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Abstract:

The aim of this paper is to find a hybrid method between of statistical methods that deal
with non-linear high-dimensions. The data often suffer from complexity and overlap problems in
their mathematical functions. It is difficult to delineate or accurately determine the effect of each
variable on the other, accordingly it was constructing a hybrid model between the KPCA and
FCM methods. The KPCA method aims to address the problem of high-dimensional nonlinear
data and reduce it by finding a kernel matrix that depends primarily on the smoothing parameter
matrix (h;) that was estimated using the ROT method. Then, the FCM was adopted to obtain the
clusters. This proposal was applied to the water sector in Basrah Governorate through a study of
(8) stations for physical and chemical examination through (15) variables for the years (2019,
2020, 2021) and data were collected on a monthly basis. Through the application of this
methodology, the paper was able to determine (7) Basic variables, which are (TH, Na, Cl, TDS,
No3, EC, O_G). As for the stations, the overlapping stations between the clusters were
identified, which are (SH1, SH2, SH3, SH4, E20, T34), as for the best degree of fuzziness it was
(3.6) and the best number of clusters is (k = 3).

Paper type: Research paper
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1.Introduction:

High-dimensional data related to natural phenomena is characterized by complexity and
overlap, and this is what makes it characterized by a non-linear state, which makes traditional
statistical methods useless in treating it. To overcome this problem, a hybrid scenario was
proposed through which this complexity can be addressed by adopting the method of kernel
principal components analysis (KPCA) which aims to address the non-linear problem in the data
by estimating the smoothing parameter matrix by using the rule of thumb high order derivative
method and then constructing a matrix k(x;, x; )by adopting the gaussian kernel function that
will contribute to obtaining on the kernel components and reducing the high-dimensions of the
variables and then identifying the most influential variables. The other method adopted by this
paper is fuzzy c-mean clustering (FCM). This method is based on fuzzy logic in forming clusters
because high-dimensional data always suffer from cases of uncertainty in forming groups, as it is
possible for cases to belong to two or more clusters. Therefore, the formation of these groups
will be based on determining the fuzzing of exponents and the partitions matrix that determines
the membership degrees to each cluster.

For achieving the purpose of this paper, it was applied to one of the important sectors,
which is the water sector, which is considered one of the environmental sectors that is exposed
to several risks such as pollutants, low water levels, high salt concentrations, in addition to the
complexity that characterizes its data, as the environmental data for water is a phrase. It consists
of physical and chemical elements linked together in complex relationships that cannot be easily
separated.

1.1 literature review:
There are several contributions made in the field of addressing the problem of high-
dimensions and different opinions:

Liu and Yang (2009) developed an approach to address the problem of high-dimensions
by adopting two methods of kernel principal component analysis and the fuzzy cluster for
addressing the problem of classification in non-linear data.

Ali and Salman (2012) demonstrated the importance of using statistical methods that
are concerned with determining causal relationships between variables by enabling classification
methods that contribute to the analysis of phenomena. This study presented its contribution
through family data and demographic analysis with factor analysis and cluster analysis.

Dogruparmak et al (2014) discussed the possibility of reducing air-monitoring stations
by analyzing the reality of stations with similar characteristics and features, which helps reduce
operational costs, for achieving the goal of this paper, principal component analysis and fuzzy
cluster analysis were used. The study concluded with the possibility of reducing stations and
reducing pollutants.

ahmed et al (2015) analysed the health sector in Iragi health institutions by adopting a
set of variables that help create classified groups that are easy to analyses by defining a group of
clusters. In order to reach clusters that describe the health reality, by used the K-means cluster.

Wang and Zhang (2015) proposed an approach to identify people through speech
analysis by adopting the KPCA and thus improving the assembly performance using FCM where
the paper was able to reduce errors within speech analysis.

Al-mousa et al (2015) constructed a model for improving the outcomes of the K-Means
by processing multidimensional data by adopting PCA, through this approach; they improved
the clustering results when using principal components analysis.

Naif and Ayoub (2016) provided large data processing (data exploration) using the K-
means averaging cluster method to come up with the identification and classification of the huge
amount of data for identifying large impact variables.
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Mohammed and Abbod (2016) presented a comparative study between the estimators of
the smoothing parameters that affect the construction of the kernel principle component analysis
for non-linear data and reducing dimensions by adopting three estimators: least squares cross-
validation, biased crossing valid (BCV), Smoothed Cross-validation (SCV) , direct plug-in rule
(DPI).

Kaittan (2018) address the high-dimensions and improved the spatial beams of the
accuracy of space images through a number of methods including analysis of the main
compounds PCA.

Hamed (2019) presented a study on water quality follow-up that is a priority for surface
water protection. This applied to the water of the Nile River and particularly to drinking water
stations (CDWPs) in Cairo using the principal compounds analysis (PCA) and cluster analysis
techniques (FCM).

Essa and Alrawi (2019) presented a comparative study between two methodologies
addressing the problem of high- dimensions, one dealing with linear data (PCA) and the other
with non-linear data the (KPCA) method in processing the high-dimensions of satellite images
of the Shatt al-Arab and the interspersed channels in Basra governorate and the surrounding
surfaces.

Hojjatinia and Lagoa (2019) analysed the electrophysiological activities of the brain
neurons to explore the structure of the nervous system. Several methods of dimensional analysis
proposed for the activities were adopted PCA and KPCA, and then the K-means and FCM
methods were adopted to obtain the clusters.

Fawzi and Alkanani (2020) they presented a comparative study between the traditional
clustering (K-Means) algorithm and the fuzzy C-Means clustering algorithm and applied this
methodology to Baghdad's regions are classified according to water inertia with the adoption of
the hazy circle and conventional or hard circle algorithms to indicate which are the most
efficient in identifying the less ultra-orthodox areas.

mohammed and Muhamed (2020) provided processing of high-dimensional non-linear
data by adopting the methodology of analysis of key pulp compounds to reduce dimensions and
identify the most influential variables.

