uniform distribution over the interval (0, 1) for the initial 

value. Afterwards, the data is generated using a normal distribution with arithmetic means and 

standard deviations that have been assumed, as described by the following formula: 

 ( )  
   

 
                                    

Where μ represents the arithmetic mean, σ represents the standard deviation.  

As for time t, it was generated in vector form t=1,2,…,n . 

Stage 2: 

This stage is one of the most crucial, where the initial assumed values are determined. The 

values are specified as follows: 

 Assumption of the required sample size: n=(20, 50, 90, 120). 

 Determination of repetitions for each experimental unit: 1000 

 Determine initial parameter values  ̂ for the Newton-Raphson estimator: (0.242, 1.342, 0.842) 

and for the Downhill estimator: (1.1778, 0.7661, 2.1023). The arithmetic means and variances 

are shown in the following table. 

Table 1: Displays the arithmetic means and standard deviations of the common variables 

 (  )  (  )  (  ) Std(t)  (  )  (  )  (  ) Mean(t) Model 

1.68 16.57 1.87 318.36 4.83 23.03 5.85 1584.35 I 

1.85 18.23 2.05 350.20 5.31 25.33 6.44 1742.79 II 

1.51 14.91 1.68 286.53 4.34 20.73 5.27 1425.92 III 

Where  ( ) represents an arithmetic mean of time close to the time mean of real data. 

Stage 3: 

The parameters were estimated using numerical algorithms (Newton-Raphson and 

Downhill simplex) for the partial likelihood method, which is the parametric part. The non-

parametric part was estimated automatically for different sample sizes using Kaplan-Meier. This 

was done to obtain the hazard function for the Cox model as indicated in Equation (1) and to 

calculate competitive risk and the reliability function based on Equations (16) and (13), 

respectively. 

Stage 4:  

Comparison between the studied estimation methods and determining the best approach was 

carried out based on the statistical measure Root Mean Square Error (RMSE) for the Cox model, 

according to the following formula: 

     √    (   )                                                                                                     (  ) 

where  

    (   )  
∑ ( ̂̂   ̂ )
 
   

 

 
                                                                                       (  ) 
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Where: 

 r: represents the number of repetitions for each experiment. 

  ̂  : is the estimated hazard function for the initial assumed values. 

  ̂̂   : is the estimated hazard function for the Cox model. 

3.1.2 Simulation Experiment Results:  

Based on the results obtained from the various methods, different sample sizes, and different 

parameters models, a comparison will be made to determine the best approach based on the Root 

Mean Square Error (RMSE). These results are presented in the following tables: 

The first case: In this scenario, the assumed parameters  ̂(  )  (                   )are 

used with three different models of arithmetic means and standard deviations denoted by 

symbols (III)(II)(I) for various sample sizes shown in Table 2 .  

Table 2: Shows the RMSE values for the parameters and the hazard function of the Cox model 

for the assumed parameters and three different models, along with various sample sizes. For 

comparison between estimation methods. 

Best 

Method 
     (   )     (  )     (  )     (  ) Methods N 

Models of  

the initial 

parameters 

DH 
0.3018 0.4761 0.6087 0.8451 NR 

20 

I 

 

0.0027 0.7889 0.9014 0.7761 DH 

DH 
0.1787 0.4574 0.6287 0.8037 NR 

50 
0.0015 0.8708 0.8564 0.8086 DH 

DH 
0.6378 0.4512 0.6616 0.7633 NR 

90 
0.0041 0.7966 0.8672 0.8235 DH 

DH 
0.1366 0.4531 0.6396 0.7879 NR 

120 
0.0010 0.7937 0.8540 0.8202 DH 

DH 
2.1849 0.4524 0.6494 0.7774 NR 

20 

I I 

 

0.0063 0.8389 0.7617 0.7881 DH 

DH 
5.2208 0.4676 0.6038 0.8388 NR 

50 
0.0042 0.8959 0.8389 0.8586 DH 

DH 
2.1726 0.4558 0.6388 0.7921 NR 

90 
0.0024 0.8077 0.8007 0.8681 DH 

DH 
1.3282 0.4506 0.6802 0.7426 NR 

120 
0.0033 0.8439 0.8092 0.7951 DH 

DH 
1.4089 0.4732 0.6135 0.8372 NR 

20 

I I I 

 

