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Abstract: 

The problem of multicollinearity among independent variables in a regression model was 

addressed in this study using Partial Least Squares (PLS) and Principal Component Analysis 

(PCA). The influence exerted by multicollinearity can deteriorate the results of regression 

modeling; that is, it makes the traditional technique OLS less reliable. The research is centered on 

applying advanced algorithms for Partial Least Squares (SIMPL and O-PLS) as well as for PCA 

(NIPALS and SVD) on real-life data scenarios, as well as integrating genetic algorithm (GAs) 

with these algorithms to optimize predictive performance. 

The relative efficiency of these methods is evaluated primarily through the amplitude of the Mean 

Square Error (MSE) used as a criterion for comparison. The results show the effectiveness of 

PLS-OPLS above PCA in terms of the lowest before and after embedding genetic algorithms into 

the MSE. All this underpins the effectiveness of PLS in minimizing multicollinearity thereby 

allowing for the formulation and prediction of very highly predictive models.  

More and more indication of subtle class was revealed with regard to fine tuning advanced GA 

technique in favor of enhancing regression modeling for complex data analysis. The ongoing 

research will help in opening numerous possibilities to reinforce regression methodology, 

especially when one factor in an array of applications representing a relatively significant level of 

prediction accuracy. 

Keywords: Multicollinearity, Partial least squares (PLS), Principal Component Analysis (PCA), 

Genetic Algorithm (GA), multiple linear regression.  
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Regression is defined as one of the statistical methods used to analyze the relationship 

between an explanatory variable or several explanatory variables and the response variable, and 

to predict the value of the response variable based on the explanatory variables after finding the 

estimated regression equation (Al-Bayati, 2012). In general, regression analysis is used to achieve 

two goals: the first goal is to search for a mathematical function that helps in knowing how the 

variables are related to each other, while the second goal is to know the accuracy of the prediction 

and the strength of the relationship between these variables. Linear models are widely used in 

various fields, and linear models are among the linear models that are widely used to analyze data 

in many medical, economic, social and other applied scientific research. When applying 

regression analysis, researchers often face the problem of multicollinearity, which occurs when 

there is a strong linear relationship between the explanatory variables, which leads to an increase 

in the variance of the regression model parameters and makes the results inconsistent. However, 

the accuracy of ordinary least squares (OLS), and one of its basic assumptions is the 

independence of the explanatory variables (Al-sabaah, Shorouk Abdul Redha and Al-Quraishi, 

2018). However, the problem of multicollinearity between explanatory variables is one of the 

most common problems facing researchers when using multiple linear regression analysis, and it 

occurs when the regression model contains many variables and there is a complete relationship 

between two or more explanatory variables or between all variables(Hassan, Mahmoud Mahdi, 

2020). Therefore, to solve this problem and reduce the dimensions of multiple variables, this 

research uses the Partial Least Squares (PLS) method and Principal Component Analysis (PCA) 

and employs artificial intelligence algorithms (genetic algorithms) in the methods and compares 

them to achieve higher accuracy. Therefore, these methods are considered among the most 

important methods in regression and are used to solve multiple linear issues. This research will be 

divided into several sections as follows: The first section contains the introduction, while the 

second section includes a review of previous studies related to the research topic. The third 

section deals with the methodology and methods used in this research. The fourth section deals 

with the applied results, while the fifth section is devoted to discussing these results. Finally, the 

sixth section includes the most important conclusions that were reached. 

Several studies have been conducted that addressed these methods, including:  

In 2016, where (Al-Badrani,2016) presented a study comparing the principal component 

regression and partial least squares regression methods applied to Kirkuk Cement Plant. It was 

concluded that the partial least squares regression method (PLS) succeeded in achieving an ideal 

regression model for all dependent variables, in addition to its ability to predict future values for 

all dependent variables. 

In 2018 by the researcher (Al-Bayati,2018) titled Comparison Between Partial Least 

Squares Method and Singular Value Decomposition Algorithm for Estimating Parameters of the 

Logistic Regression Model in the Presence of Multicollinearity Problem Using Simulation. In this 

research, a simulation approach was used to compare the estimation methods through the mean 

squared error of the model. The comparison reveals that the Singular Value Decomposition 

algorithm is superior in estimating the parameters of the logistic regression model when there is a 

problem of multicollinearity. 

