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Abstract:

The semiparametric regression models have received a lot of attention from researchers
recently because it combines parametric and nonparametric methods, it is one of the advanced
topics in data analysis for various studies, which aims to find the best capabilities and a high
level of efficiency.

One of the most important semiparametric regression models is the partial linear
regression model (PLM), which consists of a parametric component and a nonparametric
component, for the purpose of estimating the parametric component, the difference method will
be used to remove the nonparametric component.

When the analysis hypotheses of the parametric component are not fulfilled, it will
suffer from several problems, the most important of which is the problem of complete
multicollinearity, besides the multicollinearity, there are also outliers in the data.

In this research, the problems of multicollinearity and outliers of the semiparametric
regression model were addressed, where simulation was used to generate data with different
sample sizes and for different correlations and outlier ratios and for different methods such as
[Difference Ridge based M robust with Nadaraya — Watson (DRMNW), Difference Ridge based
S robust with Nadaraya — Watson (DRSNW), Difference Ridge based M robust with Smoothing
spline (DRMSP), Difference Ridge based S robust with Smoothing spline (DRSSP)], the results
showed that method Difference Ridge based S robust with Smoothing spline (DRSSP) is the best
estimator
Paper type: Research paper.
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1.Introduction:

Semiparametric models as having the parametric component and the nonparametric
component). (Powell, 1994)

One of the most important semiparametric models is the partial linear regression model
(PLM). (Speckman, 1988)

The problem of multicollinearity only when there is a linear relationship between some or
all of the explanatory variables, and that the correlations between these variables are known as
multicollinearity, and one of the most important conditions that must be met is the rank
condition. (Abboud & Khorshid, 2018)

When there is a multicollinearity in the semiparametric regression model, it results of the
estimates are inaccurate and inefficient. Besides the multicollinearity, there are also outliers.
Robust ridge regression methods are used to overcome the effects of multilinearity and outliers.
(Roozbeh, 2016)

For instance, the principle difference based ridge regression estimator in (2010), the
researchers (Tabakan & Akdeniz, 2010) used difference based ridge regression estimator E(K) in
(PLM). It is (MSE) compared analytically with the nonridge oy, the Bk, superiority over B g).

In (2016), the researcher (Roozbeh, 2016) in the case of a multicollinearity in addition to
the presence of outliers in the semiparametric regression model, in this regard, the researcher
proposed a new form of ridge for robust and generalized restricted estimators based on Least
trimmed squares (LTS) method in a semiparametric. The proposed estimator proved to be the
best estimator for the parametric part of the model.

In (2021), the researcher (Shih et al., 2021), in case the data contains outliers and
multicollinearity, in this case ridge M estimator is the best estimator, better than the LS
estimator. A lot of estimators, such as the M estimator before the ridge and the ridge M estimator
for Stein-rule shrinkage, while it was developed on the basis of the Ridge M. estimator. Three
robust estimations are proposed, which are used for resistance to outliers and multicollinearity.
The simulation confirmed that all the proposed estimators and the Ridge M. estimators are better
than the Least squares estimator (LSE).

In (2022), the researcher (Herawati et al., 2022), if there are two problems in the data of
the multilinearity problem and the outliers problem, to overcome them, robust regression is used.
So, it was using ridge least absolute deviation method. A comparison by MSE of the two
methods ridge least absolute deviation (RLAD) and Least squares (LS), all results showed that
(RLAD) had a lower MSE than (LS).

2.Robust estimation methods:
2.1 M estimation:

It is symbolized by the symbol (M), this method is considered one of the most robust
methods. As the work of this method works with the problem of outliers, through which the
squares of the residuals are replaced by the loss function p. (Irshayyid & Saleh, 2022)

This method was introduced by Hooper in 1964. This method is almost as efficient as the
ordinary least squares method. Instead of reducing the sum of the squares of errors as the
objective, the M estimate reduces the errors function (p). (Alma, 2011) (Rashid & Hafez, 2013)
(A. F. Lukman et al., 2015)

n n

min Z p (%) = min Z p (Yi _SXiIB> (D

i=1 i=1
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The properties for the function p can be written as:
p(e) =0, p(0) =0, p(e) = p(—e) and p(e;) = p(e;) for |e;| = |ej| (A. F. Lukman et al.,
2015)
The algorithm for the M estimation can be written as follows: (Susanti et al., 2014)
1) Calculate the parameter ﬁOLS (0) by assuming initial values such as OLS.
2) Calculate the residual: e, =y —J,
3) Calculate:
. MAD  median|e; — median(e;)|
%1 T 06745 0.6745

4) Calculate: u; =;—
5) Calculating the weighted value of the Tukey function:

u; 292
_ | < 4.
w; = [1 (7285) ] lusl < 4.685
0 lu;| > 4.685
6) Calculating the GM using the weighted least squares method with w;:
Bm = (X’Wix)_l()gin)
7) Repeat steps 2 to 5 to obtain a convergent value of By.

