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Abstract:

Count data represents a humber of defined events that occur within a specific time frame
for explanatory variables in the form of integers, and discrete distributions are among the
probability distributions that use count data. The most famous of these distributions is the
Poisson distribution. However, sometimes a change in the pattern of the random variable period
may occur, such as the absence of the zero value, which requires finding a distribution that fits
such a change, and that is the Zero Truncated Poisson Distribution (ZTPD).

This research aims to find a suitable model for the effect of non-zero value of data on any
phenomenon and to use it to build a Zero Truncated Poisson Regression Model. This is done by
selecting the best method out of three methods: Gauss-Newton (GN), lteratively re-weighted
least squares (IRWLS), and the Newton-Raphson algorithm method embedded in Maximum
Likelihood (N-RAMEML), using the Mean Square Error (MSE) criterion, by simulating the
Monte Carlo method using the R language program. This is done by changing different factors
such as sample size (30, 70, 100, and 150) and the number of explanatory variables, repeating
each experiment 1000 times. The study showed that the IRWLS method outperforms the N-
RAMEML and GN methods.

Paper type: Research paper

Keywords: Zero-Truncated Poisson Distribution , The Iterative Reweighted Least Squares
method , the Gauss -Newton method and the Newton —Raphson Algorithm Method Embedded in
Maximum Likelihood , Mean square error .
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1. Introduction :

The Poisson distribution is considered one of the important discrete probability
distributions for addressing rare phenomena (AL-Shareefi and Al Baldawi, 2023) and uses the
count data (Shanker and Shukla, 2019). That can be described descriptively as
xi~P(4;) ,v i=0,1,2,..where x representsi the observation of the phenomenon and A
represents and the distribution parameter the probability mass function ( Manjula and Uma,
2020):

-1 x

e
B.(x|A) = pr , x=01.2,.... LA>0 @))
=0 ,  otherwise

And Ex)=V(x)=2

David and Johnson (1952) considered to be the first to introduce the zero - truncated Poisson
distribution (ZTPD), which is distributed as x; ~ ZTP (4;) ,V i =1,2,... and is considered as
one of the models of logarithmic linear regression (Al-doori, 2018).
1.1 Literature Review:

There are many studies on the characteristics of the zero - truncated Poisson distribution,
including:

Abodyand Nuimai (2016) presented a combination of two distributions: Fréchet
distribution with Poisson Lindely and Rayleigh distribution with Poisson Lindely. They proved
that the Fréchet distribution with Poisson Lindely is the best by using comparative criteria. They
also compared the Maximum Likelihood Estimate (MLE) method and the Least Square Method
(OLYS) in estimating the parameters of the Fréchet distribution, and found that the MLE method
was the best. Real data representing earthquakes that occurred in the Badra region in Wasit
province from 1994 to 2014 were used in the comparison.

Mohammed and Hamodi (2017) explained the most widely used regression model is Com-
Poisson regression. When data display over-dispersion, the common solution is to Geometric
regression. In order to model the effect of variables the number of Pneumonia patients,
Geometric, Hurdle - Geometric and Zero inflated -Geometric regression models are fitted
respectively. The results of Log likelihood and AIC indicated the Zero inflated —Geometric
distribution is the best fit for this model.

Mohammed and Hussain (2017) presented a comparison between Bayesian method and
full  maximum likelihood to estimate hierarchical Poisson regression  model.
By simulation using different sample sizes (n = 30, 60, 120) and different frequencies (r =
1000, 5000) for the experiments as was the adoption of the Mean Square Error to compare the
preference estimation methods and concluded that hierarchical Poisson regression model that has
been appreciated full maximum likelihood with sample size (n = 30) is the best to represent the
maternal mortality data that obtained from the Ministry of Health.

Mohammed and Hussain (2017) presented a study of the health institutions reality in
Baghdad to identify the main reasons that affect the increase in maternal mortality by using two
regression models, Poisson regression model and Hierarchical Poisson regression model. By a
comparison between the estimation methods of the used models. The maximum likelihood
method was used to estimate the Poisson regression model whereas the full maximum likelihood
method were used for the Hierarchical Poisson regression model. The comparison was made
through the use of simulation technique, A conclusion was reached, that the Hierarchical Poisson
regression model - which was estimated by full maximum likelihood"” method is the most
excellent model for representing maternal mortalities data.
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Mohammed and Aduri (2017) illustrated a formulation for the distribution of Poisson
with Gamma distribution resulting in a Negative Binomial distribution, which is a discrete
distribution. Its parameters were estimated using four methods: The maximum likelihood
method, The moment method, The Downhill Simplex algorithm, and The EM algorithm. The
second formulation is for the distribution of Poisson with Weibull distribution resulting in a
compound Poisson-Weibull distribution, which is a continuous distribution. Its parameters were
estimated using the maximum likelihood method based on the failure rate function and the
percentage method.