In 2021, (Alkhafaji & Saleh, 2021) presented a study on the statistical analysis of skewed 

normal distribution variables using a genetic algorithm based on simulation methods. The 

problem was solved using the genetic algorithm (GA) and other iterative techniques, including 

Newton-Raphson, Nelder-Mead, and the iterative reweighting algorithm.  

The study concluded that the capabilities of the genetic algorithm using the genetic 

algorithm for skewed normal distribution parameters are at their best when sample sizes are small 

or medium, while the best iterative reweighting algorithm was found for large sample sizes. 
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In 2021, (C. Liu et al., 2022) researched on partial least squares regression and principal 

component analysis: Similarities and differences between two common methods for variable 

reduction. This research aims to reduce the number of variables and improve the performance of 

statistical analyses of the variables under study, especially when some variables are highly 

correlated. The results showed that partial least squares (PLS) is a better alternative compared to 

principal component analysis. 

In 2022, researchers (Samosir et al., 2022) compared partial least squares regression and 

principal component regression to overcome multicollinearity in the development index model. 

This research aims to compare these methods in terms of the modeling factors that affected the 

Human Development Index (HDI) in 2019. The results indicated that PLS performs better than 

PCR in terms of coefficient of determination and squared error. 

In the same year, a researcher (Kaneko, 2022) addressed research on Partial Least 

Squares Regression based on a genetic algorithm with only the first component to interpret the 

model. This research focuses on using the regression coefficients from X to Y for the PLSFC 

model. Additionally, a set of X can be selected to build a predictive PLSFC model using the 

Genetic Algorithm (GA), referred to as GA-PLSFC. The two methods, PLSRFC and the proposed 

GA-PLSFC are compared using simulations, and it was found that the proposed GA-PLSCF 

method is capable of building highly predictive models. 

In this research, the problem of multicollinearity and dimensionality reduction was 

addressed using Partial Least Squares (PLS) method with different algorithms such as (SIMPLS) 

algorithm, (O-PLS) algorithm, and the Principal Components Approach (PCA) with (SVD) 

algorithm and (NIPALS). A comparison was made between the two methods based on the first 

component, using the mean square error (MSE) as a comparison criterion. We also used the 

genetic algorithm in both methods to improve the results and determine the method with the 

highest predictive ability. The results were generalized within the framework of this research. 

The descriptive approach was adopted in this research, as it covered the theoretical aspect 

related to various research concepts, in addition to the applied approach based on real data from 

hospitalized patients at one of the Ministry of Health hospitals in Dhi-Qar Governorate, 

specifically Al-Rifai Educational Hospital in 2024.  

This paper discusses the methods used to address the multicollinearity problem, with 

emphasis on the partial least squares method and the principal component analysis method. An 

alternative method for addressing this problem, namely the ridge regression method, can also be 

suggested. 

The problem of multicollinearity is defined as a high degree of linear correlation between 

two or more explanatory variables in a multiple regression model. The reason for its occurrence 

may be that some explanatory variables may measure the same concepts. In mathematical terms, 

this problem occurs when the information matrix (X'X) is not fully ranked, and thus its 

determinant will be equal to zero, which means that it has no inverse, and thus this leads to the 

failure of the usual least squares method in finding an optimal regression model that represents 

the data of the phenomenon (Al-Badrani, 2016). 

This method is based on the variance and covariance matrix between the explanatory 

variables and the response variable. It can identify factors that are linear combinations of 

explanatory variables (X). 

 These factors are called the latent variables and they in turn give the best model for the 

response variable (Y) (Al-Safawi,2010). Partial Least Squares (PLS) regression is a powerful 

technique used in statistical modeling, especially when researchers work with many variables 

with a small number of observations to extract the most important factors that allow predicting 

one or more factors (Van Roon et al., 2014) This technique seeks to understand the relationship 
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between the explanatory variables and the response variable. Its characteristics were generalized 

through principal component analysis (PCA) and multiple regression in the presence of a 

response variable. Moreover, when there are several response variables, the PLS method is 

effective when we need to predict many response variables using a large set of explanatory 

variables (Herv´ & Abdi, 2010). Partial least squares are a multiple linear regression tool 

developed to relate multiple regressions of one or more response variables to latent variables 

when the explanatory variables are highly correlated and when the number of these variables 

exceeds the number of observations. 