2.2 S estimation:

S estimation by Rousseeuw and Yohai (1984), it is a method that has a high breakdown.
As this method has a higher statistical efficiency than trimmed least squares estimation. (Chen,
2002) (SAMKAR & ALPU, 2010) (Lukman et al., 2014)

The S method is more robust than the M method because the S estimators have smaller
asymptotic variance and smaller asymptotic bias in the data with outliers. (Bahez & Rasheed,
2022)

where the S estimator is derived by scale statistics in an implicit manner corresponding
to S(0). (Lukman et al., 2015)

According to Salibian and Yohai, the S-estimator is defined by: (Susanti et al., 2014)

Bs = min B Gs(eq, ey, ..., €p) (2)

With determining minimum robust scale estimator G :
n

L yn
i=1 s

The algorithm for the S estimation can be written as follows: (Susanti et al., 2014) (Abbas &
Abood, 2022)
1) Calculate the parameter Boys(0) by assuming initial values such as OLS.
2)Calculate the residual: e; = y; — ¥;
3) Calculate:

median|e; — median(e;)|

0.6745 iteration = 1

iteration > 1

4) Calculate: u; = =

5) Calculating the V\;eighted value of the Tukey function:
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[1 - (54) ] lwif < 1.547 iteration = 1
wi=qlo lu;| > 1.547
Lp(l;i) iteration > 1
u

6) Calculating the Bg using the weighted least squares method with w;:
Bs = (X'WiX)_lQ(\'WiY)
7) Repeat steps 2 to 5 to obtain a convergent value of Bs.

3.Semiparametric Regression Model:

Semiparametric models were introduced by Begun et al in 1983, the term being attributed to Oakes in
1981. (Powell, 1994)

Semiparametric linear regression models believe that the dependent variable (y) depends on the
independent variable (X) in a linear way, while it is not linearly related to the other independent variable
(2). (Duran & Akdeniz, 2013)

The partial linear regression model (PLM) proposed by researchers (Robinson & Speckman) in (1988).
(Speckman, 1988) (Al-Azzawi & Al-Always, 2022)

The (PLM) consists of a linear part represented by Parametric regression and a part Nonlinear represented
by nonparametric regression. (AL-Adilee & Aboudi, 2021)

Can be written in the following form:

p
Yi = Z B]Xl] g(Z,) + & B i= 1, 2, PP 1 § (4‘)
i=1

In matrix form, the model can be rewritten as follows:
Y=XB+g(Z)+ ¢ (5)
Where: Y : Vector of response variable of degree (nx1).
X : Parametric part which contains:
X : Explanatory variable of degree (nxp). B : Vector of parameter of degree (px1).
g(Z) : Nonparametric part (smooth function unknown) of the degree (nx1).
Z : Nonparametric variable (continuous variable) of degree (nx1).
€ : Vector random errors (independently and identically distributed) of degree (nx1), with mean E(g) =
0, and Fixed variance Var(g) = ¢2. (Aydm, 2014)
3.1 Difference Method:

This method was proposed by the researcher (Yatchew) in (2003), which is used to estimate the
parametric component of a (PLM) by removing the influence of the nonparametric component. (Yatchew,
2003)

The difference matrix of [(n-m)xn] rank. Difference matrix be written as: (Duran et al., 2012) (Duran &
Akdeniz, 2013) (Wu, 2016)

[do dy d - dm O .. 0]
0 dy dy dz - dm O 0|
D=|: : : : i i i
o - «.dy d¢ d - d,, O
0 0 -« - dy dy dz - dy

