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Abstract:

This paper presents a method for addressing the issue of outliers in fuzzy data. The
method involves calculating a new distance between fuzzy numbers using various kernel
functions, based on the fuzzy least squares method. The parameters of the fuzzy regression
model were estimated in cases where the explanatory variables were non-fuzzy, the parameters
were fuzzy, and the response variable was both fuzzy and an outlier. These estimators were then
compared to the Fuzzy Least Squares method (FLS) using Mean Square Error (MSE) through
simulations with different sample sizes (25, 50, 100, 150) and levels of outliers (0, 0.10, 0.20,
0.30). The results showed that this method, utilizing the new distance, achieved the best results
in the presence of outliers.

Paper type: Research paper.

Keywords: Robust fuzzy regression, Fuzzy least squares method, Distance between fuzzy
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1. Introduction:

There are many phenomena whose data are fuzzy, meaning that their value cannot be
determined with one value, and to represent this data by estimating a model that describes it and
estimating its parameters, especially when the inputs are not fuzzy and the outputs and
parameters are fuzzy, with the problem of outliers in the data, and of traditional methods, the
fuzzy least squares method, as it does not give effective estimates because its conditions are not
applied. Many methods treat fuzzy data in the presence of outliers based on robust fuzzy
methods, such as fuzzy least squares estimation methods based on kernel functions to calculate
the distance between fuzzy numbers. Therefore, in this research, we will use the least squares
method based on kernel functions to obtain better estimates when the response variable is a
fuzzy variable, the parameters are fuzzy, and the explanatory variables are crisp. The mean
square error (MSE) criterion is used to compare the effects of estimating fuzzy least squares and
fuzzy least squares based on new distance.

1.1 Literature Review:

Many researchers have tried to study regression analysis specifically in uncertain data
using fuzzy sets in the presence of the outliers’ problem and in all areas of estimation methods to
obtain the best robust fuzzy model. Zeng et al. (2018) introduced fuzzy linear regression by
using fuzzy least squares estimation of fuzzy numbers in which the distance was calculated
using the Euclidean distance. They concluded that the three different distances have the same
estimation coefficient using the least squares method with simulation. Mohammed et al. (2019)
studied the fuzzy nonparametric regression model with one explanatory variable and a fuzzy
dependent variable of the symmetrical triangular type. Nonparametric estimation methods were
used including the nearest neighbor method KNN the localized linear smoothing method the
kernel function method and the legitimate crossing method aiming to choose the optimal value
for the smoothing parameter h and the GOF and was used for comparison between modalities. It
was concluded that simulation experiments are better than the local linear smoothing method.
Ayden et al. (2020) attempted to find robust estimators for the parameters of the linear
regression model where robust methods were used when outliers were available in the data by
combining the robust M method, which contains four functions and the fuzzy setting so that the
estimators were converted to fuzzy estimators using the trigonometric membership function and
then using these fuzzy numbers in the function monotonicity and using the mean square error
standard. It was concluded that the best M function is the Hampel function, which gave the
lowest MSE. It was also concluded that the estimates of the Hampel function parameters were
converted into fuzzy numbers using the trigonometric membership function. Hesamian et al.
(2021) suggested an extension of classical univariate partial regression model with crisp input
and triangular fuzzy outputs in which a common non-parametric estimator was combined with
traditional fuzzy trigonometric arithmetic to build a univariate fuzzy regression model, then
hybrid algorithm was developed to estimate bandwidth and fuzzy regression coefficient. The
numerical results indicated the lower sensitivity of the proposed model to outliers and its higher
precision compared to the other existing robust regression methods. Shemail et al. (2022)
presented a study on fuzzy semi-parametric logistic regression the intuitive fuzzy trapezoidal
number and the fuzzy semi parametric logistic regression model. They estimated the parametric
part using the fuzzy least squares method and proposed weighted least squares while the
nonparametric part was estimated through the Nedaria Watson estimators and the nearest
neighbor estimators. It turns out that Nedaria Watson's estimators are better than those of the
nearest neighbor. The results were the fuzzy ordinary least squares estimators method was better
than the suggested fuzzy weighted least squares estimators, while in the non-parametric portion
the Nadaraya Watson estimators were better than Nearest Neighbor estimators to estimate the
model. Khammar et al. (2020) presented a new approach that fits the robust fuzzy regression
model, which depends on some fuzzy quantities using the new distance between fuzzy numbers
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based on the kernel function and parameters estimated by the fuzzy least squares method for a
robust fuzzy regression model with the presence of different types of outliers and applying the
proposed methods while modeling some properties using outliers.

