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Abstract: 

Purpose: Truncated distributions occur in many practical situations and predict real phenomena.  

Theoretical framework: this paper proposed a right-truncated mixed Komal-Weibull 

distribution on [0,1] with three parameters, and derived some of its properties.  

Design/methodology/approach: To show the ability and behavior of this distribution, some 

mathematical properties are given, such as the likelihood distribution function, the cumulative 

distribution function, the reliability function, the hazard function, the properties of the k
th
 

moments, the variance, skewness, and kurtosis coefficients, the moment generating function and 

the distribution of order statistics. In addition, the maximum likelihood estimate is derived. 

Findings: A new distribution with the three parameters. 

Research, Practical & Social Implications: The new distribution could be used as a model in 

studying reliability stress-strength model and survival analysis. It enhances the ability to model 

and analyze truncated data accurately. 

Originality/value: The right-truncated mixed Komal-Weibull distribution can be used in 

various fields such as agriculture, medicine, engineering, and physics. 
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maximum likelihood estimator. 

JEL Classification: C10, C13, C15  

Authors’ individual contribution: the Methodology and Writing —Sairan Hamza Raheem.;  

Review & Editing — Supervisions Bayda Atiya Kalaf and Erum Rehman 

 

 

 

 

 

 

Journal of Economics and Administrative 

Sciences (JEAS) 

http://jeasiq.uobaghdad.edu.iq/
https://doi.org/10.33095/xg2pbe86
file:///C:/Users/AL-BARQ/OneDrive/Desktop/توزيعات/علوم%20مختلط/ادارة/sairan.hamza@garmian.edu.krd
https://orcid.org/%200000-0003-0663-2773%20
https://orcid.org/%200000-0003-0663-2773%20
mailto:baydaa.a.k@ihcoedu.uobaghdad.edu.iq
https://orcid.org/0000-0003-1136-0055
mailto:Erumrehman1990@gmail.com
https://orcid.org/0000-0003-0939-1880
https://orcid.org/0000-0003-0939-1880
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


 

 

 

 

 
Journal of Economics and Administrative Sciences 

2024; 30(144), pp. 537-548 
P-ISSN 2518-5764 

E-ISSN 2227-703X 
   

  

538  

 

   

 

 

 

 

1.   Introduction : 

 In recent years, many new and more flexible probability distributions have 

been developed using different techniques to represent a data set(Abbas et al., 2023)and(Khan et 

al., 2023). So theoretical and applied statisticians have worked extensively on mixture  and 

truncated distributions as an important area of probability theory. Truncated distributions are 

more suitable for modeling lifetime data due to their defined boundaries, which can serve as 

either upper or lower limits, or both, depending on the specific characteristics of the data, in 

other words, truncation of a distribution involves limiting the domain of the associated random 

variable according to specific truncation points, resulting in a modification of the distribution's 

shape. This phenomenon also occurs when events within or outside a defined range, or those 

falling below or above a certain threshold, cannot be observed or recorded. (M. J. Mohammed & 

Hussein, 2019). In 1934, (FISHER, 1934a) proposed the combination of multiple distributions to 

improve the flexibility of the standard distributions. Mixing distributions is viewed as a 

technique for addressing the limitations present in univariate distributions The relevance of 

mixture distributions is highlighted by the ongoing difficulties in addressing significant 

problems where empirical data do not fit with standard probability models. For instance, the 

Weibull distribution is often utilized to model datasets that display a monotonic hazard rate 

function. Nevertheless, it may not always serve as the preferred model due to its capacity to 

exhibit both negative and positive skewness in its density shapes. Moreover, the Weibull 

distribution is inadequate for representing phenomena with non-monotonic failure rates, such as 

those illustrated by a bathtub curve (Aryal & Tsokos, 2011),(Hamed, 2020).This situation leads 

the authors to propose the amalgamation of the Weibull distribution with various other 

distributions, thereby facilitating the development of more flexible and innovative distribution 

models. In the last few years, researchers have focused on investigating different mixture 

distributions.(M. J. Mohammed & Mohammed, 2021) estimated the new inverse exponential 

Rayleigh distribution parameters.(Hussein et al., 2023) introduced a new distribution that 

combines characteristics of exponential and Rayleigh distributions. (Areiby Shamran et al., 

2023)compared the Modified Weighted Pareto distribution with other distributions. On the other 

hand, many other different papers studied to get a life distribution platform that fits mixture 

Weibull as an important distribution with many applications in lifetime analysis. (Almazah & 

Ismail, 2021) selected the efficient parameter estimation method for two Weibull distributions. 