Where: m : difference rank.
(dg, dy, ..., dy,): Weights that satisfy the following two conditions:
TRodj=0 ,  ¥Myd? =1 (Hussein, 2019)
The formula can be written as follows:
Y~XB+¢ (6)
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Where: Y =DY , X=DX , £§ =Ds
Y : Vector of observations of the response variable of degree [(n — m) x 1].
X : Matrix of observations of explanatory variables of degree [(n — m) X p].
B : Vector of unknown parameters of degree [p x 1].
D : difference matrix of degree [(n — m) X n].
n : Number of observations.
€ : vector of random errors of degree [(n — m) x 1]. (Akdeniz et al., 2015) (Tabakan & Akdeniz, 2010)
The first condition of the difference estimator guarantees the removal of the nonparametric effect in the
regression equation, the second condition is that the variance of the residuals is not affected by removing
the nonparametric effect. (Yatchew, 1997)

After reducing the nonparametric part, the (Yatchew) method was proposed to estimate the
parameters by using the method of least squares depending on the difference estimator by increasing their
energies: (Roozbeh et al., 2011)

—~ ~pen—1~; ~
Baitr = (XX) XY (7)

As for the error variance depending on the difference estimator, it is written in the following form: (Duran

& Akdeniz, 2013)

1 ~ ~
Olitr = 0 (Y- XBdiff)tDtD(Y — XBaitr) (8)

The researchers (Turkmen & Tabakan) in (2015) in the presence of outliers in the data of the
semiparametric regression model employed the method of differences presented by (Yatchew) in (1997)
with the robust methods such as the robust (MM) method in addition the smoothing spline estimator.
Create a Proposed algorithm. (Turkmen & Tabakan, 2015)

In the study, the difference method will be employed with the robust methods (M, S) to model
the semiparametric regression in the presence of outliers in addition to the existence of the problem of
multicollinearity.

After the difference matrix was used to remove the nonparametric component from the
semiparametric model, the new model will be relied upon in order to estimate the robust methods (M, S),
depending on equation (6) of the difference method. So, the robust method (M, S) algorithms will be
modified by multiplying the difference matrix by the explanatory variable's matrix X, and multiplying the
difference matrix by the response variable vector Y.

3.1.1 Difference-Based Ridge Estimator:

This Ridge regression method has been discussed by the researchers (Hoerl and Kennard) in
1970, this is the most efficient way to deal with the problem of multilinearity, where this method gets rid
of adding a small positive amount to the elements of the diameter of the information matrix. (Rashid &
Hafez, 2013) (Husein, 2016) (Abboud & Khorshid, 2018) (Kamal & Khazal, 2019)

It was proposed by the two researchers (Tabakan & Akdeniz) in (2010), where they employed
the difference method of the researcher (Yatchew) in the ridge regression, where the difference-based
ridge estimator can be obtained, by relying on equation (6) of the difference method. (Tabakan &
Akdeniz, 2010)

The formula for the difference-based ridge estimator can be written as follows:
Bl = RX+K) XY (9

Where: Y : Vector of observations of the response variable of degree [(n — m) x 1].

X : Matrix of observations of explanatory variables of degree [(n — m) X p].

B : Vector of unknown parameters of degree [p x 1].

D : difference matrix of degree [(n — m) X n].

I : Unit matrix of degree (pxp).

K : Bais parameter It is a constant value K > 0.

n : Number of observations.

m : difference rank.

€ : vector of random errors of degree [(n — m) X 1].
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3.1.2 Difference-Based Ridge Estimator based on the M robust estimator:

An estimator that combines the ridge estimator and the M estimator was proposed by Silvapulle
in (1991), In the case of the outliers and multicollinearity problems. Huber in (1981) is preferred the robust
M-estimator to the LSE. In the event that the data suffers from the presence of outliers. The main formula
for the difference ridge estimator based on M robust is written in the following: (Shih et al., 2021)

o~ ~p~ ~ s —1 o~ ~

BRidee(M) = (XX +RH"1) 'X'Y  (10)
Where the value of the robust bias parameter R is calculated as follows:

o diff

odiff _ PO M odiff

Ry = Sat o BM = 0 (11)
To calculate the variance of difference ridge estimator based on the M robust estimator: (Duran &
Akdeniz, 2013)

e 1 4 .
o =—(Y-XBH")D'D(Y-XBH")  (12)

3.1.3 Difference-Based Ridge Estimator based on the S robust estimator:
It is assumed that the robust estimator parameter obtained using the S estimator is the Ridge
Estimator based on the S estimator. (Jeremia et al., 2020)
The main formula for the difference ridge estimator based on the S robust it is written in the

following form: (Duran & Akdeniz, 2013)

BUM () = (RX+RIM) XY  (13)
Where the value of the robust bias parameter RS is calculated as follows:

o diff
gaitr _ P9 s Y - o (14)
§ adifft adiff ~ TS
Bs"" Bs

To calculate the variance of difference ridge estimator based on S robust estimator:

i 1 P .