 There are many algorithms related to this method, all of which depend on two 

basic steps. The first step is to find the latent variables between (X) and (Y) by maximizing the 

variance-covariance matrix, and the second step is to regress (Y) on the Components (t) (Abass, 

2020). Among these algorithms that are used to solve the problem of dimensionality reduction 

and thus get rid of the problem of multicollinearity, the (NIPALS (PLS1, PLS2)) algorithm 

attributed to (Wold), the (Statistically Inspired Modification of Partial Least Squares (SIMPLS)) 

algorithm attributed to (De Jong), the (KERNAL) algorithm attributed to (Dayal), the (PLS-F) 

algorithm attributed to (Manne), the O-PLS algorithm attributed to (Trygg and Wold), and other 

algorithms (Saleh, n.d.) . In this research, we relied on the SIMPLE A algorithm as well as the 

Orthogonal-PLS algorithm. Assuming that the matrix                  
           

                of observations. And the matrix Y consists of n observations and q response 

variables, and we denote it with the symbol                   
    and the combined data set  

(            denotes it with the symbol      where m=p+q and the linear regression 

model(Hubert & Branden, 2003): 

           
                         

Where: 

 ei: represents the error term that requires:         ∑            for size q 

   , ...,(     =     represents the constant term with dimension q ,      represents the unknown 

parameters and is the slope matrix with dimension    . 

The SIMPLS algorithm assumes that the variables x and y have a relationship through the 

binary model:(Hussein, Suja Muhammad and Saleh, 2014)  

    ̅         ̃                                                                           

    ̅        
  ̃                                                                                  

 ̅  ̅ : mean of variables x,y.  

 ̃ : Measurements or scores with a dimension k where k ≤p   

      : Loading Matrix (x-loading)   

       : The slope matrix in regression        ̃  

       : Residues. 

The algorithm first assumes the formation or construction of components where h is 

obtained from the components that are linear combinations of x from the variables that have the 

greatest shared variance with the linear combinations of the variables y. More precisely, we 

assume that (  ̃     ̃    )refers to the centered data matrix, as: 

 ̃      ̅                                                                                  

 ̃      ̅                                                                                  

The natural weight vectors (PLS) where  ‖  ‖  ‖  ‖   are defined as the vectors that 

maximize for each a where a=1…h. 

    ( ̃          ̃       )    
 
 ̃    

  ̃     
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This algorithm starts    
     , which is the covariance and shared variance matrix. The 

maximization of the equation is obtained from the first pair of vectors (ra,qa) which are placed to 

the left and right of the matrix    . The vector r_a is the of Sxy* Syx with 

dimensions (P x P), and the vector qa is the eigen vector of Syx*Sxy with dimensions (q x q)           

                                                                                                              

 The elements of  ̃ , which are the linear combinations of the centered data, are obtained from the 

following formula:                                                                                                                                            

     ̃   ̃  
                                                                                                       

    ̃     ̃                                                                             

   Rp,h=(r1….rh)   

    To obtain more than one solution, it is required that the components  ̃    be orthogonal  

  
                                                                                                                                       

The above constraint imposes the generation of a series of different solutions for the equation (6) 

after obtaining the first orthogonal component from the equation, through which we can avoid 

multicollinearity among the explanatory variables in the second step of the algorithm. With the 

above constraint, the weight vectors for the (SIMPLS) algorithm, namely ra and qa (2 ≤ a ≤ h), are 

obtained using the of     
     

 and    
     

 . Thus, the covariance and shared 

variance matrix is obtained from the following equation:  

    
  (           

 )    
                                                                           

Or 

     
      

             
       

      
      

                                          

  And (V1, ..., Va-1) are represented as orthogonal to the loading matrix X (P1, ..., Pa-1), where:  

    ̃       
                                                                                                                

        And by substituting Tj, we obtain the following     

   
 ̃  ̃  

  
  ̃    ̃  

 
    

   
       

                                                                                         

which represents the least squares regression coefficient in regressing  ̃ on the component Tj. 