While (Daghestani et al., 2021) introduced one-parameter Lindley and Weibull distributions. 

(Al-Noor et al., 2021) investigated a new distribution with four parameters called Marshall Olkin 

Marshall Olkin Weibull. (Kumar et al., 2021) proposed a new distribution, based a new 

distribution, based on the Weibull Marshall-Olkin Lomax distribution, Finley, (Kim et al., 2024) 

studied new efficient estimators for the Weibull distribution, 

 Creating a flexible distribution to represent lifetime data has always been a major 

challenge for authors. This was one of the reasons that prompted researchers to pay attention to 

truncated distributions    as they are    of    great importance for testing    lifetime    data in various fields 

such as engineering, medicine, insurance, and biology (Altawil, 2021). (Singh et al., 2014) 

investigated the properties of the truncated versions of these Lindley generalizations,(Al-

Marzouki, 2019) derived a new truncated Weibull-Power-Lomax distribution. (Teamah et al., 

2020) provided    a    right-truncated Fréchet-Weibull distribution, and (Gul et al., 2021) provided 

Weibull-Truncated Exponential distribution. (Khaleel et al., 2022) considered and defined a 

specific model, named [0,1] Truncated Inverse Weibull Rayleigh distribution. (Abbas et al., 

2023b) proposed the truncated Weibull exponential distribution. (Okorie et al., 2023) 

investigated an upper truncated Weibull distribution. Also, (Kalaf et al., 2023) introduced the 

truncated inverse generalized Rayleigh distribution. Therefore, a new truncated Komal-Weibull 

distribution was presented in this paper, and some important statistical properties 

were considered. This article is organized as follows: Section 2 discusses the truncated Komal-
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Weibull distribution, Section 3 finds the reliability and the hazard functions, Section 4 derives 

some of the statistical properties, and Section 5 presents the maximum likelihood estimation 

method. 

 

2. The Truncated Komal-Weibull Distribution: 

 The probability density function (pdf) and hazard rate function of the Komal distribution are 

defined by (Shanker, 2023) as  

 (   )  
  

(      )
(     )                    (1)  

  ( )  
  (     )

(         )
        (2)  

While the two-parameter Weibull density function presented by Weibull (Waloddi Weibull, n.d.) 

is usually expressed as follows: 
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             (4)  

 With the method of combining the hazard rate functions of two distributions to get a new hazard 

rate function of mixture distribution see (Almalki & Yuan, 2013) and (TARVİRDİZADE,2021) 

hence, the hazard rate function of the new mixture Komal-Weibull distribution KWD has been 

obtained by adding (2) to (4)  as follows: 
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So, the reliability function is equal to: 
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Where             and     . Hence the corresponding distribution function and the 

density of the new KWD are obtained respectively by 
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Such that               , where   represents the shape parameter while       represent 

the scale parameters. Now by assuming that the r.v X is distributed as Komal-Weibull 

distribution with the positive parameters  ,       , such that X lies within the interval [0, 1] 

then according to (Aryuyuen & Bodhisuwan, 2019) the probability density function         is: 
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Substitute (11) in (10) to get the probability density function of      : 
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 The cumulative distribution function is derived as follows: 

      ( )  
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 ( )
 (13)  

Substitute (11) in (13): 
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or 
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(      ) (         ) 
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)

(      ) (       ) 
 (  

 
  )

      (14)  

Figures (1), and (2) illustrate the pdf, and cdf, of       in some cases of  ,       , 

respectively.  

 

 
Figure 1: Probability density function of       

 
Figure 2: Cumulative distribution function for       

 

Figure 1 indicates that the RTKWD generates various shapes such as symmetrical, left-

skewed, and rotated- J. In addition, Figure 2 demonstrates that the cdf of the RTKWD does not 

decrease with the increase of   and the distribution parameters 

increased. 
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3. Reliability Function And Hazard Function: 

 Let X be continuous random variable with probability density function and the cumulative 

distribution function as in (12) and (14) respectively, then the reliability function of RTKWD is: 

         
(      ) (         ) 

 (   (
 
 

)
 

)

(      ) (       ) 
 (  

 
  )

 (15)  

 

  

Figure 3: Reliability function for the       

Figure 3 shows that the reliability function of RTKWD is decreasing. 