o%s" = —(Y-XBI")'D'D(Y - XBI™) (15
4.Nonparametric Estimation Method:
Nonparametric regression was proposed by (Jacob Wolfowitz) in 1942. (Kvam et al., 2022)
In nonparametric models, knowledge of the data distribution is not required, and these models never
contain parameters. Where the relationship between the explanatory variables and the response variable is
not known. (Mahmoud, 2019)
The general formula for nonparametric regression can be written as: (Ali et al., 2020) (Hameed & Khalaf,
2021)
Yi = g(Zl) + & , i= 1,2, 1 | (16)

Where: g(Z;): The unknown smoothing function.

4.1 Kernel function (Nadaraya — Watson estimator) (N.W):

The estimator (Nadaraya-Watson) was used extensively in many areas of statistical research, and
is the simplest type of the smoothers. It was proposed by researchers (Nadaraya) and (Watson) in (1964),
is an important estimator for estimating a function (Kernel). (Hameed & Khalaf, 2021)

The properties of the kernel function that are used with the (NW) estimator can be written:

(1) f k(z)dz=1 , (2) f zk(z)dz=0 , (3) f z’k(z)dz=0 , vz=1,3,.., k-1
(Demir & Toktamis, 2010) (Al-Tai & Al-Kazaz, 2022)

The general formula for the (N.W) estimator can be written as: (Hardle et al., 2004)
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n 'YL Ku(z - Z)Y,
n- 1yt Kn(z-Z)

Equation (17) can be rewritten in the form of matrices in the following form: (Khalaf & Mohammed,
2023)

8(Zi) = 17)

o 8(Zi) =wWy(2)Y," (18)
Where: Y;* = Y; — XiBglififge(M ors)
h : bandwidth or smoothing parameter. W, (2) : the weight function of (N.W) estimator.
4.2 Cubic Smoothing Spline estimator:
The smoothing spline is attributed to the researcher (Whittaker) in (1923). (Hérdle, 1990)
Smoothing Spline method is used to estimate the regression model, penalized least squares method can be
used to estimate the smoothing function.

n b
S(g) = argming) | (i~ xip —g@)" +2 [ (6" @)"dz| A9
i=1 a

Where: A: Smoothing Parameter.
g(z;) : represents the smoothing spline estimator for a roughness penalty.
g''(z) : The second derivative of the smoothing function. (Aydin, 2007b) (Hmood & Katea, 2014)

Idea of estimating method depends on minimization two main parts to obtain the curve best. First part is
sum of squares of residuals, the second part is roughness penalty or the penalty term. (Habeeb et al., 2021)

As A — 0 the roughness penalty dominates in (1) and the spline estimate interpolates the data.

As A — oo the roughness penalty dominates in (1) and the spline estimate is forced to be a constant.
(Aydin, 2007a) (Aydin et al., 2013)

The difference between smoothing splines (knots = n), regression splines (knots < n) and penalized
regression splines (regression splines with penalization for the number of knots) lies in the number of
knots chosen. (Hens, 2005) (Hmood & Burhan, 2018)

Suppose given n real numbers (z4, Zy, ..., Z,) in the interval [a,b].

A function (g) in the interval [a,b] as cubic spline if two conditions are satisfied:
1) Ineach interval (a,zq), (Z1,Z2) - -+ eoe ... ... (Zy, b) , the function g is polynomial cubic spline.
2) The polynomial pieces fit together at point z; in such a way g, g’ and g’’ are contiguous at
each z;, The function g is contiguous in [a,b]. (Ibrahim & Suliadi, 2010)

Depending on the matrix formula, the estimator can be represented as in the following formula:
gr =Sy (20)
Where: A : Parameter of smoothing Spline.

We get an estimate of g using the Cubic Smoothing Spline method for the value Y* of the nonparametric
part, so the estimate is as follows:

g=Su—-xp") (v

- g =Swi" (22)
Where: y;* =y; — X{BSilcflfge(M orS)
S, : Smoothing matrix (definite and nonnegative and symmetric) (nxn) that depends on the value of A and
the values of z; and does not depend on the values of y;. (Bickel et al., 2009)
The smoothing parameter (A) will be selected by using the cross-validation (CV) method, as this method
is one of the most used and highly efficient methods. Which is used in the (NW) method and the
smoothing spline method. (Al-Azzawi & Al-Always, 2022)
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5.Simulation:

Simulations for this study were tested using (MATLAB) language in order to generate
simulation data to compare methods (DRMNW, DRSNW, DRMSP, DRSSP) with different sample sizes
(n; = 50,n, = 100,n3; = 150) after assuming three outliers in the response variables (t; =
10%, 1, = 20%,t3 = 30%), five correlation ratios (p; = 0.50,p, = 0.60,p3 = 0.70,p,4 =
0.80,p5 =0.90) and four parameters (B; =1.5,, =—-1.5,3=1,84=2) and four
explanatory variables (X1, X2, X3, X4, Z) being generated using the method (Box-Muller), each
experiment was repeated 500 time.

