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Abstract: 

            The semiparametric regression models have received a lot of attention from researchers 

recently because it combines parametric and nonparametric methods, it is one of the advanced 

topics in data analysis for various studies, which aims to find the best capabilities and a high 

level of efficiency. 

 One of the most important semiparametric regression models is the partial linear 

regression model (PLM), which consists of a parametric component and a nonparametric 

component, for the purpose of estimating the parametric component, the difference method will 

be used to remove the nonparametric component. 

When the analysis hypotheses of the parametric component are not fulfilled, it will 

suffer from several problems, the most important of which is the problem of complete 

multicollinearity, besides the multicollinearity, there are also outliers in the data. 

In this research, the problems of multicollinearity and outliers of the semiparametric 

regression model were addressed, where simulation was used to generate data with different 

sample sizes and for different correlations and outlier ratios and for different methods such as 

[Difference Ridge based M robust with Nadaraya – Watson (DRMNW), Difference Ridge based 

S robust with Nadaraya – Watson (DRSNW), Difference Ridge based M robust with Smoothing 

spline (DRMSP), Difference Ridge based S robust with Smoothing spline (DRSSP)], the results 

showed that method Difference Ridge based S robust with Smoothing spline (DRSSP) is the best 

estimator 

Paper type: Research paper. 

Keywords: Semiparametric Regression Model, Multicollinearity, Outliers, Robust estimates, 
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1. Introduction: 
Semiparametric models as having the parametric component and the nonparametric 

component). (Powell, 1994) 

One of the most important semiparametric models is the partial linear regression model 

(PLM). (Speckman, 1988) 

The problem of multicollinearity only when there is a linear relationship between some or 

all of the explanatory variables, and that the correlations between these variables are known as 

multicollinearity, and one of the most important conditions that must be met is the rank 

condition.  (Abboud & Khorshid, 2018) 

When there is a multicollinearity in the semiparametric regression model, it results of the 

estimates are inaccurate and inefficient. Besides the multicollinearity, there are also outliers. 

Robust ridge regression methods are used to overcome the effects of multilinearity and outliers. 

(Roozbeh, 2016)  

For instance, the principle difference based ridge regression estimator in (2010), the 

researchers (Tabakan & Akdeniz, 2010) used difference based ridge regression estimator  ̂    in 

(PLM). It is (MSE) compared analytically with the nonridge  ̂   , the  ̂    superiority over  ̂   . 

In (2016), the researcher (Roozbeh, 2016) in the case of a multicollinearity in addition to 

the presence of outliers in the semiparametric regression model, in this regard, the researcher 

proposed a new form of ridge for robust and generalized restricted estimators based on Least 

trimmed squares (LTS) method in a semiparametric. The proposed estimator proved to be the 

best estimator for the parametric part of the model. 

In (2021), the researcher (Shih et al., 2021), in case the data contains outliers and 

multicollinearity, in this case ridge M estimator is the best estimator, better than the LS 

estimator. A lot of estimators, such as the M estimator before the ridge and the ridge M estimator 

for Stein-rule shrinkage, while it was developed on the basis of the Ridge M. estimator. Three 

robust estimations are proposed, which are used for resistance to outliers and multicollinearity. 

The simulation confirmed that all the proposed estimators and the Ridge M. estimators are better 

than the Least squares estimator (LSE). 

In (2022), the researcher (Herawati et al., 2022), if there are two problems in the data of 

the multilinearity problem and the outliers problem, to overcome them, robust regression is used. 

So, it was using ridge least absolute deviation method. A comparison by MSE of the two 

methods ridge least absolute deviation (RLAD) and Least squares (LS), all results showed that 

(RLAD) had a lower MSE than (LS). 

 
2. Robust estimation methods: 

2.1 M estimation: 

It is symbolized by the symbol (M), this method is considered one of the most robust 

methods. As the work of this method works with the problem of outliers, through which the 

squares of the residuals are replaced by the loss function ρ. (Irshayyid & Saleh, 2022) 

This method was introduced by Hooper in 1964. This method is almost as efficient as the 

ordinary least squares method. Instead of reducing the sum of the squares of errors as the 

objective, the M estimate reduces the errors function (p). (Alma, 2011) (Rashid & Hafez, 2013) 

(A. F. Lukman et al., 2015) 
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The properties for the function ρ can be written as: 

                                           
        |  |  |  

 |  (A. F. Lukman et al., 

2015) 

The algorithm for the M estimation can be written as follows: (Susanti et al., 2014) 

1) Calculate the parameter  ̂
   

    by assuming initial values such as OLS. 

2) Calculate the residual:       
 
  ̂

 
 

3) Calculate:  

 ̂  
   

      
 

      |             |

      
 

4) Calculate:    
  

 ̂ 
 

5) Calculating the weighted value of the Tukey function: 

   { [  (
  

     
)

 

]
 

         |  |       

                                         |  |       

 

6) Calculating the  ̂
 

 using the weighted least squares method with   : 

 ̂                   

7) Repeat steps 2 to 5 to obtain a convergent value of  ̂ .  