El Fattahi and Sbhai (2021) presented an important approach in the processing of non-
linear data and analysis of key pulp components KPCA and the use of inertial model with KPCA
entropy to arrive at the component-processing algorithm KEPCA that achieved more accurate
results in the formation of kernel non-linear compounds.

Mushtag et al (2023) proposed an approach to the Naive bayes algorithm with a
gaussian distribution and then performed a dimensionality reduction analysis using KPCA. This
algorithm was applied to a group of people with breast cancer with the aim of identifying
cancerous malignant and non-malignant cells. The researchers were able to achieve high
accuracy in identifying cancer cells using this algorithm compared to other algorithms.

Liu and Shao (2023) used a method that combination kernel principal components
analysis to reduce dimensions with the Gaussian mixture model in order to analyze neutron rays
that are used in the fields of radiation protection. KPCA was used to reduce the dimensions of
characteristic values, while GMM was used to to cluster the dimensionality reduction of
KPCA outputs. This methodology was compared with a group of methods. It has proven to be
highly accurate compared to other methods.

Through this introduction, we can place our contribution to this paper by estimating the
matrix of the boot parameter in a multiplicity of variables. The other contribution is to develop
the fuzzy cluster algorithm by improving the distance scale when incorporating cluster centre
variation.

Therefore, we can put the research problem in how to find a hybrid algorithm that can
address the problem of higher dimensions and reducing dimensions.
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The aim of this research attempted to provide a contribution to address the problem of
high-dimensions and reducing dimensions to find the most influential variables and then benefit
from them in forming homogeneous clusters.

2.Material and Methods:

In this section, this section will illustrate the statistical methods used in this paper,
namely analysis of the main pulp compounds KPCA and the contract of FCM fog averages and
the important developments proposed in improving the functioning of the FCM algorithm.

2.1 Kernel Principal Component Analysis (KPCA) :

The overlap and complexity in interpreting relationships between variables with the
high- dimensions of those variables makes the data conduct nonlinear behavior (Fawzi and
Jaber, 2021). In these cases, it is difficult to build a model through which the phenomenon can
be simulated and for the purpose of addressing the problem of vascular dimensions and reducing
them. (Blanchard and et al, 2006).

2.2 Kernel Density Estimator:

Probability functions are essentially the basics of parametric distributions, but they vary
depending on the nature of the style, including parametric and non-parametric. The non-
parametric approach is based on the principle of not knowing the function form, so the estimator
of the kernel density g, (x) will depend on the data and the Kernel Function (Chacon and
Duong, 2018) and knowledge according to the equation:

A 1 —Xi

gn(0) = =31, K (2 e

The Eq. (1) represents a one-dimensional kernel density estimator, but if we assume that we
have a vector X = [Xl,Xz, ...,Xq]T that has (q) dimensions and that for each dimension (n) of

observations x = [xq, %, ..., x,]7, then we can get a kernel density estimator
suitable for multivariate case (Wand and Jones, 1994):

~ 1 xj=Xij

3w = S {1 K (524 )} @

~ 1 X1—Xi1 X2—X; Xq—Xi

Gn(0) = By K (ke ke, o) ©)

[H|: The determinant of the smoothing parameter matrix, the H is a positive definite square
matrix.

In order to reach an efficient intensity, it must be determined whether it is consistent by
adopting a consistency criterion, since the methods of preparation depend primarily on the
estimate's proximity to the original function (MSR, MISR, and AMISR), (Hmood, 2005).

2.3 Adjusting Smoothing Parameter:

Adjusting the smoothing parameter contributes to determining the kernel density
estimator. In addition, it contributes to creating a state of balance between variance and bias.
Then, it is possible to build a covariance matrix, and the smoothing parameter will be estimated
using the full and fuzzy method (normal distribution) with higher-order derivatives.

The use of high-derivatives in determining the appropriate formulas to adjust the
smoothing parameter is one of the procedural to address the problem of high-dimensions of
variables, which was diagnosed by (Bellman) in 1961, which helps to reduce the mathematical
difficulties facing the formulas, and thus good smoothing parameters are reached (Chacon and et
al, 2011), if we assume that we have (r) of the orders of the higher derivatives and (v) that
represents the order of Taylor's expansion, then we can reach a formula for the kernel density
estimator through which we can adjust the smoothing parameter matrix By adopting the AMISE

scale, as follows:
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(x)_nl'lj’l ?1{ 7=1K1:]h(x];—]xu>}
AMISE(gh(x)) = f Var(gh(x)) dx + f [Bais(gl (x))]? dx
Bais(gh(x)) = E(Gr(x)) —g"(x)
= E(nnfll i 1{ j=1Koh (xl L )}) 9" (x)

jzlg(’") (Xi; — hupKy ) () (=hy)duy) — g7 (%))

o () (=hy)dw; — g7 (x;)

ij

Using the rule of Taylor expansion g (X;; — hju;)

q
(00} [ee] (00} 1 v 3
= (j f f Z [g(r)(xf) + v—jVQ(H")(xj)(hjuj) Ky (v )dwy) — g7 ()
—00 v —00 —00 ]=1
By referring to the properties of the kernel density, function
jk(u)du =1; juk(u)du =0; fuz k(wdu = p, (k)

After distributing the amount K‘r,j’h(u]- ) on Taylor’s to a bracket Taylor expansion, we can get
the result:

) I
_g(r)(x)_l_.uv ng(rﬂi)(x])(h) —g (xj)
Bais(gh(x)) = ”"U('K) Vg(””)(x])(h) + o(nh)™* @

By following the same derlvatlve method above, we can get the variability formula for the high
order derivatives

var (g () = E(@GH())? — [E(g™ ()]

2 2
N dsi — rj (Xj=Xij
S e

=W<E< ?:11(;,]}'1 (Xj;ljU) > [E(l_[, 1 J]h (xjr_lj-(ij >)] >

J=1"]

When the transformation to simplify the formula with the properties of the Kernel function that
is achieved [ uk(u)du = 0 with the use of Taylor’s on g (X;; — hju;)at the first order, then we
get:

var(gh(x)) = hzm ([97 ()], RED) (5)

aAMISE(gH(x))

By taking the derivative , we get the formula(h"pt).