Abbas and Ahmed (2020) introduced to use the method of moment to estimate the
reliability function for truncated skew normal distribution, This distribution represents a
parameterized distribution that is characterized by flexibility in dealing with data that is
distributed normally and other a new distribution is derived from the original skew distribution
that achieves the characteristics of the skew normal distribution function.

Kadhum and Abdullah (2021) presented the Poisson distribution with two parameters (the
distribution parameter and the dispersion parameter). The features and characteristics of this
distribution were displayed, along with estimating the distribution parameters using five
methods: the method of moments, the maximum likelihood method, the method of weighted
differences, the method of minimum repetitions, and the method of reduction. A simulation
process and analysis of real data, represented by the number of suicide cases in Baghdad
province, were conducted.

Handique and Chakraborty et al (2021) introduced a new truncated Poisson distribution
family (with order G) by adding two additional parameters. The probability mass function and
some statistical properties were derived. Additionally, random descriptions of the proposed
family were studied based on moments, hazard function, and inverse hazard function. The
family parameters were estimated using the method of maximum likelihood, and simulation was
conducted to assess the bias and mean squared error of the maximum likelihood estimators.

Irshad and Chesneau et al (2022) introduced a new Lagrangian discrete distribution,
named the Lagrangian zero truncated Poisson distribution (LZTPD). It can be presented as a
generalization of the zero truncated Poisson distribution (ZTPD) and an alternative to the
intervened Poisson distribution (IPD).

Kim and Kim Dae et al (2022) presented a generalization of the results of the zero-
truncated negative binomial distribution to the case of a truncated negative binomial distribution
with parameter r, considering its potential applications to the COVID-19 virus pandemic,
probabilistic methods for studying certain special numbers and boundary multiples, as well as
finding two different expressions for the probability generating function of a finite sum of
independent truncated Poisson variables with equal parameters.

Li and Sun et al (2023) introduced a new mean regression model for the ZTP distribution
with a clear interpretation about the regression coefficients an embedded Newton—Raphson
algorithm is developed to calculate the MLEs of regression coefficients. The construction of
bootstrap confidence intervals is presented and three hypothesis tests (i.e., the likelihood ratio
test, the Wald test and the score test) are considered. Furthermore, the ZTP mean regression
model is generalized to the mean regression model for the k-truncated Poisson distribution.
Simulation studies are conducted and two real data are analyzed to illustrate the proposed model
and methods.

Niyomdecha and Srisuradetchai (2023) presented a study on the Complementary Gamma
Zero-Truncated Poisson Distribution (CGZTPD) as a new continuous lifetime distribution with
three parameters. Its properties were discussed along with evidence such as probability density
function, cumulative distribution function, survival function, hazard function, moment function,
and maximum likelihood estimation of its regression parameters. Wald confidence intervals for

the parameters were also calculated.
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When is no value or more than one observation, either at the beginning, middle, or end of
the period, that is called the truncation or the cut-off (Shamsur and Mohd, 2005) that has a
significant effect on changing the probability mass function of the Poisson distribution and its
properties, from which another distribution branches out with different characteristics depending
on the cut and location. This research aims to find a model that fits the effect of observed data
values devoid of zero value for any phenomenon and employs it to build a zero-truncated
Poisson regression model by choosing the best method from three specific methods using
simulation.
2. Material and Methods:
2.1 Zero-Truncated Poisson Regression Model with Assumptions ZTPRM:

The zero-truncated Poisson regression model ZTPRM is one of the logarithmic linear
models of the response variable (y) and is defined according to the following formula (Al-doori,
2018):

y = eXF+V ., U~P)
Logy = X +U (2)

Whereas: y is the dependent variable vector of degree (nx1), x is the independent
(explanatory) variable matrix of degree ((p+1) X n), B is the parameter vector of degree (1 x
(p+1)), U is the random error vector of degree (n x1), P: is the number of explanatory variables,
n is the sample size, e is the natural logarithm base.

And this model is built on three assumptions, as follows (Irshad and Chesneau, 2022):

The conditional probability function of the dependent variable (y;) with parameter (A) for
the truncated zero Poisson distribution is:

ety
Pr(Yll) =

m y= 1,2, ...... ,/1 >0 (3)

We can express the distribution parameter of the dependent variable (y;).
A= eXiB (4)

Where x] represents row i of the matrix transformer x;

The distribution of ordered pairs of observations (y;,x; ) is an independent distribution.
By substituting the distribution parameter in equation (4) into the zero-truncated Poisson
distribution function in equation (2), we obtain the following conditional probability function.

T N
—elB) , yixT B
T
(1 —_ e—e(xl B))yl !