 
 
2.2 S estimation: 

S estimation by Rousseeuw and Yohai (1984), it is a method that has a high breakdown. 

As this method has a higher statistical efficiency than trimmed least squares estimation. (Chen, 

2002) (ŞAMKAR & ALPU, 2010) (Lukman et al., 2014)  

The S method is more robust than the M method because the S estimators have smaller 

asymptotic variance and smaller asymptotic bias in the data with outliers. (Bahez & Rasheed, 

2022) 

where the S estimator is derived by scale statistics in an implicit manner corresponding 

to S(θ). (Lukman et al., 2015) 

According to Salibian and Yohai, the S-estimator is defined by: (Susanti et al., 2014) 

 ̂         ̂                            

With determining minimum robust scale estimator  ̂  : 
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The algorithm for the S estimation can be written as follows: (Susanti et al., 2014) (Abbas & 

Abood, 2022) 

1) Calculate the parameter  ̂       by assuming initial values such as OLS. 
2) Calculate the residual:         ̂  

3) Calculate:  

 ̂  
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4) Calculate:    
  

 ̂ 
 

5) Calculating the weighted value of the Tukey function: 
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6) Calculating the  ̂  using the weighted least squares method with   : 

 ̂                   

7) Repeat steps 2 to 5 to obtain a convergent value of  ̂ . 
 

3. Semiparametric Regression Model: 

Semiparametric models were introduced by Begun et al in 1983, the term being attributed to Oakes in 

1981. (Powell, 1994)  

Semiparametric linear regression models believe that the dependent variable (y) depends on the 

independent variable (X) in a linear way, while it is not linearly related to the other independent variable 

(z). (Duran & Akdeniz, 2013) 

The partial linear regression model (PLM) proposed by researchers (Robinson & Speckman) in (1988). 

(Speckman, 1988) (Al-Azzawi & Al-Always, 2022) 

The (PLM) consists of a linear part represented by Parametric regression and a part Nonlinear represented 

by nonparametric regression. (AL-Adilee & Aboudi, 2021) 

Can be written in the following form: 

  

   ∑      

 

   

                                                    

 

In matrix form, the model can be rewritten as follows: 

                                  

Where:    : Vector of response variable of degree (n×1). 

   : Parametric part which contains: 

  : Explanatory variable of degree (n×p).       : Vector of parameter of degree (p×1). 

     : Nonparametric part (smooth function unknown) of the degree (n×1). 

  : Nonparametric variable (continuous variable) of degree (n×1). 

  : Vector random errors (independently and identically distributed) of degree (n×1), with mean      
  , and Fixed variance          . (Aydın, 2014) 
 

3.1 Difference Method: 

This method was proposed by the researcher (Yatchew) in (2003), which is used to estimate the 

parametric component of a (PLM) by removing the influence of the nonparametric component. (Yatchew, 

2003)  

The difference matrix of [(n-m)×n] rank. Difference matrix be written as: (Duran et al., 2012) (Duran & 

Akdeniz, 2013) (Wu, 2016) 
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Where:    : difference rank. 

            : Weights that satisfy the following two conditions: 

∑   
 
                      ∑   

  
        (Hussein, 2019) 

The formula can be written as follows: 

 ̃   ̃   ̃                    
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Where:  ̃            ̃            ̃     

 ̃   : Vector of observations of the response variable of degree [       ]. 
 ̃   : Matrix of observations of explanatory variables of degree [       ]. 
   : Vector of unknown parameters of degree [   ]. 
   : difference matrix of degree [       ]. 
   : Number of observations. 

 ̃   : vector of random errors of degree [       ]. (Akdeniz et al., 2015) (Tabakan & Akdeniz, 2010) 

The first condition of the difference estimator guarantees the removal of the nonparametric effect in the 

regression equation, the second condition is that the variance of the residuals is not affected by removing 

the nonparametric effect. (Yatchew, 1997) 

After reducing the nonparametric part, the (Yatchew) method was proposed to estimate the 

parameters by using the method of least squares depending on the difference estimator by increasing their 

energies: (Roozbeh et al., 2011) 

 ̂     ( ̃  ̃)
  

 ̃  ̃                       

As for the error variance depending on the difference estimator, it is written in the following form: (Duran 

& Akdeniz, 2013) 

     
  

 

 
(    ̂    )

 
   (    ̂    )                   

The researchers (Turkmen & Tabakan) in (2015) in the presence of outliers in the data of the 

semiparametric regression model employed the method of differences presented by (Yatchew) in (1997) 

with the robust methods such as the robust (MM) method in addition the smoothing spline estimator. 