Where: 

 Sx is the covariance matrix of the explanatory variables.                                                          

The second step in the algorithm is to perform multiple linear regression (MLR), for regressing 

the extracted components T1...Th on the original variables y, and the form of the regression model 

is as follows:           

          
  ̃                                                                                 

 So         

          and           ∑   

Estimation of Multiple Linear Regression (MLR) 

 ̂        
           

          
      

                                                               

 ̂   ̅   ̂    
  ̃̅                                                                                                                                     

       ̂    
    ̂                                                                                                                            

            :initial covariance matrix of the variables t and y 

We note that multiple linear regression refers to the classic least squares regression of multiple X 

variables, and when the number of dependent variables is greater than one for the y variables, it is 

known as multiple linear regression. Due to  ̃   , the constant term   is estimated by  ̅.  

When substituting  ̃      
      ̅  in equation (3), we obtain the estimators of the parameters. 

For the original regression model, as follows: 

 ̂           
          

      
                                                                           

 ̂   ̅   ̂    
  ̅                                                                                                                              
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And finally, the estimation of Se is 

        ̂    ̂
                                                                                                                           

In the case of a single response (q=1), the estimation of the parameters is  ̂   and is expressed 

 as a vector, while the variance of the error Se is calculated as follows  ̂ 
    

  

 

Orthogonal projections to latent structures

Trygg and Wold (2002) modified the original NIPALS algorithm to a systematic variance 

from the variables in a dataset that are not mutually related to the response variable, a method 

referred to as Orthogonal Projections to Latent (OPLS). Assuming a linear correlation between 

one output and multiple in a dataset, it is always possible to find a PLS (Partial Least Squares) 

model with a single component that captures the linear relationship after appropriately processing 

the data. Researchers Viroon et al. (2004) demonstrated that the number of PLS components in a 

PLS model processed with the OPLS algorithm can be reduced to a single component without 

affecting predictive performance.  

The data matrix        consists of (m) rows of observations and (n) columns of explanatory 

variables, along with the response vector (y). Each variable is standardized to have a mean of zero 

and a standard deviation of one(J. Liu & Wong, 2011). 

Orthogonal compounds (T-ortho) are not associated with the response variable y as: -  
      
          

       [          ]                                          

Since this means that the above equation can be written as follows: -             
      
    [            ]       

so that w'w=1 and w' p=p'w 
Thus, the removed compounds are perpendicular to the response vector y. When new entries are 

available, each orthogonal compound is extracted in a repeated manner as follows: - 
         

     
                

       
            

       
                             

After removing all orthogonal compounds, the response value can be predicted using  ̂  
      

      
The OPLS algorithm is illustrated by the following steps: - 
1-                  ‖ ‖⁄⁄  
2-                        ⁄⁄  
3-             ⁄  
4-                                 ‖      ‖⁄    
5-                        

                
 ⁄             

                     
  

6- Save the information obtained        [                 ]    
             [                 ]             [                 ] 
For additional orthogonal compounds we can refer to step two. 

              R through The following equation (Shang et al., 

2017):- 

|    |                                                                                    
Principal component analysis works to reduce the information represented by variance 

and store it in components without losing information. The main idea of this method lies in 

converting linearly related variables that have a large amount of data into orthogonal and 

independent components that are arranged based on the amount of variance (Al- Rawi, Asmaa 

Ghaleb and Issa, 2019). This method is a traditional multiple method that depends on the 
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covariance matrix between the explanatory variables and explains the largest part of the variance 

by finding linear structures independent of each other and each main component is called a linear 

combination for all variables, the first Principle component gives most of the variance and so on 

for the rest of the components and there are several algorithms to extract the main components are 

Jacobi, Mathematics of PCA Singular Value Decomposition (SVD) , NIPALS, Rotation (Saleh, 

n.d.). The principal component method transforms the original correlated explanatory variables, 

without removing any of them, into new orthogonal variables known as principal components  

(Hassan, Mahmoud Mahdi, 2020). In this research, we have addressed the Singular Value 

Decomposition (SVD) algorithm as well as the NIPALS algorithm. 

3.3.1 Principal Components Selection Method: 

It is possible to choose the number of significant principal components for summarizing 

data practically based on the following points: 

1. The number of selected principal components should equal the number of eigenvalues greater 

than one. 