2.2 Newton—-Raphson algorithm method embedded in ML.:

If the zero value is missing from observations of (y;) then the probability mass function of
the zero - truncated Poisson distribution {y;}T ~ ZTP (4;) it takes the following form (Shamsur
and Mohd, 2005):

f(yl-|xl-) = i= 1,2, . (5)

et Ay

P(y|d) = RN

,y=1,2,.. .. A >0 (6)
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A A(e™) 2( -1
Var(x) - (1 — e_;\) [1 - (1 — e_x) = Wil (e ) (8)

By taking the natural logarithm of the maximum Likelihood function and substituting the
linear predictor into it, we will notice that there are estimators (8) as exponent in the
exponential function of the first and second derivatives as follows (Irshad and Chesneau, 2022):

(1 — e‘exiTB )

1
y;Log (exiTﬁ) —log —\ ' 9
|

_eX1 B
l e

Log L(B) = —z LogT(y; +1) + Z
i=1 i=1

And taking the first derivative (Gradient) for equation (9) for (8) and equating it to zero, we get
to:

dLog L(B) = exi P _
RO —;[Yi_—l _exiTB]xl- =0 (10)

Taking the second derivative (Hessian) , we get the following:

T _eXi B T T
2191 | (@) ()],
H =35 = |, vt |
li=1 k(l —e ¢! ) (1 — e—e"iﬁ) “
Because of the existence of these estimators as exponents, we resort to Newton-Raphson

algorithm and its embedding in the maximum likelihood method to calculate the regression
parameters of a distribution ZTP as shown in (11) below (Yong 2012):

Bt+1 =

Be—[H(B)] " S(Be) (11)

2.3 Gauss—Newton algorithm Method:

It is one of the numerical methods as it represents an extension of Newton's method used
to reduce the sum of the quadratic function without calculating the second derivatives (Yong,
2012):

F=(fi,fare-ifm)

Let F be a vertical vector representing (m) of functions and every function depends on a vector
of variables (x):

B=(B1,Bz2s-sPBn)

And g is a vertical vector representing n parameters. The steps of this method can be
summarized as follows (Lai and Kek, 2017):

2.3.1 Newton method :

Xi+1
= x, —H(x,)™ ' 0 f(xz) (12)
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2.3.2 Gauss Approximation :
m
1
_ - ] 2
SOEEPWID

i=1
oS = Ji F(B)

H= JiJ;
Whereas:
[ 0f1 0f1 0f1 ]
0By 0B 0Bn a" fi
of, 0fy 0f; T f,
Jr = 0B B, 0fn | = :
Ofn Ofw  Ofw| lo7fy]
LdB; 0B, 0B

2.3.3 Gauss — Newton Algorithm :
Where we find that J has been replaced by a matrix H(x;)~! (Hessian) equation (7) is
to facilitate the solution by avoiding finding the second derivative.

pitt = ¥ — (i JR)THE F(BY)

2.4 Iteratively re-weighted least squares (IRWLS) (Green 1984):

This method relies on reformulating the probability mass function of the zero-truncated
Poisson distribution equation (6) by taking the log and exp to transform it into the general form
of the exponential family equation (13), where a (¢p) = 1, as follows.

(-
P(y,0,¢) = exp {y log 2 —log [T] + [—loy(y!)]}
~P(y,0,¢) =exp{y 6 —b(6) + C(y,$)} (13)

As y represents the response variable, the function in terms of observations and
dispersion parameter can be written as C (y,¢) = —log(y!) and 6 represents the location
parameter or the law parameter 1 =¢e? < 6 = log A. Similarly, ¢ represents the dispersion
parameter with a (¢) = 1. The function in terms of observations and dispersion parameter can
be written as C (y,¢) = —log(y"). Finally, b(8) =log [(1—e™*)/e *] represents the
location parameter function.

The product of the first and second derivatives of the location parameter function b’ (6),
b''(0) should be equal to the expected value and the variance of the zero truncated Poisson
distribution. To find the first derivative of the logarithmic likelihood function, it can be obtained
using the chain rule as follows:

oL _y oLy oaf ow)[ on

6_[3,-_[6/1 [auHanHaﬁj (14)
OL _ y—wl s

o, oy O =y ()

497



Journal of Economics and Administrative Sciences P-1SSN 2518-5764
2024; 30(142), pp. 492-508 E-ISSN 2227-703X

Equation (15) represents the first derivative (gradient) for a single observation of ;.
However, in the case of n observations, it can be found according to equation (16), which is
represented by the symbol U below:

U= oL =XTA 16
= @ = y-—w (16)
Whereas
an 1 a2
1w( ) w2
ou V(y) \on

For the second derivative (Hessian), represented by the symbol H, it can be found from
either the Fisher matrix or the Information matrix according to the following equation.