Create a Proposed algorithm. (Turkmen & Tabakan, 2015) 

In the study, the difference method will be employed with the robust methods (M, S) to model 

the semiparametric regression in the presence of outliers in addition to the existence of the problem of 

multicollinearity. 

After the difference matrix was used to remove the nonparametric component from the 

semiparametric model, the new model will be relied upon in order to estimate the robust methods (M, S), 

depending on equation (6) of the difference method. So, the robust method (M, S) algorithms will be 

modified by multiplying the difference matrix by the explanatory variable's matrix X, and multiplying the 

difference matrix by the response variable vector Y. 

3.1.1 Difference-Based Ridge Estimator: 

This Ridge regression method has been discussed by the researchers (Hoerl and Kennard) in 

1970, this is the most efficient way to deal with the problem of multilinearity, where this method gets rid 

of adding a small positive amount to the elements of the diameter of the information matrix. (Rashid & 

Hafez, 2013) (Husein, 2016) (Abboud & Khorshid, 2018) (Kamal & Khazal, 2019)  

It was proposed by the two researchers (Tabakan & Akdeniz) in (2010), where they employed 

the difference method of the researcher (Yatchew) in the ridge regression, where the difference-based 

ridge estimator can be obtained, by relying on equation (6) of the difference method. (Tabakan & 

Akdeniz, 2010) 

The formula for the difference-based ridge estimator can be written as follows: 

 ̂     
     ( ̃  ̃    )

  
 ̃  ̃                    

Where:  ̃   : Vector of observations of the response variable of degree [       ]. 
 ̃   : Matrix of observations of explanatory variables of degree [       ]. 
   : Vector of unknown parameters of degree [   ]. 
   : difference matrix of degree [       ]. 
  : Unit matrix of degree (p×p). 

  : Bais parameter It is a constant value    . 

   : Number of observations. 

   : difference rank. 

 ̃   : vector of random errors of degree [       ].  
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3.1.2 Difference-Based Ridge Estimator based on the M robust estimator: 

An estimator that combines the ridge estimator and the M estimator was proposed by Silvapulle 

in (1991), In the case of the outliers and multicollinearity problems. Huber in (1981) is preferred the robust 

M-estimator to the LSE. In the event that the data suffers from the presence of outliers. The main formula 

for the difference ridge estimator based on M robust is written in the following: (Shih et al., 2021) 

 ̂     
        ( ̃  ̃   ̂ 

     )
  

 ̃  ̃               

Where the value of the robust bias parameter  ̂ 
     is calculated as follows:  

 ̂ 
     

   
 
    

 ̂ 
     

  ̂ 
    

          ̂ 
                       

To calculate the variance of difference ridge estimator based on the M robust estimator: (Duran & 

Akdeniz, 2013) 

  
 
    

 
 

 
(    ̂ 

    )
 
   (    ̂ 

    )                

 

3.1.3 Difference-Based Ridge Estimator based on the S robust estimator: 

It is assumed that the robust estimator parameter obtained using the S estimator is the Ridge 

Estimator based on the S estimator. (Jeremia et al., 2020) 

The main formula for the difference ridge estimator based on the S robust it is written in the 

following form: (Duran & Akdeniz, 2013) 

 ̂     
        ( ̃  ̃   ̂ 

     )
  

 ̃  ̃               

Where the value of the robust bias parameter  ̂ 
     is calculated as follows:  

 ̂ 
     

   
 
    

 ̂ 
     

  ̂ 
    

          ̂ 
                       

To calculate the variance of difference ridge estimator based on S robust estimator: 

  
 
    

 
 

 
(    ̂ 

    )
 
   (    ̂ 

    )               

 

4. Nonparametric Estimation Method: 

Nonparametric regression was proposed by (Jacob Wolfowitz) in 1942. (Kvam et al., 2022) 

In nonparametric models, knowledge of the data distribution is not required, and these models never 

contain parameters. Where the relationship between the explanatory variables and the response variable is 

not known. (Mahmoud, 2019) 

The general formula for nonparametric regression can be written as: (Ali et al., 2020) (Hameed & Khalaf, 

2021) 

                                                        

Where:      : The unknown smoothing function. 
 

4.1 Kernel function (Nadaraya – Watson estimator) (N.W): 

The estimator (Nadaraya-Watson) was used extensively in many areas of statistical research, and 

is the simplest type of the smoothers. It was proposed by researchers (Nadaraya) and (Watson) in (1964), 

is an important estimator for estimating a function (Kernel). (Hameed & Khalaf, 2021) 
 

The properties of the kernel function that are used with the (NW) estimator can be written: 

    ∫                   ∫                      ∫                               

(Demir & Toktamiş, 2010) (Al-Tai & Al-Kazaz, 2022) 
 

The general formula for the (N.W) estimator can be written as: (Härdle et al., 2004) 
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Equation (17) can be rewritten in the form of matrices in the following form: (Khalaf & Mohammed, 

2023) 

 ̂            
              

Where:   
        ̂             

       

  : bandwidth or smoothing parameter.        : the weight function of (N.W) estimator.  
 