0.0055 0.9114 0.8533 0.8279 DH 

DH 
0.4023 0.4518 0.6595 0.7662 NR 

50 
0.0025 0.8779 0.7942 0.8266 DH 

DH 
0.0768 0.4506 0.6546 0.7697 NR 

90 
0.0010 0.8630 0.8684 0.8535 DH 

DH 
0.3569 0.4499 0.6665 0.7564 NR 

120 
0.0043 0.8106 0.7313 0.7709 DH 

 

From Table (2), we observe that in all the models mentioned in Table (1), the vast 

majority of the estimates and risks are for the Cox model. The larger the sample size, the lower 

the estimator (RMSE), is consistent with statistical theory. Our results show that the Downhill 

algorithm outperforms the Newton-Raphson algorithm estimation accuracy and efficiency. 
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The second case:  represents the assumed parameters  ̂(  )  (                      ) with 

the three models for computational environments, standard deviations, and identified by symbols 

(III)(II)(I) for different sample sizes shown in Table 3 . 

  
Table 3: Presents the (RMSE) values for the parameters and the hazard function for the Cox 

model with the assumed parameters and the three models of computational environments for 

various sample sizes for comparison between estimation methods. 

Best 

Method 
     (   )     (  )     (  )     (  ) Methods N 

Models of  

the initial 

parameters 

DH 
0.4925 0.8744 0.8685 0.6139 NR 

20 

I 

 

0.0074 1.3425 1.3239 1.3932 DH 

DH 
0.3031 0.8617 0.8813 0.6209 NR 

50 
0.0026 1.3349 1.3120 1.3660 DH 

DH 
0.2420 0.8388 0.9112 0.6408 NR 

90 
0.0009 1.3691 1.3482 1.4150 DH 

DH 
0.2724 0.8478 0.8978 0.6313 NR 

120 
0.0007 1.3599 1.3824 1.3849 DH 

DH 
1.5389 0.8574 0.8897 0.6273 NR 

20 

I I 

 

0.0023 1.4064 1.3853 1.3714 DH 

DH 
0.4272 0.8118 0.9347 0.6533 NR 

50 
0.0048 1.2541 1.3307 1.4214 DH 

DH 
3.6767 0.8239 0.9233 0.6468 NR 

90 
0.0257 1.3706 1.3319 1.3921 DH 

DH 
0.3605 0.8791 0.8653 0.6128 NR 

120 
0.0009 1.3936 1.4036 1.2863 DH 

DH 
0.8350 0.7818 0.9909 0.6979 NR 

20 

I I I 

 

0.0097 1.4413 1.3799 1.3328 DH 

DH 
0.2751 0.8241 0.9393 0.6627 NR 

50 
0.0023 1.3421 1.3888 1.3370 DH 

DH 
0.2112 0.8221 0.9219 0.6447 NR 

90 
0.0002 1.3383 1.3665 1.3692 DH 

DH 
0.3162 0.7680 0.9869 0.6892 NR 

120 
0.0008 1.2639 1.3589 1.3424 DH 

 

From Table (3), we observe that in all the models mentioned in Table (1), the majority 

of estimations and the hazard for the Cox model, the larger the sample size, the lower the 

(RMSE) estimator, which is consistent with statistical theory. The results show that the Downhill 

algorithm is the best, while the Newton-Raphson algorithm performed the worst in terms of 

estimation accuracy and efficiency. 

3.2 Application of Real Data: 

Data was collected from the Ministry of Health / Al-Amal Cancer Hospital for a sample 

of size n=80 individuals with breast cancer. Three variables (  : Blood Sugar,   : Liver 

Functions,   : Kidney Functions) represent competing risks, and the specified study period was 

from 2019 to 2023. Initial values for the parameters (     4,             )  were 

determined to obtain the initial estimator for the Cox model's hazard function. Afterwards, 

estimation methods were applied to obtain parameter estimators and the baseline hazard function 

for the time effect. The best method among the estimation techniques was determined based on 

the comparison criterion (RMSE) for the Cox model with formula (1) and is presented in the 

table (4) below: 
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Table 4: Presents the estimated parameters and RMSE for the Cox model's hazard function: 

     (   ) 
Beta estimated 

Methods 
         

6.2085e-06 0.8360 1.3360 0.2360 
Newton 

Raphson 

2.4107e-06 2.1023 0.7661 1.1778 Downhill 

 

 
Figure 1:  Illustrates the parameter estimates and the hazard function for the estimated 

parameters using complete data. 