H E[ oL ] ! (a“)z XTwx (17)
= — = —_— Xi: Xi =
B0 | V(o) \an/) "I
We can find the values of the parameter S, using the Newton-Raphson algorithm to obtain:
Br = Br_1 + HIU (18)
By substituting equations (16) and (17) into equation (18), we obtain:
Br=XTWX)"LXTW z ,where z
an
=N+—00- 1
L —-w (19)

Where z is called Working Variate or Adjusted Dependent Variate

3. Discussion of Results:
3.1 Simulation:

Simulation is an image that represents the real-life situation of any system, where it is
used in modeling realistic problems and solving them using computer programs, such as ready-
made software or programming languages like Matlab or R. This facilitates obtaining the
optimal solution to identify the changes that occur in this solution, saving a lot of time and effort
(Fishman and Gross, 1976), through the use of Monte Carlo method in simulation, for example.
3.2 Results of Simulations:

For the purpose of implementing estimation methods for the truncated Poisson
regression model and determining the best method, the results representing the estimated values
will be presented according to the Poisson distribution and the MSE values for each method,
based on the assumed sample sizes and the normal Poisson distribution as follows:

Table 1 : Represents the Assumed Values for the Parameters

Case | v e | Bo | B | B2 | Bs | Bi | Bs | B

| p=1 | 2.349|-0005| - - - - i

Il p=2 2.194 | - 0.004 | 0.0001 - - - -

11 p=3 2.061 | -0.006 | 0.0001 | 0.0014 - - -

AV p=4 2.026 | -0.006 | 0.0001 | 0.0015 | 0.0021 - -

V p=5 2.132 | -0.006 | 0.0001 | 0.0014 | 0.0022 | -0.026 -
VIl p=6 1.892 | -0.005 | 0.0001 | 0.0014 | 0.0018 | 0.0279 | - 0.0015

The tables below illustrate the results of a simulation experiment obtained by executing
a program in the language (R 4.3.0) for three methods (N-RAMEML, GN and IRWLS) and
comparing them with the default parameter values for the zero-truncated Poisson distribution
from table (1) with different sample sizes (30, 70, 100, 150). Each experiment was repeated
1000 times, and the results representing the estimated values and MSE values for each method
according to the assumed sample sizes and for each case are presented.
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Through table (2), It is evident that the IRWLS method has the lowest MSE compared to
the GN and N-RAMEML methods, With varying sample sizes for a single parameter ( S3;),
indicating that it is the best method. as shown in figure (1).

Table 2 : Shows the estimations of the parameters and MSE(Y)
for the three methods of one explanatory variable (Case I)

S‘ggg'e Methods | S, B1 | MSE(Y)
Assume Values (Real) 1 0.3 -
N-
- RAMEML 0.99238 | 0.27326 | 10.146
GN 0.99983 | 0.27294 | 10.116
IRWLS | 1.06329 | 0.27476 | 9.892
N-
0 RAMEML 1.00510 | 0.27676 | 6.714
GN 1.01162 | 0.27745 | 7.41
IRWLS | 1.07223 | 0.27814 | 5.896
N-
100 RAMEML 1.00181 | 0.28290 | 5.376
GN 1.00279 | 0.28300 | 6.63
IRWLS | 1.06863 | 0.28248 | 5.164
N-
5 RAMEML 1.01280 | 0.28479 | 4.308
GN 1.01630 | 0.28508 | 4.284
IRWLS | 1.07703 | 0.28520 | 3.948

However, in the model case of two parameters ( 8;¢< ;) as in table (3), we notice that the
IRWLS method has the least MSE compared to the GN method and the N-RAMEML method
for all sample sizes, indicating that it is the best method. as shown in Figure (2).
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Table 3 : Shows the estimations of the parameters and MSE(Y)
for the three methods of two explanatory variables (Case 1)

S%rigg'e Methods | B B4 B, | MSE(Y)
Assume Values (Real) 1 0.8 -0.5 -

RAMEML | 0-94455 | 0.84110 | | o | 11532

30 GN 0.94442 | 0.84354 | o c1o0, | 11898
IRWLS | 1.03857 | 0.81100 | o cogeg | 1251

RAI\TEML 1.01105 | 0.77216 | g o140 | 7-182

70 GN 1.01124 | 0.77157 | ) c1o0q | 6.534
IRWLS | 1.08976 | 0.86087 0.54324 6.444

RAI\';EML 0.98356 | 0.84217 | ( c1cro | 5.556

100 GN 0.98470 | 0.84294 | ;1o o | 4902
IRWLS | 1.06540 | 0.82485 | o oo | 5418

RAI\TI-EML 0.98818 | 0.80197 | ; yo00, | 5.052

150 GN 0.99018 | 0.80273 | ) yooq, | 4.818
IRWLS | 1.06786 | 0.80181 0.4§461 4.242

However, in the model case of three parameters ( ;¢ 8.« B3) as shown in table (4), we
notice that the mean squared error MSE is very close for all three methods, indicating the
consistency property is achieved. It should be noted that the MSE for the IRWLS method is the
lowest compared to the N-RAMEML and GN methods for all sample sizes, as shown in Figure