One of the problems facing regression analysis and formulating the appropriate model is
that the data related to the research under study is fuzzy and has outlier values, and the study
aims to estimate more efficient parameters using the distance between fuzzy trigonometric
numbers via kernel functions in the case where the response variable is fuzzy, the parameters are
fuzzy, and the explanatory variables are crisp, according to fuzzy set theory and comparison of
estimation methods.
2.Materials and Methods:

2.1 Fuzzy Sets

In fuzzy sets theory, the element in the sets takes a set of values confined between [0,1]
with a specific membership degree; that is, the element is determined by its membership degree.
Therefore, the fuzzy sets are characterized by the presence of the membership function.

A= {(xi.,ug(x))} X ={x.i=12....n}

Where ud ) is a function of membership and the degree of membership of element x;
in set A.

When the element takes a degree of membership (1), the element belongs entirely to the
fuzzy sets. When the degree of membership is (0), the element does not belong to the sets, and
the other degrees vary between zero and one. When the degree of membership is (0.5), this
means that the element belongs (0.5) to the fuzzy set and does not belong (0.5) to the Crisp set.
This element is called the equilibrium point. When the degree of membership is (0.9), that
means the element belongs to the fuzzy sets by (0.9) and does not belong by (0.1), and this is
closer to membership or not.

Therefore, fuzzy sets theory is an extension of the classic Crisp sets theory, and the
classic sets theory is a special case of fuzzy sets theory (Mohammed, 2007; Mohammed et al.,
2017).

2.2 Membership Function

It is a function that expresses the degree of membership or the degree of membership,
which are real numbers within the closed interval [0,1] and it expresses the degree of
membership p (F(X)), which represents the degree of membership to the element from the
variable x to the fuzzy sets (Mohammed, 2007; Farhan, 2013).

2.3 Triangular membership function
It is the most common and widespread function and contains three parameters: a, b, ¢, and it
is expressed in the following formula (Klir, 1995)

X—a

b a Jifa<x<b

My(X) = |22x irp<x<e (€]
c—b
0 other wise
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a.b.c They represent the right term parameter the middle term parameter and the left term

parameter respectively.
pa () 3

1

0 » X
a b c

Figure 1: Triangular Function Membership.
(Mohammed, 2007)

2.4 Fuzzy Number
The fuzzy number A is defined as a fuzzy set on the real number line R and must meet the
following conditions (Barua and et al., 2013; Kareem and Mohammed, 2023)

1-There is at least one element Re X, such that iy, =1
2- Mmis a continuous ordered pair.
3- A It must be normal and concave (or convex).

Definition: _

A fuzzy number N is called a LR fuzzy number, if there are real numbers M , L and R with L
, R=>0. and the strictly decreasing functions L, R: R* — [0, 1] such that (Khammar and Arefi,
2020):

L(@) x <m.

R (x_m). x> m.

T

IV(x) = (2)

It is denoted by N = (I.m.7) .
In a special case, if L(x) = R(x) for all x € [0, 1], then N is called the LL fuzzy number. On the
other hand, if L(x) =R(x) =1—x for all x €[0.1]. then N is called triangular fuzzy
numbers and is denoted by (m.L.7)r . Also for [ =r. N is a symmetric triangular fuzzy
numbersas N = (m. ).
2.5 Fuzzy Linear Regression Model

The linear fuzzy regression model estimates the significant relationship between the
response variable and the independent variables in a fuzzy with a linear function. Thus, it is
called Fuzzy Linear Regression (FLR). This research will adopt a fuzzy model, where the inputs
are crisp, and the outputs and parameters are fuzzy; the fuzzy regression model follows:

Y= Bo+Pixy 4 Boxg + -+ Ppxn + & 3)

i=1,2,...,n
Where:
Y : - Fuzzy response variable.
X1 .Xy ...Xp: - Crisp independent variables.