2v+27+q -1

q J
popt _ vi(q+21) [T, R(K, 1) nzviartq (6)

j 2
@ (70 (x))) x|
(Henderson and Parmeter, 2012)
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The Eqg. (h;’pt) represents the formula for obtaining the optimal smoothing parameter and

2
addressing the amount of f(Vg(”")(xj)) dxunknown using natural distribution and taking

advantage of some of its characteristics. It has multiple infinite boundaries at the higher levels of
derivatives. Hermite Polynomial, where between Henderson and others in 2012 could find a
formula to estimate the smoothing parameter as follows:

1

a Zvtq -1
opt _ w22Vt (v)2R(K,,)T -
by [(zv)uf,(Kv>[(2v!!+(q—1>(v!!)2]] e @
v: High order derivative
q: Numbers of diminutions
The multivariate gaussian kernel function, which is consistent with the ROT (Wand and Jones,
1995) method, is be adopted, and in compensation for the results of this u, (K)4, R(K)? in the
Eq. (7) we get the ROT formula created by Scott as explained in the following(Scott, 1992):
1 1
ROT _ [_4 ~ “ara
nfT = [T E ®)
Where:
6; : It represents the standard deviation for each of the dimensions

In this paper, (H) diagonal matrix defined by (k;) will be adopted for each of the dimensions,
its elements defined as follows (Duong, 2004):

h2 0 .. 0
2
g=|0 HB .. o0 ©)
ooy w0
0 0 0 hg

For obtaining the kernel matrix, the Gaussian Kernel function will be used in its traditional state,
which is shown below:

2
k(x;, xx) = exp <— g =l ;;SJ” )
j

(10)
2.4 Statistical Tests:
2.4.1 Fitting Data Test:
(1) Kaiser Meyer Olkin test (KMO):

Kaiser presented in 1970 the KMO test, which aims to determine the suitability of the
sample size, whereas, value falls between the two values (0, 1), it has calculated according to
the following formula:

?:tjrizj
KMO = ;i&j=1,2,..,q (11)
?ijrlgj + Z?:tj 'Bizj
Where:

tj r,?]- is the sum of the squares elements of the correlation coefficient matrix outside the main
diagonal.
}'# t’,?j is the sum of the squares elements of the partial correlation coefficients matrix.

Whenever its value is greater than 85%, this is evidence that the sample is valid, but if it is less
than 50%, this is evidence that it is not valid.
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(2) Bartlett Shpericity Test:
Bartlett Shpericity has calculated according to the following formula (Dziuban & Shirkiy, 1974):

1
X =—(n—l2q+5))miR (12)

If the value of y2 > th , , the null hypothesis H,, is rejected.

a (%q(q—l))
2.4.2 Identification number of the KPCA:
(1) Jolliffe criteria:
Jolliffe modified the part value criterion in determining the number of main vehicles according
to the ratio (70%-90%), (Jolliffe, 2002).
(2) Average Eigen Values Criterion:

It has calculated according to the following formula (Rencher & Christensen, 2012):

q

7 = Zizh ;if A; > Ato select Z; (13)
A;j: eigenvalues
(3) Scree Test:

This criterion depends on the intrinsic 4; in determining the number of important PC. It
can be determined by drawing the 4; and determining the “elbow” point. All component that are
after this point represent the important compounds, while compounds that form before are
unimportant and can be neglected (Cattell, 1966).

2.5 Fuzzy C-Means Clustering:

Clustering did considered one of the important statistical methods that are used to form
aggregates and classify them to obtain homogeneous samples for a group of data, especially
when that data is characterized by large patterns and trends that cannot be controlled. Therefore,
technological development had a role in developing clustering methods to shift from traditional
methods to more ones that are realistic. In line with the real reality, so the fuzzy theory proposed
by Zadeh in 1965 had a shift in the development of many methods, including the clustering
technique to show what was the called fuzzy C-Means method (FCM) (Sreenivasarao and
Vidyavathi, 2010), (Ashour and Jawad, 2017).

The FCM algorithm aims to cluster large data in the form of new, more homogeneous
clusters based on determining the fuzzing exponents to the target cases. (Dunn, Bezdek)
developed algorithm in 1974 by developing the partitions matrix in the K-Means clustering
algorithm with specifying the degree of fuzziness (EI-Zaghmouri and Abu-Zanona, 2012), then
we get the objective function described in the following formula (Javadi and et al, 2018):

Ob](X' P' V) = Zi=1 Z?=1 pg{l (p(xi 'vk) (14)
Where:
P : It is a matrix of order (kxn) and represents the degrees of belonging to each element within
the clusters.
m : Fuzziness coefficient (fuzziness exponent), where its value is defined within the period
1<m< oo,
x; :It represents the original data collected.
v - Cluster center.
o (x;; vy) ¢ Itis a measure of similarity or difference depending on the center of the clusterv, .
In order for us to achieve the objective function, it is necessary to determine the center of the
fuzzy cluster viand to define the matrix of fuzzy divisions that includes the membership
degrees to each case (p;;) and the fuzzing exponents (m) and its formulas to be define as
follows:

YLy PikXij

Vkj = —~n m Vk=1.2,..,c (15)

i=1Pik
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Accordingly, we obtain formula (15), which represents the estimation of the cluster
center (Goyal and et al, 2016). Therefore, the cluster center here that become weighted by
membership degrees (p;,)which also depends on the measure of similarity or difference, and
accordingly a matrix can be estimated Degrees of belonging according to the following formula
(Oliveira and Pedrycz, 2007):

hie(xi,v) .
. -_—ee,—————— v — 1 2 . 1 6
plk Zi=1 hk¢(Xi,Uk) ’ l 14y ,n ( )

Where:
h, = % . It represents the ratio (size of the sampling) i.e. Number of elements in each cluster ny

to the number of total elements n, and the condition is met Yx_; hi, = 1
@ (x;, i) : The measure of distance scale.
2.6 Distance Metrics:

The measure of distance or similarity ¢ (x;, vy) is a measure based on the formation of a
similarity matrix for (n) cases and (g) variables. Accordingly, the degree of convergence
between the points of each variable can be determined according to the cases to form a matrix of
convergence. Proximate Matrix, if we have a vector VariablesX = [X; X, .. Xq], the
information matrix is of degree(n x q), and therefore the convergence matrix can be obtained as
shown below (Wierzchon and Ktopotek, 2018):

dyy diz - dlq
D= d?1 d?z d?q
ldnl an dan

There are several types of measures of similarity and difference to determine the distance, but
the Euclidean Distance and Square Euclidean Distance (SED) will be displayed as follows:

1- Euclidean Distance (ED)

dik = \/Z?zl(xik — vk)2 Vk= 1,2, e, C; W]? =1 (17)
2- Square Euclidean Distance (SED)
2
dik = (\/Z?zl(xik - Uk)z) Vk= 1,2, e, C (18)

2.7 proposal to develop a FCM algorithm:

The K-means algorithm was hybridized with the FCM algorithm for arriving at the
partitions matrix to determine the initial membership degrees by adopting the original data
instead of generating it randomly. This was done in two stages:

The first stage: It was represented by the stage of preparing the membership degrees by
adopting the K-Means algorithm approach according to the following steps:

1- Determine the number of clusters.

2- Determine the centres of initial clusters.

3- Calculate the distance according to Eq. (18).

4- Formation of primary clusters.

5- Return to step (2) and get the centres of the clusters according to the clusters achieved in step
(4).

6- Formation of new clusters.

7- Calculating the division’s matrix according to the membership function Eq. (16) to obtain the
membership degreepiy,.

The second stage: entering the matrix of belonging scores resulting from step (7) to initialize
the FCM algorithm:

8- Calculation of cluster centres according to Eqg. (15).

9- Calculate the objective function according to Eq. (14).

10- Condition check|Obj™*t — 0bj'| < .
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11- If the condition is met, it stops, but if the condition is not met, the p;; matrix was updated

according to the equation.

Pik = ! T Vi, r=1i (19)

¢ (d3(x; vp)\m-1
z:k=1(dz(9\7i .Vk)>
Repeat steps (8-10), and the process of updating p;; elements continues according to step (14)
until the stopping condition (10) is true.

2.8 Identification the validity of fuzzy cluster:

(1) Partition Coefficient (P.C.):

The partition coefficient scale was proposed to test the validity of fuzzy clustering by Bezdek
(1974), It is calculated using the following formula (Bezdek, 1974):

2
Yh=12i=1 Pij

P.C.= =12l S<P.C<1 (20)

The higher the value of P.C. close (1), then the fuzzy cluster has a crisp cluster, and when
it is close to or less than the limit (1/c), the fuzzy cluster is invalid cluster. However, if the value
of P.C. Between the two values, the fuzzy cluster is good (valid).

(2) Xie-Beni criteria:

The cluster validity criterion (6yp)verifies the validity of the cluster structure based on
the objective function and the fuzzing exponents. Accordingly, it is considered better than the
partitions coefficient criterion, which depends only on the membership degrees of the partitions
matrix. The best cluster structure is determined by determining the lowest value achieved for this
criterion, and it is calculated to the following formula (HOppner, Klawonn, Kruse, & Runkler,
1999):

2
Yie1 Zh=1 P ||xi—vi|

. 2
n(mmi_k(Hvrk—vij ))

8,5(X,P,V) =

(21)

Where:

n :number of observation; i = 1,2,...,n

c: Number of clusters; k = 1,2, ..., c; vy : cluster center.
p;j : Elements of the membership degree matrix

min||v,;, — vj||: Minimum distance between clusters

2.9 Description of the application sector:

The environmental sector, especially the water sector, is considered one of the complex
sectors in building its models. This complexity is related to the two types of its data, which are
physical and chemical elements. It is also known that these elements are linked to each other
through complex relationships and are characterized by nonlinearity. Due to these
characteristics, this data was processed according to the methods proposed in this article. The
paper, therefore, the water sector in Basrah Governorate was targeted as a result of the
environmental problems that it suffers from, especially in this sector. so we prepared this paper
for the purpose of determining the structure of homogeneous stations through a set of physical
and chemical variables, as information was collected from (8) stations in Basrah Governorate,
which are Shatt Al-Arab stations (H1, H2, H2 B, H3, H4), station Qurna for the Tigris River
T34, the two stations of the city for the Euphrates River (E20, E21), and it was represented by
the data of the physical and chemical examination of water on a monthly basis from 2019 to
2021, which included (15) variables, which are shown in the table below:
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Table (1) shows environmental variables (physical and chemical properties of water)

environmental variables Variable Climate variables Variable

Potential for Hydrogen (PH) X Nitrogen (Na) X
Dissolved Oxygen (DO,) X, Sulphate (SO4) X0
Phosphorous (PO,) X3 chlorine (CI) X1
Nitrates (NO,) X4 Total dissolved solids (TDS) Xis
Calcium (Ca) Xs Electrical conductivity (EC) Xi3
Magnesium (Mg) X Total Alkalinity (ALK) X4
Total Hardness (TH) X Oil and Grease (O_G) Xis
Potassium (K) Xy I

Source: Ministry of Environment - Technical Section

3- Discussion of Results:

3.1 Discuss the results of the KPCA:

First: test the suitability of the data for analysis:

The suitability of the environmental data obtained from the water test was tested in Basrah
Governorate and when conducting it, the results were as shown in Table (1).