2. Retain the number of components that explain 80% of the total variance. 

3. Morrison (1976) indicated that explaining 75% of the total variance is sufficient, and the higher 

the proportion of explained variance with a smaller number of selected principal components, the 

better it is in terms of ease of discussing and interpreting the results (Mohammed, Haidar Yahya 

and Mohammed, 2020). 
  

3.3.2 Singular value decomposition algorithm (SVD): 

This algorithm is used to find the principal components as it gives the characteristic 

vector and the distinctive values that we need in the analysis of the principal components, and by 

analyzing the principal components we get the first principal component (PC) by dividing the 

    array X into three matrices (Ramzan Shahla, 2010). 

        
                                                                                           

Suppose that                    
Whereas, 
T0:     orthogonal matrix which is the component matrix and is found from the characteristic 

vector of XX' 
S: a diagonal matrix of     order which is equal to square roots to the characteristic values of 

X'X or XX' where                      

P: Perpendicular matrix of     order which is a load matrix and is found from the characteristic 

vector to XX' where the main components in the analysis are T can be (Saleh, n.d.):- 

                                                                                             

        
                                                                                        

As for the regression coefficients, they are: - 

                                                                               
             

                                                                        
3.3.3 NIPALS PCA algorithm:    

This algorithm is one of the many existing methods of finding that were 

originally developed for PCA but have been used in other ways as well, and this is an overview of 

the algorithm (Andrecut, 2009): 
X=TP'                                                                                     ... (28) 

Where T columns are called grade columns and P columns (P rows) are called loads, the 

algorithm begins to initialize h=1 and Xh=X, and this algorithm is done through the following 

steps: 
1. Choose th as any column of Xh 

2. Calculation of loads       
     

   ⁄  

3. We impose       √  
   ⁄  

4. Calculation of grades          
   ⁄  
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Repeat step (3) and (4) until the convergence of the HTH of the principal component. 

Let's assume and (Distinctive Value).              
      

    . Increase h = h + 1 and repeat 

to the last main component.  
Grouping T columns from ith and P columns from vectors Ph and the result PCs may be scaled in 

different ways. One way to scale PCA The solution is to specify the loads P=V and T=U'S. 

3.4 Genetic algorithm: 

Living organisms interact with their surrounding environment and attempt to adapt to 

changes. If they are unable to adapt, they face extinction. The organisms that possess strong traits 

survive, while those with weak traits weaken and die. Additionally, mutations, which occur at 

very low rates, are important factors that contribute to the development of hereditary traits passed 

down through genes. From this concept, an idea was adapted and applied in the field of 

computing known as Genetic Algorithm (GA). The genetic algorithm has significantly reduced 

the effort and time required for software and system designers by providing a general algorithm 

that can be relied upon to solve various types of problems, rather than developing a specific 

algorithm for each problem while considering the necessary adjustments to fit the particularities 

of each issue regarding the size and type of data used, the nature of the objective function, and the 

constraints of each problem(Abdul Hadi, Anwar Taher and Reda, 2020). 
This algorithm is considered as a random search technique based on natural selection and 

genetics to find the solution to the problem at hand. It was invented and developed by John 

Holland in 1975. The algorithm begins with a randomly selected set of chromosomes and ends 

with the best solutions. Applying the algorithm to a problem requires determining the correct 

encoding for the chromosomes and defining the efficiency of the fitness function(Al-Douri et al., 

2020).Determining the correct encoding of chromosomes and determining the efficiency of the 

fitness function is also required. It is used to solve optimization problems that depend on 

phenomena in evolutionary biology such as genetics, mutations, natural selection, and 

hybridization. This algorithm can process many individuals in a population at the same time and 

evaluate multiple solutions in the search space (Jiang et al., 2023). New chromosomes are 

produced through crossover or mutation. The most suitable chromosomes are selected for the next 

generation, while the others are eliminated to maintain a constant population size across 

successive generations. This algorithm tries to converge towards the fittest chromosome which 

represents the optimal solution (Kale et al., 2022). 

This algorithm operates through several stages to reach the optimal solution. Initially, 

there is the initialization of chromosomes, which is the process of generating many preliminary 

results (chromosomes) randomly. Following that, there is the fitness function, which evaluates the 

population of chromosomes by calculating the value of each chromosome, with the resulting 

value indicating the chromosome's efficiency. Afterwards, the process of selecting the best 

chromosomes takes place to form the parents for the next generations based on the fitness 

function evaluation.  