@3).
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Table 4 : Shows the estimations of the parameters and MSE(Y)
for the three methods of three explanatory variables (Case 111

S%rir;g'e Methods | S, B4 B, Bs | MSE(Y)
Assume Values (Real) 2 -0.5 -0.5 15 -

RAMEML | 299869 | 0 ooz | o.agsas | 148510 | 16426

30 GN 1.99700 0.56756 0'42;591 1.48692 | 15.764

IRWLS | 200184 | o coo0c | o 4g304 | 148790 | 14.831

RAI\TI-EML 1.99388 | 49729 | 0.51685 | 151890 | 1041

70 GN 1.99661 | o 40775 | 051654 | 1-51812 | 10.788

IRWLS | 1.99706 0.4£;450 0.51'427 1.51163 | 9.9488

RAMEML | 199290 | cdi0s | oaggas | 149618 | 93224

100 GN 1.99301 | 120111 | 0ugs3s | 149556 | 8.8544

IRWLS | 199460 | o sooos | 048644 | 149967 | 8.0804

RAI\TI-EML 199721 | 50808 | 0.40160 | 149970 | 579

150 GN 1.99551 | o coeee | 049146 | 150178 | 5.7548
IRWLS | 1.99992 0'5(;579 0.42;914 1.49332 | 5.464

But in the case the model of four parameters ( B¢ B¢ B3¢ B4) as in table (5), we notice
that the IRWLS method has the least MSE compared to the GN and N-RAMEML methods for
all sample sizes, indicating that it is the best method. as shown in Figure (4)
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Table 5 : Shows the estimations of the parameters and MSE(Y)

for the three methods of four explanatory variables (Case 1V)

Sample Size | Methods Bo B4 B, B3 Bs | MSE(Y)
Assume Values (Real) 1.5 0.5 0.3 -1.5 0.8 -
N-RAMEML | 1.48381 | 0.48385 | 0.33676 1.52_406 0.79071 | 19.768
30 GN 1.48062 | 0.48496 | 0.33786 1.52-234 0.79420 | 18.592
IRWLS 1.52092 | 0.45053 | 0.31897 1'52_445 0.79874 | 18.053
N-RAMEML | 1.46482 | 0.50182 | 0.31679 1.51-424 0.81879 | 17.7149
70 GN 1.46556 | 0.50196 | 0.31614 1.5]j620 0.82189 | 16.97679
IRWLS 1.49767 | 0.47499 | 0.29833 1.52-291 0.79345 | 16.46596
N-RAMEML | 1.45918 | 0.52385 | 0.29287 1.45;681 0.83438 | 11.8237
100 GN 1.46064 | 0.52491 | 0.29194 1.48-720 0.83413 | 10.8528
IRWLS 1.49211 | 0.49690 | 0.27720 1.5(;286 0.80998 | 10.52338
N-RAMEML | 1.48380 | 0.52205 | 0.29056 1.56259 0.81371 | 7.3073
150 GN 1.48498 | 0.52285 | 0.28944 1.5(;285 0.81453 | 7.2751
IRWLS 1.51471 | 0.49504 | 0.27603 1.56133 0.80205 | 7.2317

However, in the case the model of five parameters ( Si¢ S2¢ B3¢ fa¢ Bs) as shown in
table (6), We notice that the IRWLS method has the lowest MSE for a sample size of (30, 70)
compared to the GN and N-RAMEML methods, While we find that the N-RAMEML method
has the lowest MSE compared to the other two methods for a sample size of (100). At a sample
size of (150), We notice that the GN method has the lowest MSE, as shown in Figure (5).
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Table 6 : Values of estimations estimates and MSE(Y)

for the three methods for five explanatory variables (Case V)

SATPle | Methods | Bo | Bi | B2 | Bs | Ba | Bs |MSE(Y)
Assume Values (Real) 2 0.7 -0.8 0.5 -1.8 0.2 -