The mean absolute percentage error (MAPE) scale was used, which is the most widely used measure for
error prediction. It measures accuracy as a percentage. It can be calculated through the following equation:

1Y - ¥
MAPE=—Z
n: i
i=1

Y,

Models used to generate the nonparametric component (2):
1) g(Zi) = 0.5sin(2tZ)
2) 8(Zi) = sin(2Z) + 2e(-162%)
3) §(zi) = e-@-05))
6.Analyzing the results:
The results of the first semiparametric partial linear regression model:

Table 1: The mean absolute percentage error (MAPE), when pollution percentage with outlier 10%

n p DRMNW DRMSP DRSNW DRSSP Best
0.5 0.552919 1.114056 0.938103 4.232229 DRMNW
0.6 0.556217 1.107696 0.554606 9.31E-05 DRSSP
50 0.7 0.551099 1.108937 0.443173 3.78E-06 DRSSP
0.8 0.553149 1.1104 0.350917 2.93E-07 DRSSP
0.9 0.559684 1.107422 0.320467 2.89E-07 DRSSP
0.5 0.536971 1.073228 0.921005 0.38337 DRSSP
0.6 0.538642 1.072889 0.55377 5.37E-07 DRSSP
100 0.7 0.533202 1.073854 0.445453 6.92E-09 DRSSP
0.8 0.535658 1.068288 0.351682 5.57E-11 DRSSP
0.9 0.537732 1.071636 0.326029 1.32E-11 DRSSP
0.5 0.526016 1.054253 0.914008 0.075336 DRSSP
0.6 0.528341 1.053823 0.554046 6.1E-09 DRSSP
150 0.7 0.525412 1.050166 0.444231 8.95E-12 DRSSP
0.8 0.527886 1.052417 0.352265 1.95E-14 DRSSP
0.9 0.524936 1.051357 0.329051 3.61E-14 DRSSP

The results of table (1) showed outlier of (10%) in relation to a sample size (n=50) and
at a correlation coefficient level (p=0.50), the best estimator is (DRMNW) because it has the
lower of (MAPE), and at the rest of the levels of the correlation coefficient, the best estimator is
(DRSSP), but at the sample size (n=100,150) and for all levels of the correlation coefficient, the
best estimator is (DRSSP), which is better than the rest of the estimators.
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Table 2: The mean absolute percentage error (MAPE), when pollution percentage with outlier

20%

n p DRMNW DRMSP DRSNW DRSSP Best
0.5 0.323217 1.257146 0.8839 4047.02 DRMNW
0.6 0.328181 1.240443 0.314351 1.35E-07 DRSSP

50 0.7 0.319752 1.241572 0.203029 3.76E-10 DRSSP
0.8 0.324601 1.250197 0.130638 7.86E-12 DRSSP
0.9 0.330937 1.240854 0.109675 4.52E-11 DRSSP
0.5 0.298528 1.157944 0.849626 11.8779 DRMNW
0.6 0.30121 1.156681 0.310819 7.08E-12 DRSSP

100 0.7 0.295009 1.159411 0.203149 2.16E-15 DRSSP
0.8 0.297925 1.146402 0.128393 3.89E-19 DRSSP
0.9 0.300562 1.154443 0.111073 1.37E-20 DRSSP
0.5 0.284705 1.114212 0.836197 0.139037 DRSSP
0.6 0.286998 1.113642 0.310066 2.47E-15 DRSSP

150 0.7 0.283468 1.105568 0.200819 8.75E-21 DRSSP
0.8 0.286029 1.110462 0.127499 7.38E-26 DRSSP
0.9 0.282694 1.108225 0.111612 1.05E-24 DRSSP