4.2 Cubic Smoothing Spline estimator: 

The smoothing spline is attributed to the researcher (Whittaker) in (1923). (Härdle, 1990) 

Smoothing Spline method is used to estimate the regression model, penalized least squares method can be 

used to estimate the smoothing function.  

                [∑(             )
 

 

   

  ∫(      )
 
  

 

 

]                  

 

Where:  : Smoothing Parameter. 

      : represents the smoothing spline estimator for a roughness penalty. 

       : The second derivative of the smoothing function. (Aydin, 2007b)  (Hmood & Katea, 2014) 
 

Idea of estimating method depends on minimization two main parts to obtain the curve best. First part is 

sum of squares of residuals, the second part is roughness penalty or the penalty term. (Habeeb et al., 2021) 
 

As     the roughness penalty dominates in (1) and the spline estimate interpolates the data. 

As     the roughness penalty dominates in (1) and the spline estimate is forced to be a constant.  

 (Aydin, 2007a) (Aydin et al., 2013) 
 

The difference between smoothing splines (knots = n), regression splines (knots < n) and penalized 

regression splines (regression splines with penalization for the number of knots) lies in the number of 

knots chosen. (Hens, 2005) (Hmood & Burhan, 2018) 

Suppose given n real numbers              in the interval [a,b]. 
 

A function (g) in the interval [a,b] as cubic spline if two conditions are satisfied: 

1) In each interval                           , the function   is polynomial cubic spline. 

2) The polynomial pieces fit together at point    in such a way  ,    and     are contiguous at 

each   , The function   is contiguous in [a,b]. (Ibrahim & Suliadi, 2010) 
 

Depending on the matrix formula, the estimator can be represented as in the following formula: 

 ̂                                      

Where:   : Parameter of smoothing Spline. 

We get an estimate of  ̂ using the Cubic Smoothing Spline method for the value    of the nonparametric 

part, so the estimate is as follows: 

 ̂    (     
  ̂    )              

 

 ̂      
                                  

Where:    
       

  ̂             
     

   : Smoothing matrix (definite and nonnegative and symmetric) (n×n) that depends on the value of   and 

the values of    and does not depend on the values of   . (Bickel et al., 2009) 

The smoothing parameter     will be selected by using the cross-validation (CV) method, as this method 

is one of the most used and highly efficient methods. Which is used in the (NW) method and the 

smoothing spline method. (Al-Azzawi & Al-Always, 2022) 



 

 

 

 

 
Journal of Economics and Administrative Sciences 

2024; 30(141), pp. 479-496 
P-ISSN 2518-5764 

E-ISSN 2227-703X 
   

  

984  

 

   

 

 

 

5. Simulation: 

Simulations for this study were tested using (MATLAB) language in order to generate 

simulation data to compare methods (DRMNW, DRSNW, DRMSP, DRSSP) with different sample sizes 
                      after assuming three outliers in the response variables     
                  , five correlation ratios                             
              and four parameters                            and four 

explanatory variables (X1, X2, X3, X4, Z) being generated using the method (Box-Muller), each 

experiment was repeated 500 time.  
 

The mean absolute percentage error (MAPE) scale was used, which is the most widely used measure for 

error prediction. It measures accuracy as a percentage. It can be calculated through the following equation: 

     
 

 
∑ |

    ̂ 

  
|

 

   

 

 

Models used to generate the nonparametric component (Z): 

1)   ̂                    

2)   ̂               (     ) 

3)   ̂      (         ) 
 

6. Analyzing the results: 

The results of the first semiparametric partial linear regression model: 

Table 1: The mean absolute percentage error (MAPE), when pollution percentage with outlier 10% 

n   DRMNW DRMSP DRSNW DRSSP Best 

50 

0.5 0.552919 1.114056 0.938103 4.232229 DRMNW 

0.6 0.556217 1.107696 0.554606 9.31E-05 DRSSP 

0.7 0.551099 1.108937 0.443173 3.78E-06 DRSSP 

0.8 0.553149 1.1104 0.350917 2.93E-07 DRSSP 

0.9 0.559684 1.107422 0.320467 2.89E-07 DRSSP 

100 

0.5 0.536971 1.073228 0.921005 0.38337 DRSSP 

0.6 0.538642 1.072889 0.55377 5.37E-07 DRSSP 

0.7 0.533202 1.073854 0.445453 6.92E-09 DRSSP 

0.8 0.535658 1.068288 0.351682 5.57E-11 DRSSP 

0.9 0.537732 1.071636 0.326029 1.32E-11 DRSSP 

150 

0.5 0.526016 1.054253 0.914008 0.075336 DRSSP 

0.6 0.528341 1.053823 0.554046 6.1E-09 DRSSP 

0.7 0.525412 1.050166 0.444231 8.95E-12 DRSSP 

0.8 0.527886 1.052417 0.352265 1.95E-14 DRSSP 

0.9 0.524936 1.051357 0.329051 3.61E-14 DRSSP 

The results of table (1) showed outlier of (10%) in relation to a sample size (n=50) and 

at a correlation coefficient level (ρ=0.50), the best estimator is (DRMNW) because it has the 

lower of (MAPE), and at the rest of the levels of the correlation coefficient, the best estimator is 