Then comes the crossover or mating stage, which occurs between the chromosomes of 

the selected parents to produce offspring. The mutation stage follows, which is a natural change 

in the genes of the chromosome because of one or more gene mutations in the offspring's 

chromosome. The final stage is the stopping criterion, which continues to search through the 

generations sequentially to find the best solution, and it tests whether a stopping condition exists 

or not, according to the nature of the studied problem(Elvira-Ortiz et al., 2020) . 

(Hussain & 

Nassir, 2015)

1. Some problems require data analysis in large electronic databases, such as financial, 

astronomical, and other types of data. 

2. The ineffectiveness of traditional research methods in solving the problem. 
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3. The problem of variables being related to a non-linear relationship or a relationship that is not 

well understood. 

4. Problems for which an approximate solution is convincing, for example, image processing. 

3.4.2 GA-PLS: 

The traditional method of representing a solution to a feature selection problem using the 

GA-PLS is by a Boolean vector of the same length as the total number of variables in the dataset. 

Such vectors are generally known as chromosomes. Each Boolean value of vector corresponds to 

a variable that is either excluded from feature selection (0) or included (1). Many different 

chromosomes, when combined in a Boolean matrix, form a population. The Boolean values of 

each solution are typically initialized randomly at the beginning of the algorithm. The set of 

features defined by each chromosome in the community is used to measure PLS regression 

models on the dataset. The resulting regression coefficients are used to model the target response 

of the dataset, and the error associated with model predictions is reduced to a statistical measure 

of performance of the feature set, such as the Mean Squared Error (MSE). The cross-validation 

performance measure for each chromosome is converted into a fitness value, which is a numerical 

value representing the quality of the solution encoded for genetic evolution and determines what 

is meant by optimization(Eiben, A.E & Smaith, 2015). 

The efficiency of a chromosome to the fitness value, i.e., its ability to solve the 

optimization task compared to all other candidate solutions in the community, determines how it 

is treated by the GA-PLS in the subsequent steps, where fitter individuals are favored compared 

to those with lower fitness. The bias within the genetic evolution cycle towards favoring high-

fitness solutions is typically achieved using two stages of selection: parent selection and survivor 

selection. In the parent selection stage, it is decided which individuals will be used to generate 

new solutions that contribute to driving the evolutionary process forward. In the survivor 

selection stage, all individuals in the community compete for survival and transition to the next 

generation. In addition to favoring individuals known to have high fitness through selection 

factors, genetic algorithms have the capability to generate improved potential new solutions for 

the optimization task by combining and enhancing chromosomes that are already successful to 

form new chromosomes. This is achieved using a set of random variation factors: crossover and 

mutation.  

Crossover takes a pair of parent chromosomes as input and produces one or several 

output chromosomes, similar to how genes are combined from parents to generate offspring. A 

frequently used crossover example in GA-PLS is the two-point crossover, which is performed by 

selecting two points along two original chromosomes and the resulting chromosomes to inherit 

sections from their parents alternately between the crossover points. The second variation factor, 

mutation, is a unary process that takes a single chromosome as input and outputs a slightly 

modified version the same chromosome, which replaces the original chromosome in the 

community (Leardi, 2003). The following figure shows a flowchart of GA-PLS modeling. 
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Figure 1: The flowchart of GA-PLSFC modeling.

            Source: (Kaneko, 2022) 

This process can be divided into two steps. The first step involves PCA (Principal 

Component Analysis) transforming the original variables into principal components, and the 

second step involves the feature selection strategy based on GA (Genetic Algorithm) selecting the 

appropriate principal components and using them as new variables for the predictive model. The 

goal is to achieve better predictive capability in terms of performance on the original data. 

Genetic algorithms are optimization algorithms inspired by the processes of natural selection and 

genetics. They include creating a population of potential solutions (chromosomes), evaluating 

their fitness based on a specified objective function, selecting the fittest individuals for

reproduction, and applying genetic operations such as crossover and mutation to create new 

offspring. 