The results of table (2) showed outlier of (20%) with respect to a sample size (h = 50)
and at a correlation coefficient level (p=0.50), the best estimator is (DRMNW) because it has the
lower of (MAPE), and at the rest of the correlation coefficient levels the best estimator is
(DRSSP), but at the sample size (n=100) and at the level of correlation coefficient (p=0.50) the
best estimator is (DRMNW), and at the rest of the correlation coefficient levels the best
estimator is (DRSSP), and at the sample size (n=150) and for all levels of the correlation
coefficient, the best estimator is (DRSSP), which is better than the rest of the estimators.
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Table 3: The mean absolute percentage error (MAPE), when pollution percentage with outlier
values is 30%

n P DRMNW DRMSP DRSNW DRSSP Best
0.5 0.552919 1.114056 0.938103 4.232229 DRMNW
0.6 0.556217 1.107696 0.554606 9.31E-05 DRSSP
50 0.7 0.551099 1.108937 0.443173 3.78E-06 DRSSP
0.8 0.553149 1.1104 0.350917 2.93E-07 DRSSP
0.9 0.559684 1.107422 0.320467 2.89E-07 DRSSP
0.5 0.536971 1.073228 0.921005 0.38337 DRSSP
0.6 0.538642 1.072889 0.55377 5.37E-07 DRSSP
100 0.7 0.533202 1.073854 0.445453 6.92E-09 DRSSP
0.8 0.535658 1.068288 0.351682 5.57E-11 DRSSP
0.9 0.537732 1.071636 0.326029 1.32E-11 DRSSP
0.5 0.526016 1.054253 0.914008 0.075336 DRSSP
0.6 0.528341 1.053823 0.554046 6.1E-09 DRSSP
150 0.7 0.525412 1.050166 0.444231 8.95E-12 DRSSP
0.8 0.527886 1.052417 0.352265 1.95E-14 DRSSP
0.9 0.524936 1.051357 0.329051 3.61E-14 DRSSP

The results of table (3) showed outlier of (30%) for a sample size (h=50) and at a
correlation coefficient level (p=0.50), the best estimator is (DRMNW) because it has the lower
of (MAPE), and at the rest of the levels of the correlation coefficient, the best estimator is
(DRSSP), but at the sample size (h=100,150) and for all levels of the correlation coefficient, the
best estimator is (DRSSP), which is better than the rest of the estimators.

The results of the second semiparametric partial linear regression model:

Table 4: The mean absolute percentage error (MAPE), pollution percentage with outlier 10%

n p DRMNW DRMSP DRSNW | DRSSP Best
0.5 1.112185 1.05045 0.825251 | 1.085766 | DRSNW
0.6 1.103272 1.051371 | 0.300005 | 4.76E-08 DRSSP
50 0.7 1.105412 1.056769 0.194536 8.8E-10 DRSSP
0.8 1.119472 1.0519 0.12019 4.92E-13 DRSSP
0.9 1.108578 1.051376 0.105819 1.1E-13 DRSSP
0.5 1.074086 1.033507 |0.815889 | 0.007441 | DRSSP
0.6 1.071341 1.034178 | 0.300725 | 1.66E-12 DRSSP
100 0.7 1.063751 1.032332 | 0.195815 | 1.26E-15 DRSSP
0.8 1.081894 1.036636 | 0.122132 | 1.38E-19 DRSSP
0.9 1.068827 1.03259 0.107872 | 2.78E-20 DRSSP
0.5 1.040681 1.025228 | 0.813895 | 0.004114 | DRSSP
0.6 1.048629 1.025725 | 0.304076 | 2.24E-16 DRSSP
150 0.7 1.0471 1.024753 0.196779 3.1E-21 DRSSP
0.8 1.056334 1.025245 ]0.123691 | 5.09E-26 DRSSP
0.9 1.048074 1.026832 | 0.109693 | 1.45E-27 DRSSP
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The results of table (4) showed outlier of (10%) in relation to a sample size (n=50) and

at a correlation coefficient level (p=0.50), the best estimator is (DRSNW) because it has the
lower of (MAPE), and at the rest of the levels of the correlation coefficient, the best estimator is
(DRSSP), but at the sample size (h=100,150) and for all levels of the correlation coefficient, the
best estimator is (DRSSP), which is better than the rest of the estimators.

