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Abstract: 

 This paper aims to use semi-parametric regression to balanced longitudinal data model, 

where the parametric regression models suffer from the problem of strict constraints, while non-

parametric regression models, despite their flexibility, suffer from the problem of the curse of 

dimensionality. Consequently, semi-parametric regression is an ideal solution to get rid of the 

problems that parametric and non-parametric regression suffer from. The great advantage of this 

model is that it contains all the positive features included in the previous two models, such as 

containing strict restrictions in its parametric component, complete flexibility in its non-

parametric component, and clarity of the interaction between its parametric and non-parametric 

components. 

Based on the above, two methods were used to estimate a semi-parametric balanced 

longitudinal data model. The first is the Bayesian estimating method; the second is the 

Speckman method, which estimated the unknown nonparametric smoothing function by 

employing the kernel smoothing Nadaraya-Watson method. The Aim was to make a comparison 

between the Bayesian estimation method and the classical estimation method. Three different 

sample sizes were used in the simulation studies: 50, 100, and 200. The study results showed 

that the Bayesian estimating method is best at low variance levels (1,5), whereas the Speckman 

method is best at high variance level (10). 
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1. Introduction: 
       Longitudinal data has received great attention in studies because it takes into account the 

effect of time change as well as the effect of changing cross-sections to the observations. 

Longitudinal data can be defined as the data that can be obtained through repeated observations 

of a phenomenon around (n) cross-sections. Which may be countries, institutions, companies, 

cities, individuals... etc., and during a certain time (T). (Zeger et al, 2002) 

       In Longitudinal data the phenomenon under study changes on two levels, the change on the 

horizontal level represents cross-section data, while the change on the vertical level represents 

Time -time-series data.  

       Note that the term longitudinal data gives the same meaning as panel data in the literature of 

researchers, As for this research it uses the term longitudinal data. Longitudinal data has special 

models to represent it, which are special regression models for longitudinal data, which have 

relied for a long time on parametric regression models, which is the most common, However, it 

has been noted in some applied aspects that this type may not represent the phenomenon under 

study appropriately due to the behavior of some variables that may be parametric behavior and 

others non-parametric and does not take into account the nonlinear effects of explanatory 

variables on the response variable. Therefore, the resulting estimates for this type of regression 

can be misleading. 

       There is a second type is the non-parametric regression model that takes into account the 

nonlinear effect of variables, which are characterized by their high flexibility and depend on the 

smoothing of the data using weight functions, The most famous of which is the kernel function 

that is used to smooth the data. However, most researchers have noticed that non-parametric 

regression also suffers from the curse of dimensionality, Which occurs when the number of 

variables increases. The third type is semi-parametric regression, The great advantage of this 

model is that it contains all the positive features included in the previous two types and the 

clarity of the interaction between its parametric and non-parametric components. (Green, 2002 ; 

Su, 2011) 

        The emergence of the semi-parametric approach in regression models is the result of the 

complementarity between both parametric and non-parametric inputs because its idea comes 

from the additive models where the parametric and non-parametric components are combined in 

this model, Consequently, this type has gained wide acceptance in economic and social studies 

and other modern studies such as longitudinal data. The areas of use of the three types 

mentioned above (parametric, non-parametric, and semi-parametric) have been expanded to be 

applied in Bayesian theory. Bayes' theory of statistical inference depends on employing prior 

information about unknown parameters and considering these parameters as random variables. 

Hence, this information can be formulated as a probability distribution. It is called the prior 

probability density function (Prior p.d.f.), and this information is obtained from previous data 

and experiments or the theory that governs this phenomenon. Bayes' theorem also relies on the 

current sample information represented by the likelihood function of the observations. 
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1.1 literature review: 

         Below are some previous studies in the field of Classical and Bayesian estimation For 

example: 

Abd-Alhafez and Rashid (2013) compared the classical cubic spline method and the cubic spline 

technique with robust M estimators with were to avoid the problem of pollution in the data and 

to estimate time-varying parameter functions for balanced longitudinal data. The robust M 

estimators proved their efficiency in the study. 

