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Abstract< 

      This study aimed to predict using regression models in the presence of outliers in the 

study data. The research delved into outliers, their detection, and model estimation through 

robust methods, represented by the M estimator and multilayer artificial neural networks. A 

comparison between these methods was conducted, and they were applied to real data 

representing a survey of private-sector power generators for 2021. Model evaluation was 

performed using Mean Squared Error (MSE) and the determination coefficient. The results 

indicated that the M-estimator with the Huber function outperformed its counterpart with the 

Tukey function. The best-performing architecture for the artificial neural network was ML-FF 

(5, 16, 32, 46, 128, 1) with the relu activation function. This network effectively handled 

extreme values and exhibited strong predictive capabilities. The choice of activation function 

and the number of hidden layers significantly impacted the neural network's performance, with 

the results showing the superiority of this artificial neural network over the robust estimators. 
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1. Introduction: 
Regression analysis aims to find a mathematical equation that relates the dependent 

variable to the independent variables. This model allows us to understand the nature of the 

relationship and identify the factors affecting it. 

 It also allows us to predict the effect of any independent variable on the dependent variable 

Some of the objectives of regression analysis include: 

• Describing the data in order to analyze the relationship between the variables. 

• Estimating the model parameters for the variables that describe the data. 

• Controlling the dependent variable’s values by changing the explanatory variable’s values. 

• Making predictions after finding the estimates of the parameters for decision-making and 

future planning (Abu Shaer and Al-Sarraf, 2018). 

These objectives have made regression analysis widely used in various scientific fields. 

Regression equations are typically estimated using the least squares and maximum likelihood 

methods due to their ease of estimation and computational efficiency. However, of outliers in the 

data render these methods inefficient for estimating and describing the relationships between 

variables. To address this issue, robust methods are often employed for model estimation in the 

presence of outliers. This research will be divided into four chapters. The first chapter represents 

the introduction along with the literature review. The second chapter includes the theoretical 

aspect of the methods that will be used in this research, followed by the application of these 

methods in the third chapter to obtain results from employing these methods. Subsequently, the 

fourth chapter will discuss the most important conclusions reached. Some literature review 

Imam and Tarawneh (2014) used neural networks and multiple linear regression 

techniques to estimate the concentration of iron within a given material based on experimental 

data. Their findings indicated a superior performance of neural networks in comparison to the 

multiple linear regression model. 

Jawad (2015) conducted a comparative analysis to evaluate the effectiveness of genetic 

algorithms and neural networks in estimating the median location for nonparametric multivariate 

regression models. The feedforward neural networks demonstrated superiority compared to the 

ART neural network, multilayer network, and the genetic algorithm proposed by the researcher.. 

Al-Athari and Al-Amleh (2016) compared the trimmed least squares method and the 

MM-Estimation method for estimating a linear regression model. This evaluation was performed 

through simulation techniques and the assessment of mean square error (MSE). The results of 

their investigation revealed the superior performance of the MM-Estimation when contrasted 

with the trimmed least squares (LTS) method. 

Khalaf (2017) conducted a comparative analysis between artificial neural networks and 

non-parametric regression to estimate atomic radiation doses. The study revealed, through 

simulation, that the backpropagation network exhibited superior estimation capabilities 

compared to other networks. Furthermore, Gaussian kernel density estimation emerged as the 

optimal data smoothing method. In contrast, the method of least trimmed squares was identified 

as the most effective data smoothing technique for non-parametric approaches. In practical 

application, neural networks outperformed non-parametric methods. 

AL Zirej and Hadi (2019) used neural networks to predict the penetration rate in oil 

reservoir formations and compared this approach with multiple regression analysis. Their results 

showed the superiority of the proposed neural network model over the multiple regression 

model. 

Ali (2019) compared robust regression estimation methods, including the biweight and 

Tukey's bisquare robust method (M-estimation) and the S-estimation method. The results 

indicated that the M-estimation method was the most effective for estimation. 

Hajjaj and Abdelqader (2020) used artificial neural networks and robust regression to 

predict birth rates in Egypt, with artificial neural networks proving superior to the robust 

regression approach. 
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Mohammed (2023) estimated a seemingly unrelated regression system using several 

robust estimators. He employed four robust methods: M-Estimation, S-Estimation, MM-

Estimation, and fastSUR. The results indicated that  the MM-Estimation method is the most 

effective among the techniques employed for handling outliers. 