Table (2) Testing the suitability of the physical and chemical examination data for the waters of
Basrah Governorate

2
Sector g N  KMO Decision Chi-Sq. P_ValueXTABDecision

environmental 15 145  0.9223 Great fit 2365.293 0.0000 Sig.

It is clear from the results of the table (2) that the data was highly suitable for the
procedure of e kernel principal components analysis, as the (KMO) scale recorded an
appropriate rate of (0.9223), and this was confirmed by the Bartlett Shpericity test, as it showed
the Chi-Sq. statistic. The calculated value (2365.293) is significant because the P-value was less
than (5%), then the relevance and accuracy of the researched data is accepted.

Second: Identify the kernel principal component contributing:

In this paragraph, the results of the analysis of the kernel components of the
environmental data will be discussed about the smoothing parameter matrices (H)were
estimated using the (ROT},4) method, and then the gaussian kernel function was adopted in
calculating the kernel covariance matrix K (x, x). The first stage included testing the criterion for
determining the cut-off value by applying (3) criteria as discussed in the experimental side
(Average Eigen value, Jolliffe, Scree graph), and it was obtained the results are shown in Table
(3 and 4):
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Table 3: Shows the eigenvalues and contribution Proportion variance of the KPCA

GK—-H
Number - -
PC. Eigen value Prop(_)rtlon Cumulatlve_
Variance | Proportion Variance
Z 293.606 0.83567 0.83567
Z, 31.654 0.09009 0.92576
Z3 19.022 0.05414 0.97990
Zy 2.805 0.00798 0.98789
Zs 2.663 0.00758 0.99547
Zs 0.699 0.00199 0.99746
Z; 0.545 0.00155 0.99901
Zg 0.264 0.00075 0.99976
Zy 0.049 0.00014 0.99990
Zig 0.019 0.00005 0.99995
Zi 0.008 0.00002 0.99998
Zi 0.004 0.00001 0.99999
Zi3 0.002 0.00001 1.00000
Ziy 0.001 0.00000 1.00000
Zis 0.000 0.00000 1.00000

Table (3) shows the number of KPC resulting when estimating the covariance matrix
using the gaussian kernel (GK) method, which showed through the eigenvalues and the
cumulative contribution proportion to the variance achieved that there are (5) PC out of (15)
compounds, and here the scope for reduction becomes clear the number of component, but this
does not determine who are the most influential and contributing component and therefore the
contributing vehicles will be determined through a number of criteria, which are shown in table
(4).

Table 4: Comparison between the criteria for selecting kernel principal compounds, determining
the cut-off value, and the cumulative contribution percentages of the smoothing parameter
matrix estimated according to the (ROT},,4) method.

O N. KPC by criterion
Di S. v
ime. |
Sector size | =
(@) (n) =
< Cum. Cum. Cum.
A| pro. | Joliffie | pro. |S.G. pro.
variance variance Variance

Environmental | 15 145 | 5 | 2| 0.92576 1 0.83567 1 0.83567

As the results of Table (4) show that the number of compounds achieved was (5)
compounds, while the criteria for selecting the most compounds were able to determine the
number of contributing compounds.

(E) the cut-off value was at the component ( Z,) with a contribution ratio of (0.92576),
meaning that the number of the main compounds are (Z, ,Z,), while the Jollffie criterion
specified the value of the cut-off at the vehicle (Z;) with a cumulative contribution rate of
(0.83567). The Scree Graph criterion came with results similar to the Jollffie criterion, and due
to what was achieved by the criterion(/T), what was achieved can be adopted in determining the
most influential variable.
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Table 5: Shows the saturation degrees representing the degree of binding of variables to the