B : - Fuzzy parameters.
&: - Fuzzy random error.
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2.6 Outliers

Outliers have been defined in more than one way. They are those observations that appear
to deviate significantly from the rest of the sample observations, and are inconsistent and
illogical when compared to the rest of the data set. The focus of this research is the fuzzy
regression model when the outliers are in the dependent variable of the model (Mohammed,
2007).
2.7 Distance based on kernel function between Fuzzy numbers (LR)

The fuzzy regression model, which consists of crisp explanatory variables, was studied.

The dependent variable is fuzzy, and the parameters are fuzzy, that is, fuzzy numbers. The
measurement of these variables is not represented by a point but by an interval. This variable
type is very common in practice, so using least squares probability theory or one of the other
alternative methods would not be the appropriate way to analyse and process this type of data. It
was therefore necessary to use new methods based on fuzzy set theory to process this type of
data. These methods depend on the distance between the two fuzzy numbers and calculate this
distance using the kernel function, and we will determine the new distance between the two
fuzzy numbers.
Definition: Suppose that A and B are two LR fuzzy numbers. Distance between A and B based
on kernel function (kernel distance) is defined as (Arefi and Akbari, 2020):
A= (mglo1)r B = (my.ly.1m)p

Die(4.B) = [3110Gmq) = 0Gmy)II? +11mg = 20p)I? + [10(mq + pra) = 0y +

1/2
pro) 1]

= B [K(mg.my) — 2K(mg.my) + K(my.my,) + K(mg — A.my, — Al,)

- ZK(ma — lla.mb — Alb) + K(mb — Alb.mb - llb)

+ K(ma —plagmg — pla) _/ZK(ma —plgmy — plb)
1/2

+ K(my, — plpymy, — plp)] 4)

Where Z = {z,.2 ...z} .

0:Z -
F be a nonlinear mapping from the input space Z to a high dimensional feature space F, 1=
fol L' (w)dw and p = folR‘l (w)dw.

The distance of the kernel function according to equation (4) is the average error
applied to the middle, upper and lower terms of two fuzzy numbers A and B. In order to
implement the kernel distance, we have to define a function k (.,.). There are different kernel
functions will be studied as follows: -

Xi—x1)?
e b
2) Triweight kernel: k (x;.xy) = z—z (1= |x; — xk]?)3 for|x; — x| <1

1) Gaussian kernel: k(x;. xi ) = exp{—

3) Epanecknikiv kernel: k (x;.xy ) =% (1—-(x;—x)?) for|x; — x| <1
4) Uniform kernel:  k (x;.xx ) =% for |x; — x| <1

5) Biweight kernel: k (x;.xy) = 1—2 (1 = |x; — xk|?)? for [x; — x¢ | < 1

Where h is bandwidth parameter.
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2.8 Estimating of parameters of model
2.8.1 Fuzzy Least Squares Estimation (FLS)

The parameters of the fuzzy regression model are estimated based on the usual least
squares formula with the fuzzy model, which is called the fuzzy least squares method, as in the
following formula (Kalnins,2018; Kareem and Mohammed, 2023):

B =Min¥,(§; —Bo— 2?21 Bjxij)? B = (Bo-B1----Bn) (5)
And by using a Lagrange multiplier by deriving the above equation with respect to § it results
BFLSE = argmin X1, d2(§; — §;") (6)

d* = .5 = [(J/ic - Yi*c)z o (/e T el (VR ) N G VR VLD Il 6 7 }’i*U)]Z ™

2.8.2 Fuzzy least squares estimation based on the kernel distance
The fuzzy regression model estimated by the fuzzy least squares method is based on the

kernel distance in (4). The distance is calculated from the sum of squares of ﬁ?l as follows
(Khammar et al., 2020):

~ = 2
S = 1Dk (Yi- Yi) =2n—2¥i (K(Yi-z:?:o Bl xij) + K(}’i - /1511'-25-)=0ﬁ}nxij -

A% B xii) + K(yi + pSyi. j_o B %) + P Loy ﬂlyxif)) ®)