N-RAMEML | 198775 | 0.70459 | o o oo | 0.51679 | | oo | 0.20644 | 28.3488

30 GN 1.99077 | 0.70370 | ) g gqe | 051592 | | gccoo | 0.20623 | 27.4578

IRWLS | 1.98926 | 0.64467 | ;- co0 | 047110 | | ooc) | 0.19215 | 257529

N-RAMEML | 1.99295 | 0.69084 | ) g-oo- | 0.53415 | | o o, | 0.20192 | 15.5568

70 GN 1.99427 | 0.69134 | o g o0 | 0.53396 | | o e | 0.20080 | 15.3105

IRWLS | 1.99998 | 0.69756 | ) soceq | 049377 | | sorro | 0.20461 | 14.7936

N-RAMEML | 1.96125 | 0.70349 | o, o | 0.54188 | | _o oo | 0.20993 | 12.6759

100 GN 1.96177 | 0.70283 | ) saoo0 | 054165 | | Lo | 0.20937 | 12.8214

IRWLS | 1.96667 | 0.69056 | ) -ga,c | 0.50196 | | oocco | 0.20689 | 12.7473

N-RAMEML | 2.00427 | 0.70922 | § Sgac- | 0.50946 | | o0 | 0.20969 | 11.3544

150 GN 2.00342 | 0.70881 | ) _gac. | 051108 | 4 gooo | 0.20073 | 11.4078

IRWLS 2.00802 | 0.69825 07?;997 0.50310 1'8(;962 0.20614 | 11.3424

However, In the case the model of six parameters( B¢ B2« B3¢ Bs¢ Bs¢ ) With data close

to the real data as in table (7), We notice that the IRWLS method has the lowest MSE compared
to the GN and N-RAMEML methods, and all methods have achieved consistency for all sample
sizes. as shown in Figure (6).
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Table 7 : Shows the estimations of the parameters and MSE(Y)
for the three methods of six explanatory variables (Case VII)

SamPle | Methods | Bo | Bi | Bz | Bs | Be | Bs | Bs |MSE(Y)
Va'loj::(ggal) 2| -0.005 | 0.0001 | 0.0015 [ 0.0018 | 0.003 | 4 gooc | -

RA,&EML 2.0158 0.0662 0.0074 0.0593 0.0;149 0.0054 | 0.0143 | 28.635

30 GN 2.0201 | 5 00eg | 90075 | 4 0402 | 0.0450 | 0-0046 | 0.0135 | 28.335

IRWLS | 2.0168 0.0662 0.0074 0.0589 0.0;146 0.0054 | 0.0142 | 26.013

RA,&EML 1.9853 | 0.0159 0_0'233 0.0063 | 0.0129 | 0.0277 0.0616 15.714

70 GN 1.9860 | 0.0168 | ) 1org | 0.0064 | 0.0134 | 0.0274 | o oo, o | 15765

IRWLS | 1.9862 | 0.0158 0_0'232 0.0063 | 0.0129 | 0.0276 0.0617 14.943

RA,\'R'I'EML 2.0078 0.0'134 0.0'258 0.0090 | 0.0243 | 0.0072 0.0'053 12.804

100 GN 2.0074 | 5 0131 | 0.0061 | 0-0094 | 0.0232 | 0.0079 | o (oo | 12951

IRWLS | 2.0085 0.0'133 0.0'257 0.0089 | 0.0242 | 0.0072 0.0'053 12.876

RA,&EML 1.9721 | 4 504 | 0-0184 | 0.0145 | 0.0065 | 0.0451 | o ooy | 11.469

150 GN 1.9716 | 4 57 | 0-0184 | 0.0138 | 0.0066 | 0.0459 | o (oo | 11523

IRWLS | 1.9730 0_0684 0.0183 | 0.0144 | 0.0065 | 0.0448 0_0662 11.475

We notice in all six cases above that the MSE decreases as the sample size increases.
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Figure 1: Elucidation of the MSE for case | at

different sample sizes

Figure 2: Elucidation of the MSE for case Il at
different sample sizes
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Figure 3: Elucidation of the MSE for case Il at
different sample sizes

Figure 4: Elucidation of the MSE for case IV at
different sample sizes
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Figure 5: Elucidation of the MSE for case V at
different sample sizes

4. Conclusion:

Figure 6: Elucidation of the MSE for case VII at
different sample sizes

One of the most important conclusions reached in this research is that simulation results
indicate that the best method for estimating of the zero-truncated Poisson regression model is the
Iteratively Reweighted Least Squares (IRWLS) method with repeated weightings, compared to
the Gauss-Newton (GN) method and the Newton-Raphson embedded in the Maximum
Likelihood (N-RAMEML) method because the IRWLS method has the lowest MSE value in
most cases. The behavior of the N-RAMEML method approaches that of the GN method, and
the behavior of all three methods approaches with increasing sample size. So the parameter
estimate values become closer to each other as the explanatory variables increase .The MSE
values decrease with increasing sample size, indicating that the three methods have the

consistency property.




Journal of Economics and Administrative Sciences P-1SSN 2518-5764
2024; 30(142), pp. 492-508 E-ISSN 2227-703X

Authors Declaration:

Conflicts of Interest: None

-We Hereby Confirm That All The Figures and Tables In The Manuscript Are Mine and Ours.
Besides, The Figures and Images, Which are Not Mine, Have Been Permitted Republication and
Attached to The Manuscript.