KPC
VéF‘ Z; Z, Z3 Zy Zs Zg Z; Zg Zy Zyo Zy Zy Zi3 Zis Zis
X, | 001 | 002 | 007 | -0.04 | 004 | 030 | 031 | -0.40 | 029 | -053 | 0.48 | 0.07 | 0.16 | -0.11 | 0.03
X, | -0.12 | -0.26 | 0.08 | 030 | 0.76 | -0.38 | -0.24 | -0.05 | 001 | -0.17 | 0.10 | 0.02 | 0.00 | -0.02 | 0.03
X | 012 | -0.03 | 0.07 | 009 | 013 | -0.32 | 0.88 | 024 | -0.13 | 0.05 | -0.04 | 0.00 | 0.02 | 0.06 | -0.01
X, | 003 | 082 | -0.11 | 054 | 012 | 0.08 | -0.0L | 002 | 001 | 003 | 0.02 | 0.0L | 0.00 | 0.00 | 0.00
Xs | 023 | -0.07 | 003 | -0.07 | 044 | 050 | 012 | -0.16 | -0.02 | 058 | 0.04 | 0.17 | -0.12 | -0.25 | -0.08
Xs | 032 | 003 | 001 | -0.02 | -0.06 | -0.21 | -0.10 | 043 | 0.73 | 0.12 | 024 | 0.08 | -0.13 | -0.17 | -0.05
X; | 036 | -00L | 001 | -0.02 | 018 | 016 | -0.02 | -0.08 | 023 | 005 | -0.11 | -0.49 | 0.18 | 0.66 | 0.17
Xg | 031 | 005 | 000 | 000 | -0.16 | -0.31 | -0.13 | -0.16 | -0.39 | 027 | 0.69 | -0.05 | 0.12 | 011 | -0.10
Xo | 035 | 005 | 001 | 000 | 0.00 | -0.11 | -0.01 | -0.21 | -0.07 | -0.23 | -0.20 | -0.52 | -0.30 | -0.36 | -0.48
Xw | 028 | -007 | -008 | 001 | 013 | 039 | -0.11 | 064 | -0.38 | -0.39 | 0.16 | 002 | 000 | -0.01 | -0.01
Xu | 036 | 005 | -001 | -0.02 | -0.04 | -0.13 | -0.03 | -0.14 | -0.11 | -0.08 | -0.11 | -0.01 | -0.15 | -0.33 | 0.82
X | 035 | 005 | -002 | -003 | 001 | -009 | -003 | -0.21 | -0.03 | -0.21 | -0.16 | 061 | -0.44 | 042 | -0.15
Xi: | 035 | 003 | -002 | 000 | 001 | -011 | -0.09 | -0.07 | 0.00 | -0.05 | -0.33 | 029 | 0.77 | -0.19 | -0.17
Xw | 008 | 016 | 0.83 | 044 | -024 | 014 | -0.05 | 0.02 | -0.02 | 003 | -0.04 | 002 | -0.02 | 0.01 | 0.00
Xis | 009 | 046 | -053 | 063 | 026 | 012 | 0.06 | -0.10 | 007 | 005 | 0.00 | 000 | -0.01 | -0.01 | 0.00

Table (5) results illustrated a summary of the degree of correlation of the basic water

environmental variables represented by the results of physical and chemical examinations of the
waters of Basrah Governorate are associated with the resulting KPC (Z1 and Z2), the most
influential variables were diagnosed where the component (Z1) showed each of the variants Na,
X11 = (Cl), X12 = TDS, X13 = EC, while the compound (Z,) showed that the variable X4 =
No3 and the variable X15 =0 _G.

3.2 Discussion of the results FCM:

After KPCA results have determined the most influential fundamental variables in the
aquatic environment, clusters will be formed from inspection stations in Basra governorate in
accordance with the FCM cluster algorithm. In this algorithm, restricted simulation of real data
is adopted for the purpose of determining the degree of overlap and then conducting the cluster
stations according to the variables. (O_G, EC, TDS, Cl, Na, TH, and No3), the following results
were reached:

3-2-1 Discussing the results of 2019:
1.Determine the number of clusters (k) appropriate and the fuzzing exponents (m) for the year
2019
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Table 6: Shows the results of the test by adopting the P.C. standard and &, , to determine the

fuzzing exponents (m) and the number of clusters k for the year 2019
Clustering
Algorithm HFCM
- G. fit cluster
1 @D

Comparison Obj. § e 5
” - = e XB
2 1.2 ] 925585.52 | 12 | 0.9967 | 378.3792
2 2 | 747413.11 | 15 | 0.9119 | 386.1952
2 2.8 | 527603.09 | 15 | 0.8024 | 239.9643
2 3.6 | 345639.62 | 18 | 0.7135 | 185.1575
3 1.2 | 279377.64 | 9 | 0.9987 | 176.3731
3 2 | 233255.92 | 35 | 0.8635 | 212.4914
3 2.8 | 141635.51 | 24 | 0.7004 | 104.8721
3 3.6 | 73437.70 | 27 | 0.5790 | 58.0576

Discuss the results of the table (6) as follows:

When k = 2, it is clear from the results of table () that the best degree of fuzzing is when (m =
3.6), as it achieved the lowest value of the objective function (Obj_Fun = 345639.62), compared
to the other degrees of fuzzing.

According to P.C. standard. It showed the validity of the fuzzy cluster at the fuzzing exponent
(m = 2.8), achieving a percentage of (0.8024), and the validity of the fuzzy cluster was achieved
at the fuzzing exponent (m = 3.6), achieving a percentage of (0.7135).

According to the 8, criterion, the validity of the fuzzy cluster structure was demonstrated at the
fuzzing exponent (m = 3.6), as it achieved (185.1575), which is the lowest value compared to the
other values.

When k = 3, it is clear from the results of table (6) that the best degree of fuzzing is when (m =
3.6), as it achieved the lowest value of the objective function (Obj_Fun = 73437.70), compared
to the other degrees of fuzzing.

According to P.C. standard. It showed the validity of the fuzzy cluster at the fuzzing exponent
(m = 2.8), achieving a percentage of (0.7004).

According to the 8, , criterion, the validity of the fuzzy cluster structure was demonstrated at the
fuzzing exponent (m = 3.6), as it achieved (58.0576), which is the lowest value compared to the
other values

We can also determine the level of overlapping points by determining the Average maximum
membership Index AverageMax As shown in the figure below:
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Figure 1: Shows instances of selection of fuzziness exponent according to the AverageMax
standard in case of k = 2,3 for 2019

Figure (1) shows overlaps by degrees of fuzziness. In (k = 2)figure (1-1) shows,
overlaps that show increased uncertainty. One station appeared at (m = 2.8) with an average
maximum membership (AverageMax = 0.8684), a station (SH4) that belonged to the first cluster
to the membership degrees (0.5570) and the second cluster to the degree of belonging (0.4430).
In the case of the (m = 3.6) and a maximum average membership (AverageMax = 0.8047), the
interference case appeared in one station, station (SH4), which belonged to the first cluster with
a membership degree (0.5310) and to the second cluster with a membership degree (0.4690).