        Wang (2014) developed a proposed method that was discussed by each of the researchers 

(Henderson and Ullah) in their research in (2005) by finding estimates for the non-parametric 

random effects model for the Longitudinal data, through the two-step method. Through the 

analysis of simulation experiments, the efficiency of the proposed estimator for all prepared 

samples was reached, using the comparison standard (MSE),   

        Sadiq (2015) found the best estimators for the parameters of the Longitudinal data models 

in the presence of the drop-out problem, by using multiple models and different methods of 

estimators. She used the estimation methods (ML, REML, GEE, WGEE, MI-GEE) in addition to 

the method proposed, that the method proposed by the researcher outperformed them for all 

sample sizes, as well as with different drop-out of levels. 

        Abdul razzaq (2015) discussed the problem of missing data in the dependent variable Y of 

the longitudinal data model. In his research, he touched on several methods of estimation to 

harness them in estimating parameters free from the overlapping effect between each of Y and μ, 

including the  Bayesian Multiple Imputation, and the (EM) algorithm, the (ECM) algorithm, 

with two methods (normal and focused), the (ECME) algorithm, with two methods (two 

methods of segmentation of parameters), 

        Khalil and Fadam (2016) studied the Mixed-effects conditional logistic regression in 

longitudinal pollution data. The research demonstrated that conditional logistic regression is a 

robust evaluation method for environmental studies. It was shown through simulation that 

mixed-effects conditional logistic regression is more accurate for pollution studies. 

          Shaker (2016) submitted a dissertation in which she used parametric and semi-parametric 

Bayesian methods to estimate the reliability of the systems using the Dirichlet process prior and 

compared them with the reliability estimations of the systems using the classical methods. The 

results showed the preference of the Bayesian method for a sample size of n=14. 

           Liu et al (2017) proposed methods for estimating the parameters of a non-parametric 

model for Longitudinal data, which was considered one of the important modeling options in the 

effect of the covariates variable that may change dynamically over time using the correlation 

function, The researchers also proposed a new method that includes the performance of the 

selected sample was evaluated by conducting simulation studies, and an example of real data 

was analyzed to illustrate the proposed methods. 

          Hamza (2018) studied the marginal slopes of the Longitudinal data model, where she 

considered them as random variables, where the random cross-sectional errors are characterized 

by heterogeneity of the variance as well as being correlated of the first degree sometimes 

(depending on the circumstances of the phenomenon) in both the random and fixed effects 

models. While the previous studies considered it fixed and used what is known as the swammy 

model, whose parameters are characterized by randomness. 

         Burhan and Hamoud (2018) compared the estimate of the transfer function using the non-

parametric method, represented by two methods: positional linear regression, the cubic bootstrap 

method, and the semi-parametric method, represented by a single-indicator semi-parametric 

model with the proposed cubic bootstrap, and the study proved that the proposed estimator is the 

best among the studied estimators.  

         Abd-Alreda (2019) presented a master's dissertation in which he used the non-parametric 

and semi-parametric Bayesian methods to estimate the Cox regression model and the survival 
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function using the Dirichlet process prior and compared it with the estimators of the survival 

function using the classical methods. The results showed that the best method was the semi-

parametric Bayes method. 

         Castelein et al (2020)  developed a general method for selecting heterogeneous variables in 

non-linear Longitudinal data models such as polynomial logarithms models based on the 

Bayesian semi-parametric method and  Dirichlet process mixture (DPM) and they reached an 

improvement in performance in the process of selecting variables heterogeneous. 

         Kamel (2021) studied the non-parametric and semi-parametric estimators for the random 

effects model of Longitudinal data, using the non-parametric estimators (Nadaraya - Watson), 

and  (Local Linear Polynomial), and the semi-parametric methods (Speckman)  and (Profile 

Least Square). 