Table 5: The mean absolute percentage error (MAPE), when pollution percentage with outlier

20%

n p DRMNW DRMSP DRSNW | DRSSP Best
0.5 1.308956 1.106296 | 0.68479 1046.064 | DRSNW
0.6 1.289023 1.108279 | 0.096645 | 4.18E-13 DRSSP

50 0.7 1.296947 1.120491 | 0.043292 | 4.05E-16 DRSSP
0.8 1.324507 1.109389 | 0.017543 | 1.35E-22 DRSSP
0.9 1.297891 1.108456 | 0.013743 | 8.67E-24 DRSSP
0.5 1.197001 1.069236 | 0.667504 | 0.000755 | DRSSP
0.6 1.188673 1.070744 | 0.09466 1.92E-22 DRSSP

100 0.7 1.172933 1.066774 | 0.041697 | 3.94E-28 DRSSP
0.8 1.213785 1.075988 | 0.017128 | 7.97E-36 DRSSP
0.9 1.183279 1.067335 | 0.013503 | 6.38E-37 DRSSP
0.5 1.107317 1.05187 0.663614 | 0.005586 | DRSSP
0.6 1.129077 1.05274 0.0958 4.46E-30 DRSSP

150 0.7 1.125009 1.050788 | 0.041195 | 1.87E-39 DRSSP
0.8 1.143236 1.051808 | 0.016856 | 1.92E-48 DRSSP
0.9 1.12816 1.055038 | 0.01351 1.46E-51 DRSSP

The results of table (5) showed outlier of (20%) for a sample size (n=50) and at a

correlation coefficient level (p=0.50), the best estimator is (DRSNW) because it has the lower of
(MAPE), and at the rest of the levels of the correlation coefficient, the best estimator is
(DRSSP), but at the sample size (n=100,150) and for all levels of the correlation coefficient, the
best estimator is (DRSSP), which is better than the rest of the estimators.
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Table 6: The mean absolute percentage error (MAPE), when pollution percentage with outlier
30%

n p DRMNW DRMSP DRSNW DRSSP Best
0.5 1.112185 1.05045 0.825251 1.085766 DRSNW
0.6 1.103272 1.051371 0.300005 4.76E-08 DRSSP
50 0.7 1.105412 1.056769 0.194536 8.8E-10 DRSSP
0.8 1.119472 1.0519 0.12019 4.92E-13 DRSSP
0.9 1.108578 1.051376 0.105819 1.1E-13 DRSSP
0.5 1.074086 1.033507 0.815889 0.007441 DRSSP
0.6 1.071341 1.034178 0.300725 1.66E-12 DRSSP
100 0.7 1.063751 1.032332 0.195815 1.26E-15 DRSSP
0.8 1.081894 1.036636 0.122132 1.38E-19 DRSSP
0.9 1.068827 1.03259 0.107872 2.78E-20 DRSSP
0.5 1.040681 1.025228 0.813895 0.004114 DRSSP
0.6 1.048629 1.025725 0.304076 2.24E-16 DRSSP
150 0.7 1.0471 1.024753 0.196779 3.1E-21 DRSSP
0.8 1.056334 1.025245 0.123691 5.09E-26 DRSSP
0.9 1.048074 1.026832 0.109693 1.45E-27 DRSSP

The results of table (6) showed outlier of (30%) in relation to a sample size (n=50) and
at a correlation coefficient level (p=0.50), the best estimator is (DRSNW) because it has the
lower of (MAPE), and at the rest of the levels of the correlation coefficient, the best estimator is
(DRSSP), but at the sample size (n=100,150) and for all levels of the correlation coefficient, the
best estimator is (DRSSP), which is better than the rest of the estimators.
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The results of the third semiparametric partial linear regression model:
Table 7: The mean absolute percentage error (MAPE), when pollution percentage with outlier

10%

n P DRMNW DRMSP DRSNW DRSSP Best
0.5 1.33765 1.04237 0.785873 0.09263 DRSSP
0.6 1.338779 1.043765 0.23144 2.33E-09 DRSSP

50 0.7 1.33792 1.044547 0.136992 3.34E-12 DRSSP
0.8 1.343945 1.041797 0.080227 2.41E-15 DRSSP
0.9 1.331647 1.046576 0.070064 6.97E-14 DRSSP
0.5 1.285518 1.027823 0.778524 0.002175 DRSSP
0.6 1.294201 1.027889 0.234223 3.88E-14 DRSSP

100 0.7 1.281832 1.028904 0.141192 3.83E-18 DRSSP
0.8 1.280866 1.030257 0.083846 2.28E-23 DRSSP
0.9 1.291006 1.026995 0.068378 9.69E-25 DRSSP
0.5 1.253946 1.021178 0.77695 0.00028 DRSSP
0.6 1.258299 1.021688 0.239028 9.86E-19 DRSSP