(DRSSP), but at the sample size (n=100,150) and for all levels of the correlation coefficient, the 

best estimator is (DRSSP), which is better than the rest of the estimators. 
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Table 2: The mean absolute percentage error (MAPE), when pollution percentage with outlier 

20% 

n   DRMNW DRMSP DRSNW DRSSP Best 

50 

0.5 0.323217 1.257146 0.8839 4047.02 DRMNW 

0.6 0.328181 1.240443 0.314351 1.35E-07 DRSSP 

0.7 0.319752 1.241572 0.203029 3.76E-10 DRSSP 

0.8 0.324601 1.250197 0.130638 7.86E-12 DRSSP 

0.9 0.330937 1.240854 0.109675 4.52E-11 DRSSP 

100 

0.5 0.298528 1.157944 0.849626 11.8779 DRMNW 

0.6 0.30121 1.156681 0.310819 7.08E-12 DRSSP 

0.7 0.295009 1.159411 0.203149 2.16E-15 DRSSP 

0.8 0.297925 1.146402 0.128393 3.89E-19 DRSSP 

0.9 0.300562 1.154443 0.111073 1.37E-20 DRSSP 

150 

0.5 0.284705 1.114212 0.836197 0.139037 DRSSP 

0.6 0.286998 1.113642 0.310066 2.47E-15 DRSSP 

0.7 0.283468 1.105568 0.200819 8.75E-21 DRSSP 

0.8 0.286029 1.110462 0.127499 7.38E-26 DRSSP 

0.9 0.282694 1.108225 0.111612 1.05E-24 DRSSP 

 

The results of table (2) showed outlier of (20%) with respect to a sample size (n = 50) 

and at a correlation coefficient level (ρ=0.50), the best estimator is (DRMNW) because it has the 

lower of (MAPE), and at the rest of the correlation coefficient levels the best estimator is 

(DRSSP), but at the sample size (n=100) and at the level of correlation coefficient (ρ=0.50) the 

best estimator is (DRMNW), and at the rest of the correlation coefficient levels the best 

estimator is (DRSSP), and at the sample size (n=150) and for all levels of the correlation 

coefficient, the best estimator is (DRSSP), which is better than the rest of the estimators. 
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Table 3: The mean absolute percentage error (MAPE), when pollution percentage with outlier 

values is 30% 

n   DRMNW DRMSP DRSNW DRSSP Best 

50 

0.5 0.552919 1.114056 0.938103 4.232229 DRMNW 

0.6 0.556217 1.107696 0.554606 9.31E-05 DRSSP 

0.7 0.551099 1.108937 0.443173 3.78E-06 DRSSP 

0.8 0.553149 1.1104 0.350917 2.93E-07 DRSSP 

0.9 0.559684 1.107422 0.320467 2.89E-07 DRSSP 

100 

0.5 0.536971 1.073228 0.921005 0.38337 DRSSP 

0.6 0.538642 1.072889 0.55377 5.37E-07 DRSSP 

0.7 0.533202 1.073854 0.445453 6.92E-09 DRSSP 

0.8 0.535658 1.068288 0.351682 5.57E-11 DRSSP 

0.9 0.537732 1.071636 0.326029 1.32E-11 DRSSP 

150 

0.5 0.526016 1.054253 0.914008 0.075336 DRSSP 

0.6 0.528341 1.053823 0.554046 6.1E-09 DRSSP 

0.7 0.525412 1.050166 0.444231 8.95E-12 DRSSP 

0.8 0.527886 1.052417 0.352265 1.95E-14 DRSSP 

0.9 0.524936 1.051357 0.329051 3.61E-14 DRSSP 

The results of table (3) showed outlier of (30%) for a sample size (n=50) and at  a 

correlation coefficient level (ρ=0.50), the best estimator is (DRMNW) because it has the lower 

of (MAPE), and at the rest of the levels of the correlation coefficient, the best estimator is 

(DRSSP), but at the sample size (n=100,150) and for all levels of the correlation coefficient, the 

best estimator is (DRSSP), which is better than the rest of the estimators. 