         Nayef and Lina (2022)  estimated the missing values for the multivariate skew normal 

distribution function using the K-nearest neighbors Imputation (KNN).  After estimating the 

missing values, the parameters are estimated using Genetic Algorithm (GA). and the Bayesian 

Approach was also used to estimate the missing values and find the estimates for the parameters.  

by comparing the two methods the (GA) that is based on the (KNN)algorithm to estimate the 

missing values proved to be better and more efficient than the Bayesian Approach in terms of 

the results. 

        Nayef and Ali (2022) estimated the  analysis of stochastic differential equation with long 

memory, represented by fractional diffusion process, in this paper they suggested a method for a 

system of stochastic differential equations with long memory, Also they use the Bayesian 

methodology to incorporate the advanced knowledge, the proposed method has been proved to 

be very accurate.  

1.2  The problem of research :   

       The problem of research is that parametric regression models suffer from the problem of 

strict constraints, while non-parametric regression models, despite their flexibility, suffer from 

the problem of the curse of dimensionality. 

1.3 The research Aim : 

       The research Aim to Use Semi-parametric regression is an ideal solution to get rid of the 

problems that parametric and non-parametric regression suffer from, The great advantage of this 

model is that it contains all the positive features included in the previous two models, such as 

containing strict restrictions in its parametric component, complete flexibility in its non-

parametric component. 

2. Material and Methods: 

2.1  Semi-parametric Regression: 

         Semi-parametric regression is defined as a model that contains two components, one of 

which is a parametric component that has finite dimensions and the other non-parametric has 

infinite dimensions. There are two approaches to parametric estimation, The first is to estimate 

the parameters component by any parametric estimation method in the first step then in the 

second step, the non-parametric part is estimated by any method of non-parametric estimation, 

depending on the estimates of the first step. 

The second method is opposite to the first method, as the non-parametric component is estimated 

in the first step, and in the second, the parameter component is estimated based on the estimates 

of the first step. 

In this paper, the method of Nadaraya-Watson mentioned in equation (3) was relied 

upon to estimate the non-parametric part, while the ordinary least squares method was used to 

estimate the parametric part. 

2.2 Partially Linear Longitudinal data Model With Random Effect : 

          The Partially Linear Model (PLM) is one of the semi-parametric regression models. It is 

one of the models that depend on linear (parametric) variables and non-linear (non-parametric) 
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variables, which are usually continuous. (Su, 2011) (Green, 2002), and it has several names, 

including the semi-parametric regression model (SPRM) or the partially linear model (PLM).        

         The semi-parametric partially linear model of longitudinal data is described by the 

equation below: (Yun,2012) (poo,2017) 

       
    (   )                                                                                       

        Where      response variable vector with dimensional nt x 1,     Matrix of parametric 

explanatory variables with dimensional nt x q,   The vector of the unknown parameters  with 

dimensional p x1,      The parametric part of the model under study,     It represents the 

nonparametric variable in the data with n x 1,       : The nonparametric part function is 

smoothing function with n x1,     random error vector. 

        The semi-parametric linear partially model defined in formula (1) is subject to the 

following conditions and assumptions: 

 (           )    

 (      
            )      

    

 (  |          )    

 (  
 |          )    

  

 (   |   )                  

Therefore, the model in(1), according to the above assumptions, will be as follows: 

 (   |       )     
    (   )                                                                                                   

 

2.2.1 The Classical Estimation: 

2.2.1.1 Nadaraya and Watson Estimation Method : 
          Nadaraya and Watson is considered of Non-parametric estimator with a widespread 

application in nonparametric regression, was proposed by Nadaraya and Watson in 1994, The 

two researchers developed a method based on the idea of a graph in estimation presented 

previously by (Tukey, 1961) called (Regressograms). 