Based on Table (4) and using the      (   )comparison metric, it is evident that the Downhill 

Simplex (DH) algorithm outperforms the Newton-Raphson (NR) algorithm in parameter 

estimation. 

Subsequently, the survival function ( ̂( )), was estimated for all cancer patients and the 

specified time in days. Table (5) and Figure (5) illustrate the estimated survival functions for 

both methods. From the estimates and the figure, we can observe that the survival function 

exhibits a decreasing behavior as the hazard function increases over the study period, which 

aligns with the concept of reliability. 

Table 5 : Illustrates the estimation of the survival function  ̂( ) 

S(DH) S(NR) T S(DH) S(NR) T 

0.406607 0.494577 41 0.952344 0.958275 1 

0.404296 0.492497 42 0.950662 0.956826 2 

0.394157 0.482161 43 0.948863 0.955261 3 

0.318842 0.416118 44 0.948088 0.954656 4 

0.315522 0.413264 45 0.858335 0.881152 5 

0.308846 0.4078 46 0.844382 0.869381 6 

0.307367 0.406557 47 0.831029 0.85842 7 

0.304192 0.403838 48 0.827965 0.856037 8 

0.297076 0.398249 49 0.815164 0.845668 9 

0.283957 0.387232 50 0.81397 0.844685 10 

0.279304 0.383583 51 0.801371 0.83448 11 

0.272027 0.377803 52 0.71217 0.746514 12 

0.267366 0.374264 53 0.710318 0.744964 13 

0.266176 0.373245 54 0.618789 0.671544 14 

0.194992 0.307014 55 0.61748 0.670326 15 
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0.193599 0.305879 56 0.617309 0.670174 16 

0.190087 0.30306 57 0.612699 0.666524 17 

0.187989 0.301343 58 0.600563 0.65648 18 

0.18659 0.300148 59 0.586844 0.645463 19 

0.184754 0.298609 60 0.586442 0.645161 20 

0.183302 0.297389 61 0.586078 0.644904 21 

0.178507 0.293186 62 0.584447 0.64353 22 

0.177303 0.292225 63 0.577716 0.638135 23 

0.165079 0.281412 64 0.573721 0.634571 24 

0.165006 0.281354 65 0.562805 0.625167 25 

0.163036 0.279731 66 0.48358 0.557165 26 

0.149903 0.268537 67 0.476055 0.551569 27 

0.149458 0.268188 68 0.471401 0.547867 28 

0.145879 0.265331 69 0.468445 0.54523 29 

0.131696 0.253412 70 0.468372 0.545166 30 

0.124094 0.247386 71 0.468236 0.545049 31 

0.038317 0.181385 72 0.468007 0.544859 32 

0.036249 0.179402 73 0.465771 0.542993 33 

0.033719 0.177314 74 0.459595 0.537485 34 

0.026037 0.171517 75 0.454708 0.533811 35 

0.015384 0.162387 76 0.45317 0.532413 36 

0.003136 0.151135 77 0.441222 0.521434 37 

0.003126 0.147581 78 0.434631 0.516204 38 

0.003136 0.138505 79 0.431257 0.513563 39 

0.003036 0.138274 80 0.418176 0.503467 40 

 

 
 

The figure 2: Shows the survival function for the patients.  
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The Cox model’s hazard function for the estimators is shown in the following table and chart. 