2. Material and Methods 

       In this chapter, we looked at outliers to understand them and determine how to count 

them. Next, we defined robust regression and delved into the M-Estimator. The chapter then 

discussed artificial neural networks and their components and explained the multilayer feed 

forward neural network. 

2.1 Outliers 

          An outlier is defined as a value in a dataset that is unusual or disparate, disrupting various 

statistical measures, such as the mean, median, standard deviation, and others. These outlier 

values significantly affect the analytical results, and the degree of impact is directly proportional 

to the number of outlier values (Kamal and Khalil, 2021). 

The causes of outlier occurrence (Khalil and Mohammed, 2012): 

 Calculation errors 

 Reading errors 

 Recording errors 

As a result, outlier values represent observations that exhibit large deviations from the 

central tendency of the sample, resulting in significant inaccuracies and biases when compared 

to the remaining observations. This ultimately reduces estimation effectiveness (Al-Azzawi and 

Mohammed, 2022). 

To detect the presence of outliers (Hassan and Reda, 2011): 

     One of the methods for detecting outliers is the Box-Whisker plot, also known as the Box 

Plot. This method relies on the interquartile range (IQR), a measure of variations based on the 

second quartile range, as illustrated in figure 1. 

                                (1) 

   represents the first quartile, and    represents the third quartile (Hassan and Reda, 2011). 

Detection occurs under either of the following conditions (Hassan and Reda, 2011):   

 

{
              
              

            (2) 

  It is considered an outlier within this range. 

 

  

 
 

Figure 1: Components of Box-Whisker plot (Hassan and Reda, 2011). 
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2.2 Robust Regression 

It is considered an alternative method for estimating parameters in regression models, 

especially in the presence of outliers that hinder the efficiency of estimating parameters in the 

traditional regression model. Such situations occur when the basic assumptions necessary for the 

model and the study data do not align, reducing the effectiveness of traditional methods, such as 

ordinary least squares (Hassan and Reda, 2011). Thus, the importance of using robust methods 

in regression becomes clear, because they show minimal exposure to the influence of outliers 

(Al-Hajjaj and Al-Qadar, 2020).And one of these robust methods is: 

2.2.1 M-Estimator 

This approach belongs to the robust regression technique category and is considered one 

of the most prominent methods in this field. Represented by the symbol (M), it addresses the 

challenge presented by outliers by replacing the squared residuals with the loss function ρ. 

Despite this adjustment, the primary goal of the estimation method remains focused on 

minimizing the estimator as much as possible (Arshid and Saleh, 2022). 

In this method, the objective is to minimize the quantity (Mahdi, 2010): 

 

∑        
    

                 (3)  

Where ρ is a symmetric and convex function designed to achieve scale invariance.  

 

∑  (
     

  

 ̂
) 

                   (4) 

Taking the derivative concerning the parameter vector β and setting it equal to zero. 

 

∑  (
     

  

 ̂
) 

                    (5) 

After rewriting equation 5, it becomes: 

 

∑
           

   

 ̂
   

                  (6) 

Here,    is a weight function calculated using the equation: 

 

   
 (

     
   

 ̂
)
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 ̂
)

                     (7) 

 

Where    represents initial parameters and σ     is the scale parameter calculated using the 

equation (Bahez and Rasheed, 2022). 

 

 ̂  
   

      
 

      |             |

      
              (8) 

By solving equation 6 using the method of least squares, the parameter estimates are obtained: 

 

  ̂                       (9) 

Where W is a diagonal weight matrix with    as its diagonal elements. 

 

The robust method M relies on several functions, including (Zaman and Bulut, 2018): 

1) Huber function: 

Ψ    {
                         | |   
                   | |   

                 (10) 

Where h is a constant that takes the values 1.5, 1.7, and 2.08 
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2) Tukey function: 

Ψ    {
                   | |   

                             | |   
              (11) 

Where c is a constant represented by the values 4.685 and 6. 

 

2.3 Artificial Neural Networks 

Artificial neural networks have gained great recognition in modern data processing 

methodologies owing to their efficacy and objectivity. Its origins go back to 1943 when Warren 

McCulloch and Walter Pitts introduced the foundational model of artificial neural networks 

(Salman and Salah, 2022). 

The basic concept underlying artificial neural networks is to emulate data, to create a 

model of said data for purposes of comprehensive  analysis, classification, prediction, or other 

forms of processing, all accomplished without the need for a predefined model for the given 

dataset (Jabbar and Mohammed, 2020). 

 

2.3.1 Components of Artificial Neural Networks: 

1)   Input Layer: This layer receives information or signals from the external environment. 