          The Nadaraya and Watson estimation method for longitudinal data is expressed as 

follows: (Hardle, 2004) 

 

 ̂(   )  
 

∑ ∑      
     

 
  

   
 
   

∑ ∑   
     

 
  

   
 
   

                                                                                      

Where: ̂(   )  
 Nadaraya-Watson estimator, k(.) Kernel smoothing function and the Gaussian 

function was used ,h bandwidth 

 

2.3 Estimation Methods of the  Model Semi-Parametric For Longitudinal Data with 

Random Effect: 

        In the following sections (2.3.1), We will review the semi-parametric methodsused in the 

research to estimate the semi-parametric model of the   longitudinal data in equation (1) as: 

2.3.1 Speckman Method : 

        This method was proposed in (1988) by (Speckman) It depends on the partial residuals to 

estimate the partially linear model. The steps of this method are summarized by estimating the 

non-parametric component by taking the conditional expectation of the model defined in 

equation (1) with respect to     and as shown below: (Speckman, 1988 ; Poo, 2017) 

 (       )   (       )
 
   [ (       )]   [ (       )]                                          

        Under the conditions of the partially linear model, that  [ (       )]    and  

 [          ]        , So by subtracting formula (4) from (1), we get: 

     (       )  [     (       )]
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Where the non-parametric part is omitted from the partially linear model, and then this 

model is written in the form of matrices and vectors in the form below: 

 

 ̂   ̂                                                                                                                                       
      When applying the method of least squares (OLS) to formula (6), estimates of the parameters 

β are obtained as follows:  

   ( ̂  ̂)
  

( ̂  ̂)                                                                                                                        
Where: 

 ̂: A matrix with dimensions (nt x q) whose rows represent   ̂   

 ̂: An a row vector with dimensions (nt x 1) whose rows represent j-values 

        The two unknown terms can be estimated            or            In formula (5) by using 

one of the non-parametric methods, let it be the method of Nadaraya -Watson, If we denote these 

two estimates  ̂      ̂ respectively, then: 

 ̂   ̂(       )   
 

    

∑ ∑               
 
   

 
   

∑ ∑            
 
   

 
   

                                                       

 

 ̂   ̂(       )   
 

    

∑ ∑      (       )
 
   

 
   

∑ ∑   (       )
 
   

 
   

                                                         

        By substituting formulas (8) and (9) into formula (7), we get an estimate of the parametric 

part of the partially linear model of the Longitudinal data: 

 ̂  ( ̂  ̂)
  

( ̂  ̂)                                                                                                                        
        The nonparametric component of the partially linear model is estimated by minimizing the 

random errors of the first-order local linear polynomial estimation in the following formula: 

∑∑[(       
  ̂)       (     )]

 
  (     )                                                       

 

   

 

   

 

To get solutions for both  ̂    ̂  
  ̂ 

  : 

 ̂     ̂       
            (    ̂)                                                                              

  (    ̂)  (        ̂)          ̂  

 : matrix with dimension              where  

  [
          

   
          

] 

2.4 The Bayesian Estimation : 

2.4.4 posterior distributions : 
It is defined as a function that represents all the information about the parameters to be 

estimated after observing the sample information. It is also called distribution after sampling, 

The posterior distribution is denoted by the notation         and it is a conditional probability 

distribution for the parameter β with the condition that sample x is obtained and assuming that   

is a random variable that has a prior distribution and denoted by the notation     , The 

inference of   is based on the posterior distribution, which we obtain by Bayes' theorem, The 

posterior distribution of the random variable   is given by the following formula: 

        
           

∫              
 

                                                                                                  

Where: Θ represent the parameter range θ,         Likelihood function  
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  From the above formula, it is clear that         is proportional to the Likelihood 

function multiplied  by the prior distribution.   

                    

So it includes data contribution by          And the contribution of the primary information 

identified by     .  

2.4.4 Finding the estimation of the non-parametric component : 

To achieve flexibility in applying Bayesian estimation, the nonparametric smoothing function 

m(z) in the model (1) will be transformed into a random effects component as in the 

semiparametric mixed models:(Mohaisen & Abdulhussein, 2014) 

       
    (   )             

   
     (   ) 

       
      

        

       
      

                                                                                                                     

Where: 

   : It is an n×q matrix of random explanatory variables 

  : A random effects vector with dimensions q×1 

                                                                                                                                             

Then the non-parametric model is estimated based on the nonparametric Dirichlet process. 