The hazard function is derived as below: 
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4. Statistical Properties Of Right Truncated Komal-Weibull Distribution: 

 In this section, some of the statistical properties of the right truncated Komal-Weibull 

distribution have been derived and calculated  

4.1 Moments: 

 In order to drive moments about origin the following steps should be followed:  
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By putting  
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 , and using Taylor expansion  
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4.2 Variance, Skewness and Kurtosis: 

 To know more about the Right truncated Komal-Weibull distribution behaviour, 

investigating the variance, skewness, and kurtosis is important in this subsection since the 

variance describes the amount of variability while skewness tells the direction of variability. By 

using equations (20) and (21) the variance is given as the following: 
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Now to evaluate the skewness of the right truncated Komal-Weibull distribution since: 
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and the kurtosis will be equal to:  

   
  

(  ) 
   

 (  )    (  )     (  )    

(  ) 
    

   
{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
  ∑

(  ) 

     

 

   

∑
(  ) 

  

 

   

[
     

      
 

  

      
 [

       

   (   )    
] 

  

  [ (   )    ]
]

  ∑
(  ) 

     

 

   

∑
(  ) 

  

 

   

[
     

      
 

  

      
 

     

  [ (   )    ]
 

  

  [ (   )    ]
]

∑
(  ) 

     

 

   

∑
(  ) 

  

 

   

[
     

      
 

  

      
 

       

  [ (   )    ]
 

  

  [ (   )    ]
]

  ( ∑
(  ) 

     

 

   

∑
(  ) 

  

 

   

[
     

      
 

  

      
 

     

  [ (   )    ]
 

  

  [ (   )    ]
])

 ∑
(  ) 

     

 

   

∑
(  ) 

  

 

   

[
     

      
 

  

      
 

       

  [ (   )    ]
 

  

  [ (   )    ]
]

  ( ∑
(  ) 

     

 

   

∑
(  ) 

  

 

   

[
     

      
 

  

      
 

     

  [ (   )    ]
 

  

  [ (   )    ]
])

 

 

}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

{
 
 

 
  ∑

(  ) 

     

 

   

∑
(  ) 

  

 

   

[
     

      
 

  

      
 

       

  [ (   )    ]
 

  

  [ (   )    ]
]

 ( ∑
(  ) 

     

 

   

∑
(  ) 

  

 

   

[
     

      
 

  

      
 

     

  [ (   )    ]
 

  

  [ (   )    ]
])

 

}
 
 

 
 

        (26)  

 

4.3 Moment Generating Function: 

 The moment generating function of       can be derived as follows: 
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by using the following Taylor expansion to simplify equation (27): 
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4.5 The distribution of order statistics: 

 Let            be a random sample of size n of the right truncated Komal-Weibull 

distribution and suppose  ( )  ( )    ( )is the corresponding order statistics then probability 

distribution function and cumulative of the i
th
 order statistics say         ( ) could be derived as 

follows:  
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Put     to get the probability distribution function of the first order statistics 
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Also, when    , the probability distribution function of the n
th
 order statistics is: 
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Hence the cumulative distribution function n
th
 order statistics is:  
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5. The Maximum Likelihood Estimation: 

 Although (FISHER, 1934b) presents the method of maximum likelihood for the first 

time, but this method is considered the most widely used method in estimating problems(Atiya 

Kalaf et al., 2021)). Many authors choose the maximum likelihood estimation to estimate 

different parameters of different statistical functions see(A. Mohammed, 2019; Raheem et al., 

2021; Salman et al., 2018,) et al 2017, Raheem et al, 2021, Haddad and Batah, 2021): 

 Let (          ) be a random sample of size n drawn independently from the right truncated 

Komal- Weibull distribution the likelihood function L of this sample is given by: 
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Taking the natural logarithm of (33) to maximize the likelihood (Haddad & Batah, 2021; Taha & 

Salman, 2022) gives us the following equation:  
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assume that the parameters         are known then to estimate the unknown parameter   The 

partial derivative of (35) will be taken with respect to   is  
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the nonlinear equation (36) does not give the value of the estimated parameter  ̂ by sitting 
    

  
 

to zero, Hence Newton Raphson iteration will be suggested to use for obtaining the analytical 

solution. The iteration equation to  ̂ is given by: 
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  (37) 

6. Conclusion: 

 In this paper, the right truncated of a new lifetime mixture with three parameters 

distribution called right truncated Komal-Weibull distribution has been proposed and studied. 

The shape of pdf, cdf, and the hazard rate function have been discussed. In addition, 

some mathematical properties such as reliability function, moments about origin, variance, 

coefficients of skewness, and the mode and moment generating function have been derived to 

know more about the distribution function behavior. And to percent additional information and 

knowledge about the right truncated Komal-Weibull distribution the distribution of order 

statistics and the maximum likelihood estimation have been investigated.  
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