- Ethical Clearance: The Research Was Approved By The Local Ethical Committee in The
University.

References:

1- Abbas, H. K. and Ahmed, D. A. (2020). “Use The moment method to Estimate the Reliability
Function of the Data of Truncated Skew Normal Distribution”, Journal of Economics and
Administrative Sciences, Vol.26, No. 124, pp. 481-492.

2- Abody, E. H. and Nuimai, A. B. (2016). "Comparison Between Two Approaches (MLE &
DLS) to Estimate Frechet Lindley Poisson Distribution Compound by Using Simulation”, Ibn
Al-Haitham Journal for Pure & Application Sciences, Vol. 29, No. 3, pp. 401-414 .

3- Al-doori, E. A. and Muhammed, N.A. (2017). “Comparison of some methods for estimating
Poisson-Weibull distribution parameters”, Journal of Economics and Administrative Sciences,
Vol. 23, No. 101, pp. 452-475.

4- Al-doori, E. A. (2018). “New Robust Estimation in Compound Exponential Weibull-Poisson
Distribution for both contaminated and non-contaminated Data”, journal of Economics and
Administrative Sciences, Vol. 24, No. 126, pp. 30-48 .

5- Al-Shareefi, S. N. and Al Baldawi, T. H.(2023).“A Computational Bayesian Approach to the
Poisson Regression Models and the Proportional Hazard Models”,AIP Publishing Conf.
Proc.2834, pp.080146,1-14.

6- Best, D. J. and Rayner, J.C. and Thas O. (2007). “Goodness of Fit for the Zero Truncated
Poisson Distribution”. Journal of Statistical Computation and Simulation Vol. 77, No. 7, pp.
585-591.

7- David, F. N. and Johnson, N. L. (1952). "The Truncated Poisson" International Biometric
Society, Vol. 8, No. 4, pp. 275-285.

8- Fishman, G.D. and Gross, D. (1976). “Concepts and Methods in Discrete Event Digital
Simulation”. IEEE Transactions on Systems, Man, and Cybernetics Vol.: SMC-6 Issue: 5.

9- Green, P. J. (1984). "lteratively Reweighted Least Squares for Maximum Likelihood
Estimation, and some Robust and Resistant Alternatives”. Journal of the Royal Statistical
Society: Series B (Methodological), Vol. 46, No. 2, pp. 149 -170.

10- Handique, L. and Chakraborty, S. and Eliwa, M.S. and Hamedani, G.G. (2021). “Poisson
Transmuted-G Family of Distributions: Its Properties and Applications”, Pakistan Journal of
statistics and Operation research Vol. 17, No. 1, pp. 309-332 .

11- Irshad, M. R., Chesneau, C., Shibu, D. S., Monisha, M. and Maya, R. (2022).“Lagrangin
Zero—Truncated Poisson Distribution: Properties Regression Model and Application :”,
Symmetry ,Vol.14,No.1775,pp.1-25.

12- Kadhum, M. K. and Abdullah, E. K. (2021). "Estimating the Parameters of the Poisson
Distribution with Application™, Tikrit Journal of Administration and Economics Sciences, Vol.
17, No. 56 Part (4), pp. 547-557.

13- Li, X. and Sun, Y. and Tian G. and Liang J. and Shi J. (2023). “Mean Regression Model for
the Zero — Truncated Poisson Distribution and its Generalization”, Computational Statistics and
Data Analysis, ELSEVIER, Vol. 179, pp. 107650.

14- Manjula, D. and Uma, G. and Nandhinidevi, R. (2020). “Derivation of Zero —One Truncate
Poisson Distribution”. International Journal of Applied Research Vol. 5,No. 6, pp. 253-255.

15- Mohammed, A. H.and Hussain, J. E. (2017). “Analytical Study Compared Between
Poisson and Poisson Hierarchical Model and Applied in Healthy Field”, Journal of Economics

and Administrative Sciences Vol. 23, No.100 .



Journal of Economics and Administrative Sciences P-1SSN 2518-5764
2024; 30(142), pp. 492-508 E-ISSN 2227-703X

16- Mohammed, J. M. and Hamodi, H. A. (2017). “Comparison count regression models for the
number of infected of pneumonia” Global Journal of Pure and Applied Mathematics Vol. 13,
No. 9, pp.5359-5366.

17- Mohammed, A. H. and Hussain, J. E. (2017). “A comparison between Bayesian method and
full maximum likelihood to estimate Poisson regression model hierarchy and its application to
the maternal deaths in Baghdad”, Journal of Economics and Administrative Sciences Vol. 23,
No.101.

18- Niyomdecha, A. and Srisuradetchai, P. (2023). “Complementary Gamma Zero-Truncated
Poisson Distribution and Its Application”, Mathematics, Vol.11, No. 11, pp. (1-13) 2584.