2.4.4.1 Dirichlet Processes: 

A Dirichlet process is a family of stochastic processes whose products are probability 

distributions. In other words, it is a probability distribution, over a set of probability 

distributions. It is often used in Bayesian inference to describe prior knowledge about the 

distribution of random variables, The Dirichlet process is specified by the base distribution, 

which is denoted by the base distribution (G0) and a positive real number    called the scaling 

parameter (also known as concentration parameter). The base distribution is the expected value 

of the process that’s means the Dirichlet process draws distributions "around" the base 

distribution in way like to the way a normal distribution draws real numbers around its mean. 

However, even if the base distribution is continuous, the distributions drawn from the Dirichlet 

process are almost surely discrete  , The  (M ) specifies how strong this discretization is in the 

limit of M →0 , the realizations are all concentrated at a single value, while in the limit of M  

→∞ the realizations become continuous. Between the two extremes, The realizations are 

discrete distributions with less and less concentration as M increases. 

It is worth noting that the Dirichlet process is used to find the prior distributions of non-

parametric functions, Since then, it has been applied in the field of data mining, machine 

learning, arithmetic and counting, as well as in data science and information. (Ferguson, 1973)  

To illustrate the Dirichlet process, It assumed that the random effects vector bi is distributed 

according to Dirichlet process where We assume G0 is a base distribution and M is a positive 

real number, Where we say that b is distributed according to Dirichlet operations with the base 

distribution G0 and the concentration parameter M and it can be written in the following 

formula: (Ferguson, 1973)       

                                                                                                                                           

                                                                                                                                              
Then  the posterior conditional distribution of bi can be expressed according to the 

Dirichlet distribution on G
-i
 and G0 as follows: ( Jochmann & León , 2004). 

Then  the posterior conditional distribution of bi can be expressed according to the 

Dirichlet distribution on b
-i
 and G0 as follows: ( Jochmann & León , 2004). 
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 Where: 

G0: base distribution  

M: scale parameter  

N: The distinct values of  b 

   : cluster of distinct values of b
-i 

  
  : number of appearing times the distinct values of b

-i
. 

We can now merge this result with the Likelihood function that follows the normal distribution 

and take the integral we get: ( Jochmann & León, 2004). 

           
    ∫ (       

      
     

  ) [    
     ] 

           
    ∫ (       

      
     

  ) *
 

     
  

 
 

     
∑  

   (  
  )

 

   

+                                                                      

We performing the integration we end up with: 

 

           
    

*
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  )  
 

     
∑  

   (       
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*  (       

      
     

  )  ∑  
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  )

 

   

+ 

                                                                                                        
The final posterior distribution of bi can be found as follows: (west et al., 1994)  

 (            )   

 {  ∫ (                
  )             }             (              ) 

 ∑  (                
  )    

   

 

After several algebraic operations, we get: (Kleinman& Ibrahim, 1998) 

 (            )       
                          (          )  

 (∑        *
  

 
(              )

 
(              )+     

 

   

) 

Each term is separated into two elements; the first element is a mixing  probability, and the 

second is a distribution to be mixed, so the second term is the probability of mixing is 

proportional to: (Kleinman& Ibrahim, 1998) 

        (
  

 
                                 ) 

We select from distribution   
  

, which means that we set      , Also with probability 

proportional to: 

     
           

  
 ∫   ,
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Where : 

           
     

This results in the following distribution, which represents the posterior distribution based on the 

Dirichlet process As follows: 

 (          )            (              )                                                                      

And    the covariance matrix of    which will be found by deriving the posterior distribution in 

equation  (21) as follows: 