2.9 Mean Square Error (MSE)

For the purpose of comparing the fuzzy least squares method and the fuzzy least squares
method based on different kernel functions in calculating the distance between fuzzy numbers
and to obtain the best estimator, the mean square error (MSE) criterion was used as follows
(Mansson and Shukur, 2012):

n

1 2 2 .
MSE = Ez D (5:.9:) i=123...n ©)

4

=1
D2 (5:.3:) = |y —yi™

+|vf =yt + |y - vif
Where D? represents the distance between two fuzzy numbers between the real fuzzy number
and the estimated fuzzy number. The smaller value is the best estimator of the model.

2.10 The formulations of the resulting methods based on kernel functions with fuzzy least
squares estimators are as follows:

o Fuzzy Least Squares method with Gaussian kernel (FLSG)

e Fuzzy Least Squares method with Triweight kernel (FLST)

o Fuzzy Least Squares method with Epanecknikiv kernel (FLSE)

o Fuzzy Least Squares method with Uniform kernel (FLSU)

o Fuzzy Least Squares method with Biweight kernel (FLSB)

3- Discussion of Results
3.1 Simulation
The R 4.2.1 statistical programming was used to write the simulation program. The written
program includes four basic stages for estimating the fuzzy regression model as follows:
Step 1: Define default values
At this stage, parameter values are chosen as in Table 1
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Table 1: Fuzzy parameter values

Bo | B1 | B2 Bs | Bs | Bs

-12.4 1034 |-0.36 |-0.028 | 1.97 | 0.35
-10.4 | 0.38 | -0.030 | -0.015 | 2.03 | 0.48

R |-60 |042 |-0.009 |-0.008 | 2.10 | 0.63

= |~

Step 2: Generating data
1- Five independent variables were generated from normal distribution.
2- Different default values for the standard deviation of random errors (¢ = 0.1,2) were chosen.
3- Outliers in the data were chosen as (o = 0, 0.10, 0.20, 0.30).
4- Different sample sizes were chosen (n=25, 50, 100, 150).
5- Each experiment was repeated 1,000 times.
6- Fuzzy random error follows the normal distribution.

Y, = —12.4 4+ 0.34x; — 0.36x, — 0.028x5 + 1.97x, + 0.35x5 + ¢,
Yy = —10.4 + 0.38x; — 0.030x, — 0.015x3 + 2.03x, + 0.48x5 + &

Yr = —6.0 + 0.42x; — 0.009x, — 0.008x3 + 2.10x4 + 0.63x5+&R

Step 3: Estimation
At this stage, the estimation process for the regression parameters is performed using the
estimation methods of interest, as follows:
= Fuzzy Least Squares Estimator (FLSE) method.
= Fuzzy least squares estimation based on the kernel distance.

Step 4: Comparison step between methods

In the stage of comparison between the methods to compare the different estimation
methods for the models and find the best estimators, the mean square error (MSE) criterion was
used in equation (9).

The following results have been obtained for Table 2, Table 3, Table 4, and Table 5.
Table 2: MSE for different kernel methods when (0= 0)

o gf‘zr:p'e FLS FLSG |FLST |FLSE |FLSU |FLSB
n=25 | 0.38714 | 0.38856 | 0.38805 | 0.38831 | 0.402578 | 0.401901

n=50 | 0.26012 | 0.26496 | 0.26677 | 0.26508 | 0.292367 | 0.29202
0=0.1 100 [0.17818 | 0.22416 | 0.22121 | 0.22366 | 0.172162 | 0.172462
n=150 | 0.14933 | 0.13432 | 0.13496 | 0.13410 | 0.17028 | 0.17019
n=25 | 8.15732 | 7.90977 | 7.99684 | 7.99963 | 7.716986 | 7.654253
~ n=50 | 10.9766 | 9.78180 | 9.90793 | 9.84582 | 10.52324 | 10.52509
=2 12100 |3.95531 | 3.54158 | 3.46988 | 3.44314 | 3.837656 | 3.863256
n=150 | 3.69981 | 3.47192 | 3.46800 | 3.51779 | 2.57852 | 2.623859
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Table 3: MSE for different kernel methods when (0=0.10)