In the case of k = 3, Figure (1-2) shows overlaps showing an increase in uncertainty, one
station appeared at the (m = 2.8) and with an average maximum membership (AverageMax =
0.8080), which is station (SH4) that belonged to the first cluster to the degree of membership
(0.5746), and to the third cluster with a degree of belonging (0.2201), and to the second cluster
with a degree of belonging (0.2053). In the case of the (m = 3.6) and with a maximum average
membership (AverageMax = 0.808), two stations showed, namely (SH3), which belonged to the
first cluster with a degree of membership (0.5561), and to the third cluster with a degree of
affiliation (0.3326), and to the second cluster with a degree of membership (0.3326), and
(0.1113) degree to the second cluster , and the station (SH4) belonged to the first cluster with a
degree of membership (0.4831), to the third cluster with a degree of affiliation (0.2656), and to
the second cluster with a degree of membership (0.2513).

2.The clusters are therefore formed according to the specific cases:

Table 7: Shows the fuzzy cluster formation of the physical and chemical examination stations in
the case of k = 2, 3 for the year 2019

Clustering Algorithm HFCM
Comparison )
Stations Order

M Clusters

36 C, E20 | T34

' C, SH1 | SH2B | SH2 | SH3 | SH4 | E21
C, SH1 | SH3 | SH4

3.6 C, E20 | T34
Cs SH2B | SH2 | E21
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The results of table (7) show the formation of clusters. In the case of k = 2, the cluster
(2) contained (6) stations. This is evidence of the uniformity of the resulting inspection
information. While cluster (1) contained two stations (E20, T34), in the case of k = 3, three
clusters with the first and third contained three stations, while the second contained two stations.

3-2-2 Discussing the results of 2020
1. Determine the number of clusters (k) appropriate and the fuzzing exponents (m) for 2020

Table 8: Shows test results by adopting P.C. and 6, , standard for determining fuzzing
exponents and number cluster k for 2020

Clusterin
Algorithn% HFCM
= G. fit cluster
Comparison Obj. g e 5

K M g U XB
2 1.2 | 5429289.87 | 5 1 1929.5
2 2 5371372.23 | 8 |0.9927 | 1415.9
2 2.8 |4747416.49 | 13 | 0.9393 | 1932.6
2 3.6 | 3635337.68 | 13 | 0.8639 | 791.1
3 1.2 | 1785074.75 | 10 | 0.9965 | 1318.7
3 2 1457903.63 | 44 | 0.8720 | 1088.7
3 2.8 | 962884.21 | 53 | 0.7449 | 779.95
3 3.6 | 543718.11 | 43 | 0.6568 | 328.32

Discuss the results of the table (8) as follows:

When k = 2, it is clear from the results of table (8) that the best degree of fuzzing is when (m =
3.6), as it achieved the lowest value of the objective function (Obj Fun = 3635337.68),
compared to the other fuzzing exponents.

According to P.C. standard. It was shown that the fuzzy cluster is invalid at any fuzzing
exponents because it achieved a percentage higher than (85%), when the fuzzy cluster is crisp
cluster.

According to the 8, criterion, the validity of the fuzzy cluster structure was demonstrated at the
fuzzing exponent (m = 3.6), as it achieved (791.1), which is the lowest value compared to the
other values.

When k = 3, it is clear from the results of table (6) that the best degree of fuzzing is when (m =
3.6), as it achieved the lowest value of the objective function (Obj_Fun = 543718.11), compared
to the other fuzzing exponents.

According to P.C. standard. It showed the validity of the fuzzy cluster at the fuzzing exponent
(m = 2.8), achieving a percentage of (0.7449), and the validity of the fuzzy cluster was achieved
at the fuzzing exponent (m = 3.6), achieving a percentage of (0.6568).

According to the 8, , criterion, the validity of the fuzzy cluster structure was demonstrated at the
fuzzing exponent (m = 3.6), as it achieved (328.32), which is the lowest value compared to the
other values

We can also determine the level of overlapping points by determining the Average maximum
membership Index AverageMax As shown in the figure below:
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we can also determine the level of overlapping points by determining the Index AverageMax As
shown in the figure below:

=12 b Mac = § W2, e, M= 0386 =12, Ave, Max. 0350 M o Mo = 006
o -

W28, Ave Max = 0980 M=15, Ave, Max =093 - M= 20, Ave Max =022 ) e, A b, 0737

X | | X

§g

-
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>

Fig (2-1) - overlap k=2 Fig (2-2) - overlap k=3

Figure 2: Shows instances of selection of fuzziness degree according to the AverageMax
standard for
k =2 and 3 for 2020

Figure (2), which shows the overlap cases according to the degrees of fuzziness, in the
case of k = 2, Figure (2-1) shows that there is no overlap between the clusters, as AverageMax
recorded the average maximum membership degree between [1, 0.5], which indicates a low state
of uncertainty that is, the membership of the stations in the cluster are greater than (82%) and
may reach one, offset by a very weak degree of a membership to the other cluster.