19- Shanker, R. and Shukla, K. K. (2019). “A Generalization of Zero-Truncated Poisson-Sujatha
Distribution”, Hungarian Statistical Review Vol. 2, No. 2, pp. 32-50.

20- Shamsur, R. and Mohd, Y. (2005). “Truncated Distributions and their Applications”.
Dissertation submitted for the award of the degree of master philosophy in statistics in
Department of statistics and Operations Research Aligarh Muslim University (India)
(https://core.ac.uk/download/pdf/144520251.pdf).

21- Kim, T., Kim, D. S., Park, J., Lee, S., Park, S., ALgawba, M. S. and Jang, L. (2022). “Some
Results on r-Truncated Degenerate Poisson Random Variables”, World Scientific Publishing
Company Vol. 30, No. 10, pp. 1-7.

22- Lai, W. H., Kek, S. L. and Tay, K. G. (2017). “Solving Nonlinear Least Squares Problem
Using Gauss-Newton Method”, International Journal of Innovative Science, Engineering &
Technology, Vol. 4, No. 1, pp. 107650.

23- Yong, W. (2012). “Gauss—Newton method”. Department of Statistics, The University of
Auckland, Auckland, New Zealand, Wiley Periodicals, Inc. Vol. 4 No. 4 , pp. 415-420.

507



Journal of Economics and Administrative Sciences P-1SSN 2518-5764
2024; 30(142), pp. 492-508 E-ISSN 2227-703X

G ) giaall ¢ygunl g2 i) g gadl el (331 e 43 lBa

S Al ae aludiyl G 5ana (g pua dada
slan ¥l and /3l2ky Axals /2La®BY 55 oY) A4S elan ¥ and /3oy dadls /oLaidY) 53 5laY) 4408
é\)ﬂ\ ¢dlaxy é\)ﬂ\ ¢)azy
ekabdullah@coadec.uobaghdad.edu.iq mohammed.sabri2101m@coadec.uobaghdad.edu.iq

Received: 14/11/2023  Accepted: 17/1/2024 Published Online First: 30 /8/ 2024

4.0 Ao o gardl (a8 - g ket - Cilall) caad oY) plial) LB ciad (ad e Jaad) 138
Attribution—NonCommermaI 4.0 Internatlonal (CC BY-NC 4.0) BY NC SA

séaand) (aldii

el A A_uAJ B (4 st Al sadaall &laal) (e 22 (Count Data ) 2l alial) bl Jias
@N\ub\*ﬂ\e U_\S\A_JLA.\A‘}“&_!\:_\J}J\uuwW\uqu}J\)m;wﬂm\dSuécw}J\
kel i Jaat By 3 il 1da e Tl 08 el Gy (B S0 gmd 59 )5 98 a5l 02 el e g 2all
& Sy 13 Ay jicall Tl (e e 0 5188 (sl 39 i) Al Bl Y Lo I il (g ) 320 (53 ) ) skl
Zero Truncated Poisson (ZTPD) Gota sl Geul g i say il 1Xa ae o000 aje g
. Distribution

sl Lgida g 55l (oY Ay heall Aadl) (e IAY Gl 4 L5 206 dadad alagl ) A6l o3 Caags
Gist —0aslS A8k (b 3k O (e Ayl Jumdl lis) DA e Al 5 Gotea gl (sul g lasd) 23 sl
Iteratively re-weighted least 4l il )50 8alas (s mall Sl yall 44k 5 Gauss — Newton (GN)
Newton —Raphson ahe¥l JSa¥) 445l & diecadl (eudl ) i 4e)lsa 5 squares (IRWLS)
Glay je Jasgie jlea 2aud 50 algorithm method embedded in Maximum Likelihood (N-RAMEML)
ey @l 5 (R) A3 el Guob o IS 390 8Sae sl alaaiuly ¢ Mean Square Ererr (MSE) Uaall
G ¢ 5 n 1000 & yad S )i s sl S il 336 5 (150 5 100 ¢ 70 « 30) Al pnn Jin Ailise ol 5o
Ol (st Al A8k e IRWLS 2 S ()5l salae (5 aeal) lay sall 48 5l (355 dusl ) <yl
. GN (st~ S 35k 5 N-RAMEML ake¥) JSaY) 4y sl b diannall

Ading 38 ) 5 sduanl) £ o

eI eV 8 Riaaall el 5 (55 el 53 s (G sl () pail 53 @355 sl Auai ) cilallaaal
. U212 ya s sia ey 1SN (3 ) 8ok syl il yall i sl €55 — (o0 S B e



mailto:mohammed.sabri2101m@coadec.uobaghdad.edu.iq
mailto:mohammed.sabri2101m@coadec.uobaghdad.edu.iq
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