 Table 6 : Shows the hazard function for the model. 

h(DH) h(NR) t h(DH) h(NR) t 

0.593 0.505 41 0.048 0.042 1 

0.596 0.508 42 0.049 0.043 2 

0.606 0.518 43 0.051 0.045 3 

0.681 0.584 44 0.052 0.045 4 

0.684 0.587 45 0.142 0.119 5 

0.691 0.592 46 0.156 0.131 6 

0.693 0.593 47 0.169 0.142 7 

0.696 0.596 48 0.172 0.144 8 

0.703 0.602 49 0.185 0.154 9 

0.716 0.613 50 0.186 0.155 10 

0.721 0.616 51 0.199 0.166 11 

0.728 0.622 52 0.288 0.253 12 

0.733 0.626 53 0.290 0.255 13 

0.734 0.627 54 0.381 0.328 14 

0.805 0.693 55 0.383 0.330 15 

0.806 0.694 56 0.383 0.330 16 

0.810 0.697 57 0.387 0.333 17 

0.812 0.699 58 0.399 0.344 18 

0.813 0.700 59 0.413 0.355 19 

0.815 0.701 60 0.414 0.355 20 

0.817 0.703 61 0.414 0.355 21 

0.821 0.707 62 0.416 0.356 22 

0.823 0.708 63 0.422 0.362 23 

0.835 0.719 64 0.426 0.365 24 

0.835 0.719 65 0.437 0.375 25 

0.837 0.720 66 0.516 0.443 26 

0.850 0.731 67 0.524 0.448 27 

0.851 0.732 68 0.529 0.452 28 

0.854 0.735 69 0.532 0.455 29 

0.868 0.747 70 0.532 0.455 30 

0.876 0.753 71 0.532 0.455 31 

0.962 0.819 72 0.532 0.455 32 

0.964 0.821 73 0.534 0.457 33 

0.966 0.823 74 0.540 0.463 34 

0.974 0.828 75 0.545 0.466 35 

0.985 0.838 76 0.547 0.468 36 

0.997 0.849 77 0.559 0.479 37 

1.002 0.852 78 0.565 0.484 38 

1.013 0.861 79 0.569 0.486 39 

1.013 0.862 80 0.582 0.497 40 
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Figure 3: Illustrates the hazard function for the model. 

 

Following that, competitive risks were estimated through the Cumulative Incidence 

Function (CIF), which is defined as the probability of an event occurring at any time point 

between the baseline and the specific time. CIF at a time 't' is calculated by the ratio of the 

individuals who experienced the event (death) divided by the total number of individuals at risk 

during the time 'ti'. As time progresses, CIF increases from zero to the cumulative proportion of 

events, as illustrated in the following table. 

Table 7: Illustrates the competitive risks for the complete data. 

 ̂( ) t  ̂( ) t  ̂( ) t  ̂( ) t 

0.794286 61 0.558413 41 0.379999 21 0.05 1 

0.798401 62 0.560913 42 0.381542 22 0.051764 2 

0.799523 63 0.573259 43 0.387715 23 0.053527 3 

0.812023 64 0.653259 44 0.391831 24 0.054145 4 

0.812089 65 0.656345 45 0.404176 25 0.134145 5 

0.813632 66 0.662518 46 0.484176 26 0.14649 6 

0.825978 67 0.66389 47 0.490426 27 0.158836 7 

0.82639 68 0.666976 48 0.494541 28 0.161336 8 

0.829476 69 0.673149 49 0.497628 29 0.173682 9 

0.841822 70 0.685494 50 0.497703 30 0.174723 10 

0.847994 71 0.68961 51 0.497839 31 0.187069 11 

0.927994 72 0.695783 52 0.498035 32 0.267069 12 

0.930052 73 0.701955 53 0.500092 33 0.268833 13 

0.93211 74 0.70319 54 0.506265 34 0.348833 14 

0.938283 75 0.78319 55 0.51038 35 0.350204 15 

0.950628 76 0.784579 56 0.511924 36 0.350367 16 

0.962974 77 0.787704 57 0.524269 37 0.354482 17 

0.967089 78 0.789468 58 0.530442 38 0.366828 18 

0.979435 79 0.790839 59 0.533567 39 0.379328 19 

0.979685 80 0.792897 60 0.545913 40 0.379666 20 
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Figure 4: Illustrates the cumulative hazard function for competitive risks. 

Through Table (7) on competitive risks and compared with Table (6) on the risk function for the 

Cox model and its dependent figures, we notice that competitive risks are greater than the risk 

function for the estimator. Newton Raphson (NR) indicates the effect of common variables in 

increasing risks function on the hazard function, while competitive risks converge with the 

hazard function of the estimator and Downhill (Dh). 

