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Abstract: 

This paper proposes a hybrid approach to dollar exchange rate forecasting, wherein both types of 

forecasting models-linear and non-linear models-have been incorporated to improve the 

efficiency of predictions. The work essentially combined MISO ARX model with GARCH-X 

models within MISO ARX framework to enhance the data. These three estimation techniques, 

namely IV4, RELS-HF, and RELS-SE, could optimize the modeling performance of the MISO 

ARX model, whereas Quasi Maximum Likelihood Estimation (QMLE) was applied for GARCH-

X models. 

An evaluation metric such as the Mean Absolute Error (MAE) and Mean Absolute Percentage 

Error (MAPE) was used for the comparison between model performances. The findings show that 

RELS-SE method is superior to other estimation methods for MISO ARX models, and the results 

also suggest that the best forecasting accuracy was obtained for the MISO ARX (1,5,3,5,3) - 

GARCH (1,2)-X model. It has been effective in hybridizing the exchange rate changes model for 

cash volatility predictions as the hybrid model excellent catch in capturing volatility. This grows 

importance for a hybrid model in financial forecasting, especially in turbulent markets. 

It is valuable for policy makers, financial analysts, and economic researchers. It suggests that 

hybrid time series models could be used to improve the accuracy of exchange rate forecasting. 

Future research should include investigation into the combination of machine learning techniques 

with hybrid econometric models to further enhance prediction improve performance. 

Keywords: Hybrid Forecasting Model, MISO ARX Model, GARCH-X Model, Model Order 

Determination, QMLE, Dollar Exchange Rate Prediction. 
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1. Introduction: 

Time series analysis in its various fields is one of the main research and application methods 

(Wang et al., 2005).The past few decades have witnessed increasing interest in theoretical and 

experimental developments in building time series models and their important applications in 

forecasting, as forecasting rules play an important role in many fields, such as business, industry, 

and international governmental organizations, as time series represent successive periods 

recorded in a specific chronological order, such as monthly, annual, or weekly values. Time series 

analysis aims to understand patterns, trends, and changes in data, as well as the problems they 

face, such as multicollinearity, heteroscedasticity, etc (Ahmed Mohammed, 2019). The major 

reason for using hybrid models is that time series data rarely consists of only linear or nonlinear 

components, as they usually include both components together, and a single model by itself 

cannot understand the different patterns of time series accurately. This means that using linear or 

non-linear time series models individually is not ideal for forecasting future values. Therefore, 

combining different individual models has a very effective and important effect on increasing the 

chance of controlling the different patterns. The basic idea of using these models is to improve 

the accuracy of forecasting and analysis of time data and provide a better understanding of the 

time behavior and factors affecting time series. Accordingly, many statistical and mathematical 

models have been studied, including hybrid models, which combine various statistical methods 

and techniques to analyze and forecast time series for the future, and these models use a 

combination of traditional and advanced models. One of these models is the (MISO ARX - 

GARCH-X) which combines two models. The first is the linear model (Multiple input single 

output Autoregressive with exogenous variables). The second is the non-linear model 

(Generalized Autoregressive Conditional Heteroscedasticity with exogenous variables), where the 

MISO ARX model was estimated using several estimation methods, including the (IV4) and 

(RELS – HF), (RELS – SE), as well as the GARCH-X model using (QMLE) method, in this 

study, several models were tested. The optimal model was chosen based on the model selection 

criteria, which are Akaike's Information Criterion (AIC) and Akaike's Final Prediction Error 

Criteria (FPE), Minimum Description length (MDL), Bayesian Information Criterion (BIC) 

(Colin et al., 2021). The structure of this paper consists of the following: in the second section, 

we will review the important literature related to our topic. After that, in the third section, we will 

focus on the research methodology and how to work the single models and hybrid models, as well 

as on developing the basic hypotheses. In the fourth section, we will review the results that were 

reached, through which the topic is understood more deeply. Finally, we will review the 

conclusions that emerge from this research and the directions for the future. 

2. Literature Review: 

In the year (2021), researchers (Kévin Colin, Laurent Bako, Xavier Bombois) studied the 

prediction error quantification. The collected data must be informative concerning the chosen 

model structure to obtain a stable estimate. In this work, the focus was on the information 

property of the data to identify ARX systems with multiple inputs and a single output in a closed 

loop. A necessary and sufficient condition was derived  to verify whether the given multiple 

external excitations coupled with the feedback provided by the controller give data 

informativeness concerning the chosen model structure , the data informatics of the closed-loop 

direct identification of MISO ARX systems with multiple external excitations is also studied. 