In the case of k = 3, Figure (2-2) shows the interference cases that show the increase in
uncertainty. One station appeared at the fuzzing exponent (m = 2.8) and with an AverageMax =
0.82, which is station (SH1), which belonged to the third cluster with a membership
degree(0.4903), and to the first cluster with a membership degree (0.4829), and to the second
cluster with a membership degree(0.0268). In the case of the fuzzing exponent (m = 3.6) and an
AverageMax = 0.737, three stations were shown: SH2, which belonged to the second cluster
with a membership degree (0.4797), to the third cluster with a degree of membership (0.4740),
and to the first cluster with a membership degree (0.0463). ), and station (E20) belonged to the
third cluster with a degree of membership (0.5241) and to the second cluster with a degree of
membership (0.4304) and to the third cluster with a degree of membership (0.0455), and station
(T34) belonged to the third cluster with a degree of membership (0.5844) and to the second
cluster with a degree of membership (0.3332) and to the third cluster with a degree of
membership (0.0824).
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2.The clusters are therefore formed accordingto k=3, m=3.6
Table (9) shows the fuzzy cluster formation of the physical and chemical examination stations

for the year 2020
Clustering Algorithm HFCM
Comparison ]
Stations Order

M Clusters

C, SH1 | SH3 | SH4
3.6 C, E20 | T34

C; SH2B | SH2 | E21

3-2-3 Discussing the results of 2021:
1.Determination of the appropriate number of clusters (k) and the fuzzing exponents (m) for the
year 2021
Table 10: Shows the results of the test by adopting the P.C. standard and§,, , to determine the
fuzziness exponents and the number of clusters k for the year 2021

Clusterin
Algorithn? HFCM
= G. fit cluster
Comparison Obj. §. e 5

K M g U XB
2 1.2 | 2790516591 | 6 1 5765.8
2 2 | 27566905.48 | 8 | 0.9922 | 3850.7
2 2.8 | 24297219.56 | 11 | 0.9389 | 3432.5
2 3.6 | 18624752.69 | 15 | 0.8626 | 2824.3
3 1.2 | 7843449.13 | 11 | 0.9997 | 3341.3
3 2 | 6914895.76 | 37 | 0.8601 | 3108.7
3 2.8 | 4664858.61 | 100 | 0.7234 | 2230.2
3 3.6 | 2603088.23 | 47 | 0.6401 | 683.84

Discuss the results of the table (10) as follows:

When k = 2, it is clear from the results of table (10) that the best degree of fuzzing is
when (m = 3.6), as it achieved the lowest value of the objective function (Obj_Fun =
18624752.69), compared to the other fuzzing exponents.

According to P.C. standard. It was shown that the fuzzy cluster is invalid at any fuzzing
exponents because it achieved a percentage higher than (85%), the fuzzy cluster has crisp
cluster.

According to the 8, criterion, the validity of the fuzzy cluster structure was
demonstrated at the fuzzing exponent (m = 3.6), as it achieved (2824.3), which is the lowest
value compared to the other values.

When k = 3, it is clear from the results of table (6) that the best degree of fuzzing is
when (m = 3.6), as it achieved the lowest value of the objective function (Obj_Fun =
2603088.23), compared to the other fuzzing exponents.

According to P.C. standard. It showed the validity of the fuzzy cluster at the fuzzing
exponent (m = 2.8), achieving a percentage of (0.7234), and the validity of the fuzzy cluster was
achieved at the fuzzing exponent (m = 3.6), achieving a percentage of (0.6401).
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According to the 8, , criterion, the validity of the fuzzy cluster structure was
demonstrated at the fuzzing exponent (m = 3.6), as it achieved (683.84), which is the lowest
value compared to the other values

We can also determine the level of overlapping points by determining the Average
maximum membership Index AverageMax As shown in the figure below:
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Fig (3-1) - overlap k=2 Fig (3-2) - overlap k=3

Figure 3: Shows cases of selecting degrees of fuzzing according to the AverageMax criterion in
the case of
k =2 and 3 for the year 2021

Figure (3), which shows the overlap cases according to the fuzzing exponents, in the
case of k = 2, Figure (3-1) shows that there is no overlap between the clusters, as AverageMax
recorded the membership degrees between [0.5, 1], which indicates a low state of uncertainty
that is membership degree of the stations in the cluster have exceeded (61%), and it may reach
one, and it is offset by a very weak membership degree to the other cluster.

In the case of k = 3, Figure (3-2) shows the interference cases that show the increase in
uncertainty at the fuzzing exponent (m = 3.6) and with an average maximum affiliation 0.7296,
which is station (SH2) that belonged to the second cluster with a membership degree (0.5158). )
and to the first cluster with a degree of affiliation (0.4356) and to the third cluster with a
membership degree (0.0486). As for the degrees of fuzziness (2.1, 2, 2.8), they did not achieve
any overlap between the clusters, as they achieved an average maximum membership degree (1,
0.917, 0.815), respectively.
1.The clusters are therefore formed accordingto k=3, m=3.6
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Table 11: Shows the fuzzy cluster formation of the physical and chemical examination stations

for the year 2021
Clustering Algorithm HFCM
Comparison Stations Ord
M Clusters ations Lorder
C, SH3
3.6 C, SH2 | E20 | E21 | T34
Cs SH3

3-3 Conclusions and recommendations:

Through the findings of the paper, we conclude that the method of the main core
components contributes to treating the higher dimensions and reduces complexity. We also
concluded the importance of the Jollffie criterion in determining the cut-off value, as it gives a
wider space in the process of determining the contributing components. We also conclude that
the use of the hybrid scenario between KPCA and FCM methods help to improve the clustering
process under fuzzy logic, The study concluded that the PC segmentation coefficient showed
weakness in determining the validity of the fuzzy cluster, while the objective function and the
8, criterion were the best because of their characteristics. By applying this paper to the water
sector in Basrah Governorate, the paper was able to from determining the most influential
physical and chemical variables by studying (8) stations for examination and then clustering
these stations according to fuzzy logic, where the paper reached to determine the best degree of
fuzziness was m = 3.6 and the best number of clusters was k = 3 As for the stations that caused
The cluster overlap status was SH1, SH2, SH3, SH4, E20, and T34.

Therefore, we recommend those interested in the water sector to study the importance of
the variables achieved, as well as the stations resulting from clustering, and the development of
techniques, statistical algorithms, and artificial intelligence in addressing these phenomena.
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