o gf‘zrgp'e FLS FLSG |FLST |FLSE |FLSU |FLSB
n=25 | 11.77242 | 10.72412 | 10.86997 | 10.81184 | 11.4688 | 11.50578
_ 01 |50 | 8814746 | 7.63063 | 7.66998 | 7.62651 | 8.757361 | 8.798775
=01 =100 [6.79336 | 6.36009 | 6.34040 | 6.31537 | 5.66153 | 5.685438
n=150 | 5.303626 | 4.22901 | 4.25571 | 4.25565 | 5.120462 | 5.142251
n=25 | 15.08173 | 14.69672 | 14.89826 | 14.93616 | 12.93513 | 13.01085
_, |n=50 | 1082364 |9.78180 |9.00793 | 10.52324 | 9.84582 | 1052509
=2 I'h=100 |8.73535 | 8.15505 | 8.32410 | 8.31371 | 7.204448 | 7.266898
n=150 | 7.71823 | 7.01297 | 6.89843 | 6.87943 | 6.398112 | 6.479754
Table 4: MSE for different kernel methods when (0=0.20)
o g?zr:ple FLS FLSG |FLST |FLSE |FLSU |FLSB
n=25 | 20.92863 | 15.25513 | 15.49348 | 15.44455 | 18.22387 | 18.19134
_ .1 | 1750 _[12.21243 | 11.40573 | 1142064 | 1136767 | 10.76698 | 10.80429
=01 2100 [ 862948 |7.07238 | 7.02521 | 7.01354 | 8.361582 | 8.36174
n=150 | 8.37348 | 6.50582 | 6.42359 | 6.43062 | 8.218509 | 8.219832
n=25 | 22.24873 | 18.43374 | 18.58039 | 18.56289 | 18.5436 | 18.43728
_, | =50 |13.83144 | 12.80867 | 12.85548 | 12.80228 | 12.91759 | 12.95024
=2 M=100 |9.65391 | 9.55407 | 9.49532 | 9.45657 | 8.225185 | 8.980115
n=150 | 9.00556 | 8.965848 | 8.819413 | 8.795122 | 8.179773 | 8.298138
Table 5: MSE for different kernel methods when (0=0.30)

o gir:p'e FLS FLSG |FLST |FLSE |FLSU |FLSB
n=25 | 22.92355 | 21.94186 | 21.40251 | 21.61535 | 21.54326 | 21.63817
_ 0.1 | 1750 |15.04135 | 13.51254 | 13.21953 | 13.24130 | 14.90031 | 14.89318
=01 =100 [14.04288 | 11.18523 | 10.83809 | 10.85877 | 13.22415 | 13.2244
n=150 | 12.30512 | 11.02033 | 10.69609 | 10.69343 | 10.77121 | 10.83296
n=25 | 30.38427 | 28.80604 | 28.09751 | 28.10713 | 22.14557 | 22.16284
_, |n=50 | '15.07804 | 14.46584 | 14.00513 | 13.95232 | 14.84458 | 1488321
0=2 I'h=100 | 13.85176 | 11.55813 | 11.24946 | 11.25030 | 12.82928 | 12.84501
n=150 | 11.63028 | 11.45265 | 11.16694 | 11.12651 | 10.74069 | 10.77846

Discuss the results based on the information presented in the table.

= In all cases, the fuzzy least squares method based on the kernel distance outperforms
the fuzzy least squares method (FLS).
= Table 2 shows the remarkable convergence of the results of the MSE values between
the methods used in the absence of outliers for all sample sizes and with different

variance values.
= The results of Tables (3, 4, and 5) showed the least squares method based on kernel
functions is better than the FLS method in the case of differing ratios of outliers, sample
sizes, and variance values.
» The MSE value increases by increasing the standard deviation.
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4. Conclusions
Through the results presented previously, several conclusions were achieved as below:

e The fuzzy least squares method based on different kernel functions, gave better results when

compared than the FLS method.
¢ When there are no outliers and a difference in the variance value and sample size, the results

converge for the two methods used.
o The results showed that the methods used in this research gave better estimation results when
using the new distance between fuzzy numbers in the presence of outliers.
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