The results of the second semiparametric partial linear regression model: 

Table 4: The mean absolute percentage error (MAPE), pollution percentage with outlier 10% 

n   DRMNW DRMSP DRSNW DRSSP Best 

50 

0.5 1.112185 1.05045 0.825251 1.085766 DRSNW 

0.6 1.103272 1.051371 0.300005 4.76E-08 DRSSP 

0.7 1.105412 1.056769 0.194536 8.8E-10 DRSSP 

0.8 1.119472 1.0519 0.12019 4.92E-13 DRSSP 

0.9 1.108578 1.051376 0.105819 1.1E-13 DRSSP 

100 

0.5 1.074086 1.033507 0.815889 0.007441 DRSSP 

0.6 1.071341 1.034178 0.300725 1.66E-12 DRSSP 

0.7 1.063751 1.032332 0.195815 1.26E-15 DRSSP 

0.8 1.081894 1.036636 0.122132 1.38E-19 DRSSP 

0.9 1.068827 1.03259 0.107872 2.78E-20 DRSSP 

150 

0.5 1.040681 1.025228 0.813895 0.004114 DRSSP 

0.6 1.048629 1.025725 0.304076 2.24E-16 DRSSP 

0.7 1.0471 1.024753 0.196779 3.1E-21 DRSSP 

0.8 1.056334 1.025245 0.123691 5.09E-26 DRSSP 

0.9 1.048074 1.026832 0.109693 1.45E-27 DRSSP 
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The results of table (4) showed outlier of (10%) in relation to a sample size (n=50) and 

at a correlation coefficient level (ρ=0.50), the best estimator is (DRSNW) because it has the 

lower of (MAPE), and at the rest of the levels of the correlation coefficient, the best estimator is 

(DRSSP), but at the sample size (n=100,150) and for all levels of the correlation coefficient, the 

best estimator is (DRSSP), which is better than the rest of the estimators. 

 

Table 5: The mean absolute percentage error (MAPE), when pollution percentage with outlier 

20% 

n   DRMNW DRMSP DRSNW DRSSP Best 

50 

0.5 1.308956 1.106296 0.68479 1046.064 DRSNW 

0.6 1.289023 1.108279 0.096645 4.18E-13 DRSSP 

0.7 1.296947 1.120491 0.043292 4.05E-16 DRSSP 

0.8 1.324507 1.109389 0.017543 1.35E-22 DRSSP 

0.9 1.297891 1.108456 0.013743 8.67E-24 DRSSP 

100 

0.5 1.197001 1.069236 0.667504 0.000755 DRSSP 

0.6 1.188673 1.070744 0.09466 1.92E-22 DRSSP 

0.7 1.172933 1.066774 0.041697 3.94E-28 DRSSP 

0.8 1.213785 1.075988 0.017128 7.97E-36 DRSSP 

0.9 1.183279 1.067335 0.013503 6.38E-37 DRSSP 

150 

0.5 1.107317 1.05187 0.663614 0.005586 DRSSP 

0.6 1.129077 1.05274 0.0958 4.46E-30 DRSSP 

0.7 1.125009 1.050788 0.041195 1.87E-39 DRSSP 

0.8 1.143236 1.051808 0.016856 1.92E-48 DRSSP 

0.9 1.12816 1.055038 0.01351 1.46E-51 DRSSP 

 

The results of table (5) showed outlier of (20%) for a sample size (n=50) and at a 

correlation coefficient level (ρ=0.50), the best estimator is (DRSNW) because it has the lower of 

(MAPE), and at the rest of the levels of the correlation coefficient, the best estimator is 

(DRSSP), but at the sample size (n=100,150) and for all levels of the correlation coefficient, the 

best estimator is (DRSSP), which is better than the rest of the estimators. 
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Table 6: The mean absolute percentage error (MAPE), when pollution percentage with outlier 

30% 

n   DRMNW DRMSP DRSNW DRSSP Best 

50 

0.5 1.112185 1.05045 0.825251 1.085766 DRSNW 

0.6 1.103272 1.051371 0.300005 4.76E-08 DRSSP 

0.7 1.105412 1.056769 0.194536 8.8E-10 DRSSP 

0.8 1.119472 1.0519 0.12019 4.92E-13 DRSSP 

0.9 1.108578 1.051376 0.105819 1.1E-13 DRSSP 

100 

0.5 1.074086 1.033507 0.815889 0.007441 DRSSP 

0.6 1.071341 1.034178 0.300725 1.66E-12 DRSSP 

0.7 1.063751 1.032332 0.195815 1.26E-15 DRSSP 

0.8 1.081894 1.036636 0.122132 1.38E-19 DRSSP 

0.9 1.068827 1.03259 0.107872 2.78E-20 DRSSP 

150 

0.5 1.040681 1.025228 0.813895 0.004114 DRSSP 

0.6 1.048629 1.025725 0.304076 2.24E-16 DRSSP 

0.7 1.0471 1.024753 0.196779 3.1E-21 DRSSP 

0.8 1.056334 1.025245 0.123691 5.09E-26 DRSSP 

0.9 1.048074 1.026832 0.109693 1.45E-27 DRSSP 

 