(Silva et al ,2017). 

2)   Hidden Layers: These layers consist of neural cells extracting patterns associated with the 

process or system. These layers perform most of the internal processing of the network (Silva et 

al, 2017). 

3)  Output Layer: This layer also consists of neurons and produces and delivers the final 

network outputs. These outputs result from the processing performed by the neurons in the 

previous layer (Silva et al, 2017).  

 

2.3.2 Activation Functions: 

These functions is to transform input values according to the type of function used, 

based on a scale of the output values. They transform the output from the hidden layers or the 

output layer. Some of these functions are: 

1) Sigmoid Function: This function transforms outputs to specific values between (0, 1). It is 

referred to as the binary activation function. It is one of the most widely used functions in 

backpropagation networks. The equation is as follows (Sharma et al,2020) : 
 

     
 

                        (12) 

2) Tanh Function: This function is similar to the sigmoid function, but symmetrical around the 

origin. The output of this function ranges between (-1, 1). The equation is (Sharma et al,2020): 

 

                      
      

                  (13) 

3) Relu Function (Rectified Linear Unit): Applying this function addresses the vanishing 

gradient problem in sigmoid and tanh functions. The equation is: 

 

     {
            
             

                     (14) 

 The relu equation states that if the input from the sum is greater than zero, the output is the same 

value; Otherwise, if it is less than or equal to zero, the output is zero (Bai, 2022). 

 

 

 

  

  



 

 

 

 

 
Journal of Economics and Administrative Sciences 

2024; 30(140), pp. 688-716 
P-ISSN 2518-5764 

E-ISSN 2227-703X 
   

  

756  

 

   

 

 

 

 
 

Figure 2: Activation functions, (a) sigmoid, (b) tanh, (c) relu 

 

1.1.1 Multilayer Feedforward Neural Network: 
A feedforward neural network is a multi-layered network characterized by the strict 

forward propagation of input signals. Each layer includes units that directly receive inputs from 

units in the preceding layer and transmit their outputs to units in the subsequent layer. Notably, 

no connections are created within the same layer. This sequential process persists until reaching 

the output layer, which maintains a connection with the external environment. The structural 

arrangement is explained as follows (Amorim et al., 2022): 

 
Figure 3: Multilayer Feedforward Neural Network (Silva et al, 2017). 

 

Likewise, the error back propagation algorithm is applied as a training algorithm for the 

network with any number of layers (Amorim et al., 2022). 

The error back propagation algorithm: 

One of the most widely used algorithms, it finds its application in training fully 

connected, feedforward, multi-layered, and nonlinear neural networks. This algorithm can be 

seen as a generalization of the error-correcting training method, operating in two main stages 

(Al-Tha'labi and Omran, 2016). 

Forward Propagation Phase: 

Each node in the input layer receives its input signal and sends it to nodes in the hidden 

layer. This process is repeated layer by layer until the output layers is reached. Assuming Figure 

4 shows the neurons, neuron j receives input signals from a group of neurons in the left layer. 

The local field       at the neuron j associated with the activation function is calculated as 

follows: 
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      ∑            
 
                    (15) 

In this equation,       denotes the output values from the previous layer, whether it is 

an input or hidden layer. It is also considered the input value for the current layer at iteration (n). 

      Is the result of multiplying the layer's weights by its inputs at iteration (n). (m) Represents 

the total number of inputs (excluding bias) applied to neuron j, and the interconnection weight 

     (corresponding to the constant input     ) denotes the bias used in neuron j. 

Hence,       emerges as the output of neuron j at iteration n as follows: 

 

                                         (16) 

Where          represents the outcome of the activation function applied to the layer's outputs. 

 

 

 
 

Figure 4: shows the signals in the neural network at neuron j in the layer (Haykin, 2009). 

 

Back propagation phase (Haykin, 2009): 

After completing the forward propagation phase, the error and loss functions are calculated 

using the following equations: 

 

                                       (17) 

       
 

 
  
                                    (18) 

      is the input value (dependent variable),       is the error value at iteration n, and       

represents the cost at iteration n. 