150 0.7 1.258365 1.020909 0.142863 2.89E-25 DRSSP
0.8 1.264872 1.021876 0.083208 1.61E-31 DRSSP
0.9 1.273791 1.022553 0.069507 2.99E-34 DRSSP

The results of table (7) showed outlier of (10%) and for all sample sizes (n=50,100,150)
and for all levels of the correlation coefficient, the best estimator is (DRSSP) because it has the
lower of (MAPE) of the rest of the estimators.
Table 8: The mean absolute percentage error (MAPE), when pollution percentage with outlier

20%

n p DRMNW DRMSP DRSNW DRSSP Best
0.5 1.894762 1.088312 0.621494 4.610488 DRSNW
0.6 1.887837 1.091418 0.059188 1.17E-15 DRSSP

50 0.7 1.88786 1.093134 0.022362 2.12E-21 DRSSP
0.8 1.918725 1.087207 0.008324 2.96E-27 DRSSP
0.9 1.876202 1.09785 0.006745 4.74E-24 DRSSP
0.5 1.715983 1.057177 0.608271 6.08E-05 DRSSP
0.6 1.737842 1.057431 0.05865 3.06E-25 DRSSP

100 0.7 1.702814 1.059571 0.022441 7.77E-33 DRSSP
0.8 1.702536 1.062404 0.008486 1.02E-43 DRSSP
0.9 1.723562 1.055451 0.005694 2.65E-46 DRSSP
0.5 1.620291 1.043278 0.605206 5.83E-06 DRSSP
0.6 1.622051 1.044327 0.059843 7.28E-34 DRSSP

150 0.7 1.629796 1.042683 0.022352 2.11E-47 DRSSP
0.8 1.644565 1.044704 0.008004 9.7E-60 DRSSP
0.9 1.6719 1.046153 0.00572 5.76E-65 DRSSP
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The results of table (8) showed outlier of (20%) for a sample size (n=50) and at a
correlation coefficient level (p=0.50), the best estimator is (DRSNW) because it has the lower of
(MAPE), and at the rest of the levels of the correlation coefficient, the best estimator is
(DRSSP), but at sample sizes (n=100,150) and for all levels of the correlation coefficient, the
best estimator is (DRSSP), which is better than the rest of the estimators.

Table 9: The mean absolute percentage error (MAPE), when pollution percentage with outlier
30%

n p DRMNW DRMSP DRSNW DRSSP Best
0.5 1.33765 1.04237 0.785873 0.09263 DRSSP
0.6 1.338779 1.043765 0.23144 2.33E-09 DRSSP
50 0.7 1.33792 1.044547 0.136992 3.34E-12 DRSSP
0.8 1.343945 1.041797 0.080227 2.41E-15 DRSSP
0.9 1.331647 1.046576 0.070064 6.97E-14 DRSSP
0.5 1.285518 1.027823 0.778524 0.002175 DRSSP
0.6 1.294201 1.027889 0.234223 3.88E-14 DRSSP
100 0.7 1.281832 1.028904 0.141192 3.83E-18 DRSSP
0.8 1.280866 1.030257 0.083846 2.28E-23 DRSSP
0.9 1.291006 1.026995 0.068378 9.69E-25 DRSSP
0.5 1.253946 1.021178 0.77695 0.00028 DRSSP
0.6 1.258299 1.021688 0.239028 9.86E-19 DRSSP
150 0.7 1.258365 1.020909 0.142863 2.89E-25 DRSSP
0.8 1.264872 1.021876 0.083208 1.61E-31 DRSSP
0.9 1.273791 1.022553 0.069507 2.99E-34 DRSSP

The results of table (9) showed outlier of (30%) and for all sample sizes (n=50,100,150)
and for all levels of the correlation coefficient, the best estimator is (DRSSP) because it has the
lower of (MAPE) of the rest of the estimators.

7.Conclusion:

1) In the first, second and third semiparametric partial linear regression models (when the level
of the correlation coefficient is low and the sample size is small and for all outliers), the
(DRMNW) estimator is the best estimator, but for the rest of the correlation levels, for all
sample sizes, for all pollution rates and for all models, the (DRSSP) estimator is the best
estimator.

2) The values of the mean absolute percentage error (MAPE) decrease when the sample size is
increased (an inverse relationship).

3) We conclude that in all models, for all sample sizes, and for all levels of the correlation
coefficient, the best estimator is (DRSSP).
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