In the context of using GA-PCA, the objective is to utilize GA to search for a distinctive 

set of features that enhances the model's performance. This is achieved by encoding the feature 

selection problem as a chromosomal representation in GA. Initially, a population of chromosomes 

is created, with each chromosome being evaluated using a fitness function that combines the 

performance of the selected features with the data transformed by PCA. GA improves the 

population through selection, crossover, and mutation operations to produce new generations. 

The selection process favors chromosomes with higher fitness values, ensuring the retention of 

better feature sets. PCA is applied to the selected feature sets to reduce the dimensionality of the 

data while retaining the most important information.  

 

Start 

Chromosome initialization 
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Is termination 
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End 
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This helps in enhancing the model's performance. The GA-PCA process is iterated over 

several generations until stopping criteria are met, such as reaching a maximum number of 

iterations or achieving an acceptable level of performance (Ding et al., 2014). The following 

figure shows a flowchart of GA-PCR modeling.  

Yes 

                                                                   

No

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The flowchart of GA-PCRFC modeling. 

                                            

4. Results: 

This aspect aims to describe data related to hypertension by identifying the most 

significant factors (explanatory variables) that have a substantial impact on this disease. To 

achieve the research objective of finding the best method between PLS (Partial Least Squares) 

and PCR (Principal Component Regression) in building a regression model, one of the artificial 

intelligence algorithms, namely the genetic algorithm, will be employed in these methods. 

 

4.1 Sample Description: 

A sample of 60 patients diagnosed with hypertension was collected from the patients 

hospitalized at Al-Rifai General Hospital. The  included 8 variables; we denoted the 

response variable as y and the explanatory variables as    (         ). These are the common 

variables collected and analyzed in hypertension studies, helping to understand the factors 

affecting this disease and to identify the best strategies for its prevention and treatment. The table 

below illustrates the variables in order: 

 Search variables: -  
The response variable    represents hypertension, which is known to be divided two categories: 

the syst component and the diastolic component. This , data collection was based on the 

systolic. 
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Table 1: The code of each of the illustrative variables 

 

 

 

 

 

                                           

 

 

 

 

Source: Prepared by the researchers  

4.2 Detecting multicollinearity: 

There are several tests through which we can detect the existence of the problem of linear 

multiplication between the explanatory variables of people with blood pressure disease using the 

SPSS program, and the test that was used to detect this problem is: - 

 

4.2.1 Variance Inflation Factor (VIF): 

This scale is one of the most important measures that are used to detect the problem of 

Multicollinearity as it can be measured through the value of VIF coefficients, if the value is 

greater than 10, this indicates the existence of the problem of Multicollinearity, as shown in the 

table (2) below: - 

              

We note through table (2) that the values of the VIF for the illustrative variables and for 

each of the first variable, which is gender, is equal to 12.09616,  the second variable is age, with a 

value of 10.06426, and the seventh variable, the percentage of cholesterol, its value is equal to 

12.19626, and these variables have values greater than 10,  this means that they suffer from the 

problem of Multicollinearity multiplicity between illustrative variables. 

This section presents the applied results and subsequently analyzes them to determine the 

suitability and accuracy of the actual data in addressing the multicollinearity issue, based on two 

methods: Partial Least Squares (PLS) and Principal Component Regression (PCR).  

To compare the two methods to select the one according to the comparison criterion of 

Mean Squared Error (MSE), the genetic algorithm was also employed in the methods, and the 

comparison was based on the first component. The applied results obtained through the R 

program are presented as follows. 

We note from table (3) that the values of the MSE comparison criterion for the OPLS 

algorithm are the lowest and therefore the PLS method is the best. Its advantage is due to its 

ability to deal with high-dimensional data and build models based on improving prediction. 

Variable name Variable 

Sex    

Lifetime    

Weight    

Heartbeat    

Blood sugar rate    

Hemoglobin in the blood    

Cholesterol    
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As shown in table (4), when employing the genetic algorithm in the methods, we also 

find that the MSE value for the OPLS algorithm is the, indicating that the PLS method is the best. 

Based on the results presented in tables (3 and 4), it is evident that the comparison 

criterion, MSE for the Partial Least Squares (PLS) method is lower than that for the Principal 

Component Analysis (PCA). This means that the PLS method is the best and most optimal 

choice. It can be stated that this method is considered the most suitable option for data analysis, 

especially in cases where multicollinearity issues need to be addressed, as well as for predicting 

future values or dealing with complex data.  