 

     ∑           
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                       (20) 

The error back propagation algorithm applies corrections         to the interconnection 

weight       , which is proportional to the partial derivative  
     

       
. Using the chain rule for 

differentiation and integration, this gradient can be expressed as: 
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Applying the above derivation leads to: 

 
     

       
         

                                  (22) 

The correction         applied to       is defined by the equation: 

          
     

       
                                       (23) 

Substituting equation 22 into equation 23 yields 

 

                                                      (24) 

Where the local gradient      is defined as: 

 

      
     

      
         

        
                                                  (25) 

From equations 24 and 25, it is clear that the main factor affecting the calculation of the 

weight correction         is the error       in the output neuron j. In the second case, where 

neuron j  is located in a hidden layer, the development (modification) of the backpropagation 

algorithm is completed. Assuming the scenario shown in Figure 4, where neuron j is situated in a 

hidden layer within the network, equation 25 allows the local gradient      for the hidden 

neuron j as follows: 

 

      
     

      

      

      
       

  
     

      
  

                                        (26) 

Referring to figure 5, we observe: 

 

     
 

 
∑   

 
                                     (27) 

Where k is an output neuron, thus, equation 27 is similar to equation 19, with the index k instead 

of j denoting output neurons. 

Deriving equation 27 concerning the function      yields: 

 
     

      
 ∑    

      

      
                              (28) 
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Figure 5: represents the signals within the network at neuron j in the case when it is located in a 

hidden layer (Haykin, 2009). 

Following the chain rule for partial differentiation 
     

      
 and a rearrangement of equation 28, we 

arrive at the equivalent form: 

 
     

      
 ∑       

      

      

      

      
                 (29) 

However, by examining figure 5, we can observe: 

 

                     
                                        (30) 

Where neuron k is an output neuron, thus: 

 
      

      
    

                                     (31) 

Similarly, for neuron k, as depicted in Figure 5, the local field produced by: 

 

      ∑            
 
                      (32) 

Where m is the total number of inputs (excluding the bias) applied to neuron k. Once again, the 

weight       is equivalent to the bias        in neuron k and corresponds to an input of 1. 

Deriving equation 32 concerning       leads to: 

 
      

      
                                            (33) 

By using equations 31 and 33 in equation 29, we obtain the required partial derivative: 

 
     

      
  ∑         

                    

  ∑                                          (34) 

In the second line, we use the definition of the local gradient       given in equation 25, using 

the index k instead of j. Finally, by replacing equation 34 with equation 26, we obtain the 

reverse propagation algorithm for the local gradient       , described as: 

 

        
        ∑                    (35) 

Where neuron j is hidden. 
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3. Discussion of Results : 

The research sample is described in this chapter, and the necessary tests for the multiple 

regression model are conducted. After that, the methods mentioned in the second chapter were applied, 

and they were compared. The Python programming language was used to implement the techniques 

described in the previous chapter, and the statistical software SPSS was employed to extract the test results 

and describe the sample. 

 

3.1 Sample Description : 
       The sample consists of one dependent variable and four explanatory variables, and includes 1250 

observations. These data are extracted from a survey conducted on private-sector power generators in the 

year 2021 and were subsequently published in 2023 by the Industrial Statistics Directorate, an entity 

associated with the Central Statistical Organization under the purview of the Iraqi Ministry of Planning. 

 

Table 1: Variables description 

Variable  Variable representation 

X1 Number of subscribers at the station 

X2 Quantity of water used for cooling (cubic meters) 

X3 Operating hours in the summer season 

 

X4 Generator-designed capacity (kV units) 

Y Station utilized capacity (kV units) 

 

 

Table 2: Descriptive statistics of the variables 

 y x1 x2 x3 x4 

count 1250 1250 1250 1250 1250 

mean 275.4288 257.6272 73.7272 10.9672 519.52 

std 140.4153 142.5748 424.5714 3.036693 346.0633 

min 20 15 0 3 20 

25% 188 160 6 9 250 

50% 250 225 20 10 450 

75% 350 310 45 12 700 

max 800 1070 10000 20 3600 

 

The sample was divided into two parts: the first part was allocated for model training, 

representing 80% of the total sample size, and the remaining part was allocated for model testing, 

representing 20% of the total sample size. Before starting the application and ascertaining any issues 

related to the regression model with the dependent variable, the Durbin-Watson test was administered to 

assess the presence of autocorrelation problems. The test findings indicated an absence of autocorrelation 

problems, as the test statistic registered a value of 2.054, which is near two, signifying minimal 

autocorrelation. Furthermore, with the Kolmogorov-Smirnov test for normal distribution, shows that the 

data does not follow a normal distribution. The test resulted in a value of 0.123, with a significance level 

of (8.29E-41), which is less than 0.05, and using the Variance Inflation Factor (VIF) test to detect 

multicollinearity issues in the model, it is evident that there is no problem. This is because all VIF values 

are less than five, as illustrated in Table (3). 
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Table 5: VIF Values for Independent Variables in the Model 

VIF Independent Variable 

1.369 X1 

1.000 X2 

1.08 X3 

1.46 X4 

 

3.2 M-Estimator  

The M-Estimator method was applied using the Huber and Tukey functions by using python 

programming language, and the results were extracted and interpreted as follows. 