 (              )     (
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Hence, compare the resulting distribution with the normal distribution to obtain the covariance 

of the resulting distribution:    
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Then, obtain the mean: 
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Then the  Bayes estimator for the non-parametric is:  

   
   ̂    (  ∑∑ [     ]

 

   

 

   

)                                                                                              

Covariance Estimation: 

If D is assumed to follow the Wishart distribution 

                                                                                                                                    

       
                  

  
 

     
       

 
   
    

  
     

  
 

 
                                                                             

Then, after getting rid of the constants and multiplying the prior distribution by the likelihood 

function of    , we get: (west et al., 1994) 

            

                     
  

 
     

       

             (
  

 
∑  

      

 

   

)          

      
      

     {
    

 
 (  

   ∑  
   

 

   

)} 

Therefore, the posterior distribution will be  a Wishart distribution with the following 

parameters: 

[        ]         (     (  
   ∑    

 

 

   

)

  

)                                                        

2.4.4.2 Bayesian MCMC sampling: 
It is one of the techniques of the Monte Carlo Markov Chain and plays an important role 

in the analysis of the posterior distribution in the Bayesian estimation. The posterior distribution 

of the model contains all the information related to the prior distribution and the likelihood 

function and can be used to provide probability data about the parameters.  

However, due to the complexity of the studied models, it is difficult to analyze their 

posterior distributions , This problem can be overcome by applying Markov Chain Monte Carlo 

(MCMC) techniques, where large samples are drawn from the posterior distributions, and then 

these samples are used to summarize the posterior distributions. This is done by employing the 

Gibbs Sampler, where the vector of each parameter is updated by taking its conditional 

distribution over the rest of the parameters of the other components. After eliminating some of 

the initial draws, the resulting Markov chains converge for posterior distributions. Sampling 

continues until the asymptotic posterior  distributions are reached. Below is a summary of the 

Gibbs Sampler algorithm based on posterior distributions : 

(Chen et al., 2000)(Robert& Casella, 1999) (Tanner &wong, 1987) 

0. Choose starting values for         
        .  

1. Sample    from  [              ], which is a Normal distribution. 

2. Sample      from [              ], which is a Gamma distribution. 

3. Sample y from [              ], which is a Normal distribution for i=1,….,n, and j=1,….,t. 

4. Sample {bi} from [              ] , which is a Normal distribution independently for 

i=1,….,N. 

5. Sample     from  [         ], which is a Wishart distribution. 
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6. Repeat Steps 1-5 using the updated values of the conditioning variables. 

2.4.4 Finding the estimation of the parametric component: 

Then the parametric part is estimated after replacing the nonparametric component in model (11) 

as follows: 

       
      

   ̂      

      
                                                                                                                                   

          
   ̂  

Then using the ordinary least squares method as follows: 

 ̂  (   
    )

  
(    

 )                                                                                                                 

2.4.4  The Simulation : 

          The R Language program was used to carry out simulation experiments using ten cross 

sections (n = 10) with three time periods (t = 20, t = 10, t = 5). Thus, we will have three sizes of 

samples (NT = 50), (NT = 100), and (NT = 200). Each experiment was repeated to obtain 

accurate and stable results (Replicates = 1000).  

2.4.4.1 Generate random variables: 

The variables of a semi-parametric random effects model were generated for the panel  data as 

follows: 

1- The explanatory variables       that follow the normal distribution are generated based on the 

(Box-Muller) method by generating two random variables   and   that follow the uniform 

distribution U(0,1) and then transforming them into two independent random variables   and    

that follow the standard normal distribution According to the following formula: 

            
              

            
              

}                                                                                            

The formula: 

                                                                                                                                        
is employmed to transform the variables from the standard normal distribution to a normal 

distribution with a mean  μ and  variance   
 
. 

And the process of generating variables takes place according to the number of cross-sections 

and time periods mentioned in this point. Thus, the semi-parametric model consists of the two 

variables          As well as the explanatory variable z that is generated so that it follows the 

uniform distribution. 