Additionally, it serves as an effective tool for use in various fields. Since this method is 

the best, this implies that the PLS model is more effective in building accurate predictive models. 

The first component was relied upon to obtain the parameter estimates of the model using 

the PLS and PCA methods, as well as in the case of employing the artificial intelligence 

algorithm (genetic algorithm) in the methods. The tables below illustrate the estimation results for 

each method. 
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The shapes above illustrate the graph of original and predicted values, along with the variable 

for the model using Partial Least Squares (PLS) and Principal Component (PCA). We observe 

through these that the algorithms that come to the true values with the predicted values, based the 

lowest Mean Squared Error (MSE), are the (O-PLS) algorithm, followed by the (SIMPLS) 

algorithm, and then the (NIPALS) algorithm. The last place is held by the (SVD) algorithm. This 

confirms that the Partial Least Squares (PLS) method possesses an optimal regression model and 

high predictive capability. 
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 The shapes above illustrate the graph of original and predicted values, along with the 

response variable for the model estimated using Partial Least Squares (PLS) and Principal 

Component Analysis (PCA) when employing the genetic algorithm for both methods. We 

observe from these shapes that the algorithms that come closest to the true values with the 

predicted values, based on the lowest Mean Squared Error (MSE), are the (O-PLS) algorithm, 

followed by the (SIMPLS) algorithm, then the (NIPALS) algorithm, The last place is held by the 

(SVD.GA) algorithm. This confirms that the Partial Least Squares (PLS) method possesses an 

optimal regression model and high predictive capability, distinguishing it as the most efficient 

method for predicting future values of the response variable. 

The analysis of the variance table can be used in regression analysis to measure the 

impact of explanatory variables on the response variable and to determine whether there are 

statistically significant effects. In this research, the results of the analysis of the variance table 

were derived using the best method, which is the PLS method. Below are the results of the 

analysis of variance. 

To assess the significance of the linear relationship and test the extent of the impact of the 

explanatory variables on the response variable, the hypothesis concerning the regression model 

was tested as follows. 

It was found from the results of table (7) that the null hypothesis is rejected, and the 

alternative hypothesis is accepted at a significance level of 0.05 after comparing it with the P-

Value. This indicates that there are significant differences between the explanatory variables and 

the response variable similarly, with regard to table (8), the results indicate the rejection of the 

null hypothesis and the acceptance of the alternative hypothesis, which shows that there are 

significant differences between the explanatory variables and the response variable. 

 

The results indicate the superiority of the partial least squares (PLS) method over the 

principal components (PCA) method in terms of having the lowest value of the comparison 

criterion (MSE) before and after employing the genetic algorithm. As the graphs showed, the 

model estimated by the partial least squares method gives predictive values closer to the original 

values. This indicates that the partial least squares method has an ideal regression model and high 

predictive ability, which makes it the most efficient method for predicting future values of the 

response variable. 
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The data were tested for multicollinearity, by testing the variance inflation factor (VIF), 

which indicated that the data suffer from the problem of multicollinearity. The problem of 

multicollinearity was addressed using the partial least squares method with algorithms (SIMPLS, 

O-PLS) and the principal components method using algorithms (NIPALS, SVD), and a 

comparison was made between the two methods based on the first component and using the mean 

square error (MSE) as a standard comparison. The statistical analysis revealed the superiority of 

PLS with the algorithm (O-PLS), as it achieved the lowest MSE value. In order to improve the 

results, the genetic algorithm was used for the two estimation methods PLS with the algorithm 

(SIMPLS, O-PLS) and the principal components analysis with the algorithm (NIPALS, SVD), 

and a comparison was made between the two methods and the results of the comparison showed 

that the PLS method with the algorithm (O-PLS) was the best due to its lowest value of the mean 

square error. The regression model parameters were estimated based on the first component using 

the algorithms for both methods, and the regression model parameters were estimated using the 

improved methods. After concluding that the PLS method is better than the PCA method before 

and after using the genetic algorithm, we built an analysis of variance table based on the superior 

PLS method. The results indicated that there were significant differences between the explanatory 

variables and the response variable, which indicates the quality of the estimated model. 
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