The results of table (6) showed outlier of (30%) in relation to a sample size (n=50) and 

at a correlation coefficient level (ρ=0.50), the best estimator is (DRSNW) because it has the 

lower of (MAPE), and at the rest of the levels of the correlation coefficient, the best estimator is 

(DRSSP), but at the sample size (n=100,150) and for all levels of the correlation coefficient, the 

best estimator is (DRSSP), which is better than the rest of the estimators. 
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The results of the third semiparametric partial linear regression model: 

Table 7: The mean absolute percentage error (MAPE), when pollution percentage with outlier 

10% 

n   DRMNW DRMSP DRSNW DRSSP Best 

50 

0.5 1.33765 1.04237 0.785873 0.09263 DRSSP 

0.6 1.338779 1.043765 0.23144 2.33E-09 DRSSP 

0.7 1.33792 1.044547 0.136992 3.34E-12 DRSSP 

0.8 1.343945 1.041797 0.080227 2.41E-15 DRSSP 

0.9 1.331647 1.046576 0.070064 6.97E-14 DRSSP 

100 

0.5 1.285518 1.027823 0.778524 0.002175 DRSSP 

0.6 1.294201 1.027889 0.234223 3.88E-14 DRSSP 

0.7 1.281832 1.028904 0.141192 3.83E-18 DRSSP 

0.8 1.280866 1.030257 0.083846 2.28E-23 DRSSP 

0.9 1.291006 1.026995 0.068378 9.69E-25 DRSSP 

150 

0.5 1.253946 1.021178 0.77695 0.00028 DRSSP 

0.6 1.258299 1.021688 0.239028 9.86E-19 DRSSP 

0.7 1.258365 1.020909 0.142863 2.89E-25 DRSSP 

0.8 1.264872 1.021876 0.083208 1.61E-31 DRSSP 

0.9 1.273791 1.022553 0.069507 2.99E-34 DRSSP 

The results of table (7) showed outlier of (10%) and for all sample sizes (n=50,100,150) 

and for all levels of the correlation coefficient, the best estimator is (DRSSP) because it has the 

lower of (MAPE) of the rest of the estimators. 

Table 8: The mean absolute percentage error (MAPE), when pollution percentage with outlier 

20% 

n   DRMNW DRMSP DRSNW DRSSP Best 

50 

0.5 1.894762 1.088312 0.621494 4.610488 DRSNW 

0.6 1.887837 1.091418 0.059188 1.17E-15 DRSSP 

0.7 1.88786 1.093134 0.022362 2.12E-21 DRSSP 

0.8 1.918725 1.087207 0.008324 2.96E-27 DRSSP 

0.9 1.876202 1.09785 0.006745 4.74E-24 DRSSP 

100 

0.5 1.715983 1.057177 0.608271 6.08E-05 DRSSP 

0.6 1.737842 1.057431 0.05865 3.06E-25 DRSSP 

0.7 1.702814 1.059571 0.022441 7.77E-33 DRSSP 

0.8 1.702536 1.062404 0.008486 1.02E-43 DRSSP 

0.9 1.723562 1.055451 0.005694 2.65E-46 DRSSP 

150 

0.5 1.620291 1.043278 0.605206 5.83E-06 DRSSP 

0.6 1.622051 1.044327 0.059843 7.28E-34 DRSSP 

0.7 1.629796 1.042683 0.022352 2.11E-47 DRSSP 

0.8 1.644565 1.044704 0.008004 9.7E-60 DRSSP 

0.9 1.6719 1.046153 0.00572 5.76E-65 DRSSP 
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The results of table (8) showed outlier of (20%) for a sample size (n=50) and at a 

correlation coefficient level (ρ=0.50), the best estimator is (DRSNW) because it has the lower of 

(MAPE), and at the rest of the levels of the correlation coefficient, the best estimator is 

(DRSSP), but at sample sizes (n=100,150) and for all levels of the correlation coefficient, the 

best estimator is (DRSSP), which is better than the rest of the estimators. 