2- The random errors   are generated so that they follow the normal distribution as stated in 

formula (30), while the vector of random errors for individual effects    is generated so that it 

follows the standard normal distribution as in formula (29)  then it is transforming to a normal 

distribution with a mean of zero and a variance of   
 
 as follows:   

                                                                                                                                            

Three values of error variance    have been chosen : 

         

         

          

Regarding the error vector     , it is directly generated from the generated data and based on the 

following formula derived from previously published research. (Evdokimov, 2010)   

                                                                                                                                 

Thus, it is possible to obtain the compound error variable  
  

 for the random model: 

           

3- The nonparametric smoothing functions         that were used in this research are the 

(linear, quadratic and exponential) functions respectively and in the following formulas : (Wang 

et al., 2004) 
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4- As for the dependent variable    , it is generated directly using explanatory variables, random 

errors, and smoothing functions that were generated in paragraphs 1 to 3 above, according to the 

needed model. 

5- The parameter values of the parametric component of the semi-parametric model were also 

determined by estimating them using the least squares method in a way that is consistent with 

the nature of the standard data studied in the applied side, as follows: 

                         
6- The Gaussian kernel function was used, in addition to the use of the  cross-validation  method 

for estimating the bandwidth h, for all kernel estimation methods, and the generalized cross-

validation method for estimating the smoothing parameter λ,  for all splines estimation methods, 

according to the steps that were presented in the theoretical side. 

 

Table (1) describes the models estimated according to the estimation methods 

 

Table1: describes the methods estimated 

No. Model The method  estimation 

1 Method I Speckman Method  

2 Method II Bayes Method   

 

3.  discussion of Results : 

       The values of the Average Mean Squared Error(AMSE) for different models for different 

levels of variance and for different sample sizes using the nonparametric smoothing functions in 

equations (29,30 and 31) are presented in the tables from (2-4) as follow:  

 

Table2: Values of Average Mean Squared   Error  (AMSE) by using  

Linear function in equation(33) 

  
  

 

Method AMSE 

n=50 n=100 n=200 

  
    

Method I 0.19082856 0.209704699 0.214879061 

Method II 0.162442607 0.179088110 0.199329073 

  
    

Method I 2.4759138 2.98611972 3.0214238 

Method II 1.3284889 1.50316086 1.7163896 

  
     

Method I 9.3894085 10.3602578 10.97792714 

Method II 18.7009065 18.7559739 28.845967 

 

 

Table3: Values of Average Mean Squared   Error  (AMSE) by using  

Quadratic function in equation(34) 

  
  

 

Method AMSE 

n=50 n=100 n=200 

  
    

Method I 0.172637064 0.185912097 0.199814385 

Method II 0.152887581 0.17447287 0.196816504 

  
    

Method I 2.3737339 2.77102026 2.8805216 

Method II 1.3951073 1.4082165 1.452309144 

  
     Method I 9.38487323 9.8833582 10.8376703 
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Method II 10.548904 16.3183375 23.6989039 

Table4: Values of Average Mean Squared   Error  (AMSE) by using 

Exponential function in equation(35) 

  
  

 

Method AMSE 

n=50 n=100 n=200 

  
    

Method I 0.1169552668 0.123762276 0.160942112 

Method II 0.11476246 0.120329479 0.157833968 

  
    

Method I 2.0337531 2.11391461 2.385008261 

Method II 0.99439412 1.17621229 1.34821452 

  
     

Method I 8.0384536 9.5718134 10.25457564 

Method II 10.3424103 10.6181225 13.19540385 

 

       The values of Average Mean Squares Error  in Tables (2,3,4) showed the following results: 

1- The models estimated according to the Bayes method (Model II) gave average mean square 

error values at the variance levels (1,5) less than those provided by the Speckman method 

(Model I). 

2- At variance levels (10) the models estimated using the Speckman method (Model I) yielded 

average mean square error values that were lower than those obtained using the Bayes method 

(Model II). 

3- The values of the  average mean square error estimated increase when increasing the level of 

variance for the two methods. 