 

4. Conclusion: 

1. The Down-Hill algorithm demonstrated its superiority in estimating the Cox model for both 

cases of parameters that were assumed and for various models of means, standard deviations, 

and different sample sizes in the simulation. 

2. The preference for the methods of the applied side coincided with the simulation. The results 

of the applied side showed that the Downhill algorithm is also the best in estimation. 

3. Simulation experiments show that the statistical standard error (RMSE) of the Cox model 

decreases as the sample size increases. 

4. Through the results of Competing risks for real data, I explained the effect of common 

variables in increasing the risk over the hazard function of the Cox model in some estimators 

and their convergence in other estimators. 

5. From the applied aspect, we notice that the longer the time, the greater the risk for the model, 

which leads to a decrease in the survival function. 
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 انبحث: مسخخهص

ذُاوند انعذَذ يٍ انثحىز و انذساساخ انسشَشَح حذوز انفشم )انًىخ( َرُعح عىايم اخشي )خاسظُح( اٌ يخاعش 

انرٍ ذرأشش و هًخاعش انرُافسُحن انكايهح ثُاَاخاناضافُح لذ ذحذز ذُافس انحذز لُذ انذساسح , ذرى احانح انثُاَاخ انُاذعح انً 

 اعش يعهىو تانضثظ , اٌ َرى يلاحظح اولاخ انفشم  نكم انًشاهذاخ تصىسِ يؤكذِتاخرلاف انىلد , واٌ ولد حذوز هزِ انًخ

يٍ خلال انعضء  , وانرٍ ذى ذمذَش ذأشُشها عهً دانح انخغش اعرًادا عهً ًَىرض كىكس نهًخاعش انُسثُح وانزٌ ذى ذمذَشِ

رمذَش انًعهًاخ وانًرًصهح ترأشُش انًرغُشاخ انًعهًٍ انًرًصم تغشَمح الايكاٌ الاعظى انعضئٍ واسرعًال انخىاسصيُاخ انعذدَح ن

عهً دانح انخغش نكىكس وانعضء انلايعهًٍ انًرًصم ترمذَش ذأشُش انىلد عهً دانح انخغش يٍ خلال صُغح كاتلاٌ ياَش وحساب 

ل عًهُاخ انًخاعش انرُافسُح عٍ عشَك دانح انخغش انرشاكًٍ . حُس ذى ذغثُك هزِ الاسانُة عهً انثُاَاخ انرعشَثُح يٍ خلا

وكزانك انرغثُك عهً  لأحعاو ويعانى يخرهفى ونعذج ًَارض يٍ الاوساط انحساتُح والاَحشافاخ انًعُاسَح يحاكاج واسعح انُغاق

( يٍ الاشخاص انًصاتىٌ تسشعاٌ انصذٌ , يٍ خلال ذحهُم كم يٍ َرائط انًحاكاج 80تُاَاخ حمُمُح يٍ خلال عُُح تحعى )

ُرائط انرٍ ذىصهُا انُها اٌ خىاسصيُح داوٌ هُم ذرفىق عهً خىاسصيُح َُىذٍ سافسىٌ يٍ حُس دلح وانثُاَاخ انحمُمُح تُُد ان

, اضافح نزنك اوضحد انًخاعش انرُافسُح انخغأ انرمذَش وانكفاءج اعرًادا عهً انًعُاس الاحصائٍ نهًماسَح ظزس يرىسظ يشتع 

دانح انخغش نًُىرض كىكس نهًمذس َُىذٍ سافسىٌ فٍ حٍُ اوضحد ذأشُش انًرغُشاخ انًشرشكح فٍ صَادج انًخاعش انرُافسُح عٍ 

 ذماستها يٍ دانح انخغش نًُىرض كىكس تانُسثح نهًمذس داوٌ هُم .

 

 

 ُح.تحصوسلح  :ووع انبحث

ٍ خىاسصيُح َُىذ ;الايكاٌ الاعظى انعضئٍ  ;ًَىرض كىكس نهًخاعش انُسثُح  ;انثُاَاخ انكايهح  ;دانح انخغش  :انكهماث انسئيست

 خىاسصيُح داوٌ هُم . ;سافسىٌ 
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