Table 9: The mean absolute percentage error (MAPE), when pollution percentage with outlier 

30% 

n   DRMNW DRMSP DRSNW DRSSP Best 

50 

0.5 1.33765 1.04237 0.785873 0.09263 DRSSP 

0.6 1.338779 1.043765 0.23144 2.33E-09 DRSSP 

0.7 1.33792 1.044547 0.136992 3.34E-12 DRSSP 

0.8 1.343945 1.041797 0.080227 2.41E-15 DRSSP 

0.9 1.331647 1.046576 0.070064 6.97E-14 DRSSP 

100 

0.5 1.285518 1.027823 0.778524 0.002175 DRSSP 

0.6 1.294201 1.027889 0.234223 3.88E-14 DRSSP 

0.7 1.281832 1.028904 0.141192 3.83E-18 DRSSP 

0.8 1.280866 1.030257 0.083846 2.28E-23 DRSSP 

0.9 1.291006 1.026995 0.068378 9.69E-25 DRSSP 

150 

0.5 1.253946 1.021178 0.77695 0.00028 DRSSP 

0.6 1.258299 1.021688 0.239028 9.86E-19 DRSSP 

0.7 1.258365 1.020909 0.142863 2.89E-25 DRSSP 

0.8 1.264872 1.021876 0.083208 1.61E-31 DRSSP 

0.9 1.273791 1.022553 0.069507 2.99E-34 DRSSP 

The results of table (9) showed outlier of (30%) and for all sample sizes (n=50,100,150) 

and for all levels of the correlation coefficient, the best estimator is (DRSSP) because it has the 

lower of (MAPE) of the rest of the estimators. 

 
7. Conclusion: 

1) In the first, second and third semiparametric partial linear regression models (when the level 

of the correlation coefficient is low and the sample size is small and for all outliers), the 

(DRMNW) estimator is the best estimator, but for the rest of the correlation levels, for all 

sample sizes, for all pollution rates and for all models, the (DRSSP) estimator is the best 

estimator. 

2) The values of the mean absolute percentage error (MAPE) decrease when the sample size is 

increased (an inverse relationship). 

3) We conclude that in all models, for all sample sizes, and for all levels of the correlation 

coefficient, the best estimator is (DRSSP). 
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 :مسحخلص الثحث

َحظً هىضىع ًوارج الاًحذاس شبه الوؼلوُت بأهتوام كبُش هي لبل الباحثُي فٍ اِوًت الأخُشة كىًه َذهح بُي 

والزٌ َهذف الً الطشائك الوؼلوُت والطشائك اللاهؼلوُت، وهى هي الوىاضُغ الوتمذهت فٍ تحلُل البُاًاث لوختلف الذساساث 

 .إَداد افضل همذساث وراث هستىي كفاءة ػالٍ

والزٌ َتكىى هي هشكبت هؼلوُت   (PLM)وهي أهن ًوارج الاًحذاس شبه الوؼلوُت أًوىرج الاًحذاس الخطٍ الدضئٍ

وُت . وػٌذ ػذم وهشكبت لاهؼلوُت ، ولغشض تمذَش الوشكبت الوؼلوُت سُتن أستخذام تمٌُت الفشوق هي أخل إصالت الوشكبت اللاهؼل

تحمك فشوض التحلُل الخاصت بالوشكبت الوؼلوُت سىف تؼاًٍ هشاكل ػذة وهي أهوها هشكلت التؼذد الخطٍ التام بالإضافت الً 

  .وخىد المُن الشارة فٍ البُاًاث

خذام تن فٍ هزا البحث هؼالدت هشكلتٍ التؼذد الخطٍ والمُن الشارة لأًوىرج الأًحذاس شبه الوؼلوٍ ، حُث تن أست

الوحاكاة لتىلُذ البُاًاث وبأحدام ػٌُاث هختلفت ولٌسب أستباطاث وتلىَث هختلفت ولطشائك هختلفت هثل )همذس الحشف الوبٌٍ 

، همذس الحشف الوبٌٍ ػلً الفشوق  (DRMNW)الحصُي هغ همذس ًذاسَا واتسي  Mػلً الفشوق بالأػتواد ػلً همذس

 ، همذس الحشف الوبٌٍ ػلً الفشوق بالأػتواد ػلً همذس  (DRSNW)َا واتسيالحصُي هغ همذس ًذاس  Sبالأػتواد ػلً همذس

M الحصُي هغ همذس الششائح التوهُذَت(DRMSP)  همذس الحشف الوبٌٍ ػلً الفشوق بالأػتواد ػلً همذس ،S  الحصُي هغ

، وأظهشث الٌتائح أى طشَمت   (MAPE)وبأستخذام هؼُاس هتىسط ًسبت الخطأ الوطلك  ((DRSSP)همذس الششائح التوهُذَت

  .هٍ الأفضل  (DRSSP)الحصُي هغ همذس الششائح التوهُذَت  Sهمذس الحشف الوبٌٍ ػلً الفشوق بالأػتواد ػلً همذس
 

 

 . وسلت بحثُت :نوع الثحث

 

، التؼذد الخطٍ، المُن الشارة، التمذَشاث الحصٌُت، همذس الحشف ًوارج الاًحذاس شبه الوؼلوٍ المصطلحات السئيسة للثحث:

 ، دالت الٌىاة، همذس ًذاسَا واتسي، همذس الششائح التوهُذَت التكؼُبُتS، همذس Mالوبٌٍ ػلً الفشوق، همذس 
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