4- The average mean square error values increase with increasing sample size. 

4. Conclusions: 

        After the simulation experiments were carried out and the results presented and analyzed, 

the researcher concluded the following : 

1- When increasing the variance level increases the average mean square error values. 

Therefore, the relationship between the variance level and the efficiency of the estimation 

methods is inverse. 

2- The Bayes method be more efficient efficient at low variance levels, While the Speckman 

method be more efficient at high variance levels. 

3- Increasing the sample size leads to an increase in the mean square error of the two methods, 

which means that the relationship between sample size and the efficiency of the mean square 

error is inverse. 

4- Using the high variances makes it easy for us to determine which method is more efficient 

compared to the other. 

5- The average mean square error values for the two methods employing exponential smoothing 

functions were less than those employing quadratic and linear smoothing functions. 
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 البحث: مسحخلص

تٓذف ْزِ انذساست إنى استخذاو الاَحذاس شبّ انًعهًً لإًَٔرج انبٍاَاث انطٕنٍت انًتٕاصَت، حٍث تعاًَ ًَارج        

عهى انشغى يٍ يشَٔتٓا يٍ يشكهت تعذد  الاَحذاس انًعهًٍت يٍ يشكهت انمٍٕد انصاسيت، بًٍُا تعاًَ ًَارج الاَحذاس انلايعهًٍت

الابعاد. ٔبانتانً ٌعذ الاَحذاس شبّ انًعهًً حلًا يثانًٍا نهتخهص يٍ انًشكلاث انتً ٌعاًَ يُٓا الاَحذاس انًعهًً ٔانلايعهًً. 

يثم احتٕائّ عهى ٔانًٍضة انكبٍشة نٓزا انًُٕرج ْٕ أَّ ٌحتٕي عهى كافت انسًاث الإٌدابٍت انتً تضًُٓا انًُٕرخاٌ انسابماٌ، 

 لٍٕد صاسيت فً يكَّٕ انًعهًً، ٔانًشَٔت انكايهت فً يكَّٕ انلايعهًً، ٔٔضٕذ انتفاعم بٍٍ يكَٕاتّ انًعهًٍت ٔانلايعهًٍت.

ٔبُاء عهى يا سبك، تى استخذاو طشٌمتٍٍ نتمذٌش ًَٕرج انبٍاَاث انطٕنٍت انًتٕاصَت شبّ انًعهًٍت. الأٔل ْٕ طشٌمت      

 ؛ ٔانثاًَ ْٕ طشٌمت سبٍكًاٌ، انتً تمذس دانت انتًٍٓذ انلايعهًٍت انًدٕٓنت يٍ خلال استخذاو طشٌمت تًٍٓذ انُٕاةانتمذٌش انبٍضٌت

(kernelَادساٌا )- ٔاتسٌٕ. ٔكاٌ انٓذف ْٕ إخشاء يماسَت بٍٍ طشٌمت انتمذٌش بٍضي ٔطشٌمت انتمذٌش انتمهٍذٌت انًتًثهت بطشٌمت

. أظٓشث َتائح انذساست أٌ طشٌمت 200، 100، 00تهفت نهعٍُاث فً تداسب انًحاكاة: سبٍكًاٌ. تى استخذاو ثلاثت أحداو يخ

(، فً حٍٍ أٌ طشٌمت سبٍكًاٌ ًْ الأفضم عُذ يستٌٕاث 1،0انتمذٌش انبٍضي ًْ الأفضم عُذ يستٌٕاث انتباٌٍ انًُخفضت )

 (.10انتباٌٍ انعانٍت ) 

 

 

 بحث يستم يٍ اطشٔحت دكتٕساِ  :نوع البحث

 انبٍاَاث انطٕنٍت انًتضَت.  شبّ انًعهًً، ٔاتسٌٕ،  -َادساٌا بٍض، سبٍكًاٌ،  الزئيسة للبحث:المصطلحات 
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