3.2.1 M- Estimator (Huber) 
 

Table 4: The result of M-Estimator using the Huber function 

 prams Se t_value p_value 

   49.74416 9.097573 5.46785 4.56E-08 

   0.513755 0.018887 27.2016 6.2E-163 

   0.009401 0.00539 1.74407 0.081147 

   -0.12175 0.751089 -0.1621 0.871227 

   0.172553 0.007684 22.45606 1.1E-111 

 

From the previous table, we observe the t-test values for the model coefficients to evaluate the 

variables' significance in influencing the model. It is clear that variables x2 and x3 do not significantly 

affect the dependent variable, as their p-values exceed 0.05. Conversely, variables x1 and x4 significantly 

impact the dependent variable. Furthermore, when applying the Huber function for M-estimation, the 

coefficient of determination (R-squared) equals 0.672538. This indicates that the model utilizing the 

Huber function explains approximately 67% of the variance in the dependent variable. The mean squared 

error for the estimators in this model is 6433.258. 

3.2.2 M- Estimator (Tukey) 
 

Table 5: The result of M-Estimator using the tukey function 

 prams Se t_value p_value 

   50.41273 9.034456 5.580052 2.4E-08 

   0.512625 0.018756 27.33136 1.8E-164 

   0.003874 0.005353 0.723746 0.469221 

   -0.00834 0.745878 -0.01118 0.991081 

   0.165768 0.007631 21.72377 1.2E-104 

 

From the above table, we observe the t-test values for model coefficients to ascertain the 

variables that significantly impact the model. It is evident that, within this model, variables x2 and x3 lack 

a substantial effect on the dependent variable (response variable) with p-values of 0.469221 and 0.991081, 

respectively. These p-values exceed the significance level of 0.05. In contrast, variables x1 and x4 notably 

impact the dependent variable. Moreover, utilizing the M-Estimator with the Tukey function yields a 

coefficient of determination (R-squared) of 0.669581, signifying strong explanatory power, explaining 

around 67% of the variance in the dependent variable. The mean squared error for the estimators in this 

model is 6491.341. 
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3.3 Artificial Neural Networks : 
      Artificial neural networks with a feedforward multilayer architecture will be used. The procedure 

begins with the initial definition of the neural network's structure, followed by the model selection process, 

which involves evaluating models using Mean Squared Error (MSE). 

 

3.3.1 Architecture of Artificial Neural Networks: 
1) Input layer with four neurons, where each neuron represents a descriptive variable. 

2) There are one to four hidden layers, with varying numbers of neurons in each layer compared to the 

subsequent layer. 

3) The same activation function, relu, sigmoid, or tanh, is used for all layers in each neural network. 

4) Output layer containing a single neuron with no activation function. 

5) Each neuron, whether in a hidden or output layer, is associated with a bias weight representing a 

constant threshold within the neuron before entering the activation function. 

 

3.3.2 Evaluation of Artificial Neural Network Models: 
 

Table 6: The Evaluation of Artificial Neural Network Models 

Activation 

Function 
Train data Test data 

MSE    MSE    

ML-FF(4,16, 1) 

relu 5916.963 0.698818 5365.244 0.730506 

sigmoid 9876.772 0.497258 10609.46 0.467091 

tanh 9730.613 0.504697 10262.46 0.484521 

ML-FF(4,16,32,1) 

relu 5595.957 0.715158 5338.434 0.731853 

sigmoid 9184.017 0.53252 8961.771 0.549854 

tanh 9444.229 0.519275 9610.343 0.517277 

ML-FF(4,16,32,46,1) 

relu 5053.547 0.742767 5483.955 0.724543 

sigmoid 6960.26 0.645713 6986.538 0.649069 

tanh 10648.08 0.457997 10797.91 0.457626 

ML-FF(4,16,32,46,128,1) 

relu 4856.608 0.752791 5337.586 0.731895 

sigmoid 7218.665 0.632559 7143.15 0.641203 

tanh 6913.12 0.648112 6476.307 0.674698 

 

From Table (6), it is clear that the artificial neural network with four hidden layers, denoted as 

ML-FF(4,16,32,46,128,1), and using the relu activation function, shows  the lowest mean squared error 

(MSE) among all the employed networks. Furthermore, the test results in the neural networks closely 

align with the training data results, indicating the proficiency of neural networks in estimation without 

merely memorizing the training data. 

Additionally, the MSE values in the previous table reveal that networks using the sigmoid and 

tanh activation functions struggle to handle outliers effectively. In contrast, networks using the relu 

activation function can effectively manage outliers in the data, bypassing all the robust methods. 
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Moreover, from Table (6), it is clear that MSE values decrease as the number of layers in artificial 

neural networks with the relu activation function increases. Conversely, in networks with the sigmoid 

activation function, MSE values decrease initially and then experience a slight increase in the fourth layer. 

For networks with the Tanh activation function, MSE values decrease in the second layer, increase in the 

third layer, and decrease significantly in the fourth layer. 

 

3.4 Comparison between Robust Estimator M and Artificial Neural Networks: 
         Based on the previous results of both methods, it is clear that the M-estimator using the Huber 

function outperforms the M-estimator using the Tukey function. Moreover, the most effective artificial 

neural network architecture is the ML-FF(4,16,32,46,128,1) with the relu activation function, which also 

outperforms the M-estimator. These findings highlight the capability of some artificial neural networks to 

handle outlier values, as shown in the following table. 

 

Table 7: Comparison between Robust Estimator M and Artificial Neural Networks 

model 
train test 

MSE    MSE    

M huber 12060.77 0.81682 10205.44 0.822188 

M tukey 13678.46 0.79225 12077.81 0.789565 

ML-FF(4,16,32,46,128,1) 8497.73 0.870936 9346.371 0.837156 

 

4. Conclusion: 

 The results indicated that the M-Estimator using the Huber function outperformed the M-

Estimator using the Tukey function. 

 The most effective artificial neural network architecture was identified as ML-

FF(4,16,32,46,128,1) with the relu activation function. This neural network model demonstrated 

superior outlier capabilities and showed predictive performance. 

 The analysis confirmed the significant impact of the number of hidden layers and the choice of 

activation function on artificial neural network performance. Networks using the relu activation 

function showed enhanced resilience to outliers and provided more accurate predictions, while 

networks using sigmoid and tanh activation functions struggled to manage outlier values 

effectively. 

  The results of this study underscore the significance of choosing methods and parameters 

wisely when analyzing real-world data. Using the Huber function and well-structured artificial 

neural networks, the M-Estimator can provide valuable insights and accurate predictions for 

complex datasets. 
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 انثحث> مسرخهص

ًَىرج الاَحذاس في ظم وخىد انميى انشارة في بياَاث انذساست ار حى انخطشق في هزا  باسخؼًالهذفج انذساست انى انخُبؤ 

وانشبكاث انؼصبيت  mانبحث انى يفهىو انميى انشارة وانكشف ػُها وحمذيش الاًَىرج يٍ خلال انطشائك انحصيُت انًخًثهت بًمذس 

هى بياَاث حميميت يخًثهت ببياَاث يسح يىنذاث انمذسة الاصطُاػيت يخؼذدة انطبماث وانًماسَت بيًُهًا وحى حطبيك انطشائك ػ

( ويؼايم انخحذيذ. أظهشث MSEوحى حمييى انًُارج باسخخذاو يخىسط انخطأ انخشبيؼي ) 2021انكهشبائيت نهمطاع انخاص نسُت 

اػيت الأفضم أداءً . كاَج بُيت انشبكت انؼصبيت الاصطTukeyُيخفىق ػهى َظيشِ يغ دانت  Huberيغ دانت  Mانُخائح أٌ انًمذس 

. حؼايهج هزِ انشبكت بشكم فؼال يغ انميى انًخطشفت وأظهشث reluيغ دانت حُشيط  MLP-FF( 5،16،32،46،121،1هي )

لذساث حُبؤيت لىيت. ار أثش اخخياس وظيفت انخُشيط وػذد انطبماث انًخفيت بشكم كبيش ػهى أداء انشبكت انؼصبيت ار أظهشث انُخائح 

 نؼصبيت الاصطُاػيت ػهى انًمذساث انحصيُتحفىق هزِ انشبكت ا

 وسلت بحثيت. >نوع انثحث

 

 ., انشبكاث انؼصبيت الاصطُاػيت، انميًت انشارة، الاَحذاس انحصيٍ، دانت انخُشيطMالاَحذاس، يمذس >انكهماخ انشئيسح
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