(Colin et al., 2021). 

 In the same year, researchers (Wei Dai and Ka Wai Tsang) studied hybrid resampling to 

address (a) the long-standing inference problem of changing times and changing parameters in 

change-point ARX-GARCH models and (b) the problematic problem of confidence intervals. 

Validity, after variable selection under dispersion assumptions, for parameters in linear regression 

models with high-dimensional stochastic regressions and asymptotically constant noise.  
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For the latter problem, Consistent estimates were provided of the selected parameters and 

a resampling approach to overcome the difficulties inherent in post-selection confidence intervals. 

For the previous problem, we use a sequential Monte Carlo of latent states (representing change 

times and changing parameters) of a hidden Markov model. The advantages of the proposed 

methods are demonstrated through asymptotic efficiency theory, simulations, and experimental 

studies, providing detailed insights into their effectiveness. (Dai & Tsang, 2020).  

 In the year (2022), researcher (Philipp Ketz) studied used the results of Andrews and 

Cheng (2012), which are extended to allow parameters to be close to or at the boundary of the 

parameter space, to infer the asymptotic distributions of the two test statistics used in the two-step 

(test) procedure proposed by Pedersen and Rabik (2019). The latter aims to test the null 

hypothesis that a GARCH-X model, with exogenous variables (X), reduces to a standard GARCH 

model, with the “GARCH” coefficient allowed to be unidentified. Then he was presented with a 

characterization result for the asymptotic size of any test to test this null hypothesis before setting 

a numerical lower bound on the asymptotic size of the two-step procedure at the nominal 5% 

level. This lower bound exceeds the nominal level, revealing that the two-step procedure does not 

control the asymptotic size, a small simulation study was conducted, and it was found that the 

asymptotic theory provides good approximations to the finite sample behavior of the tests or test 

procedures we consider. In particular, we found that the test procedures proposed by PR can 

suffer from over-rejection in finite samples. (Ketz, 2022).  

In the year (2023), researchers (Janczura) proposed dynamic, short-term strategies to 

manage the financial risks of small electricity producers and buyers who trade in wholesale 

electricity markets. Since electricity is mostly not storable, the economic risks resulting from 

electricity prices are highly volatile. It cannot be minimized using standard financing-based 

methods. Instead, short-term operational planning and appropriate business diversification can be 

used. Price risk is analyzed in terms of Markowitz's mean-variance portfolio theory. Therefore, it 

is crucial to forecast the variation in electricity prices correctly. To this end, the researchers 

jointly conducted models daily and intraday prices or arbitrage prices from Germany and Poland 

using ARX-GARCH type models; It has been shown that using heteroscedastic volatility 

significantly improves probabilistic price forecasts, mainly if a variance-fixing transformation is 

applied before estimating the model, and then Price forecasts to build dynamic diversification 

strategies that depend on risk metrics, where different objectives were taken into account in 

addition to the buyer and seller’s point of view (Janczura & Pu´c, 2023). 

3. Methodology:  

In this research section, two types of time series models will be identified (linear and non-linear 

models). Through these models, the hybrid model that is used in the forecasting process will be 

reached. 

3.1 Linear Model: 

The (Multiple input single output Autoregressive with exogenous variables) model is one of the 

most important linear models used in the hybridization process, and the (MISO ARX 

(𝑛𝑎 , 𝑛𝑏1, 𝑛𝑏2, … , 𝑛𝑏𝑟, 𝑛𝑘)) model can be expressed mathematically through the following 

mathematical formulas (Colin et al., 2021) (Rachad et al., 2015): 

3.1.1 MISO ARX (𝒏𝒂, 𝒏𝒃𝟏, 𝒏𝒃𝟐, … , 𝒏𝒃𝒓 , 𝒏𝒌) model: 

A(L)y(t)  = ∑ Bi(L)𝑟
𝑖=1  𝑋𝑖(t − nk) +  v(t)… (1)          

y(t) =  Model outputs, i.e. the dependent variable . 

 x(𝑡)  =  [x1(𝑡) , x2(𝑡), … x𝑟(𝑡) ]
𝑇 , Model input vector Explanatory variables.     

r = represents the number of inputs. 

𝑣𝑡     = represents the error term, which follows the normal distribution with a mean equal to zero 

and a constant variance. 

na = represents the rank of the autoregression. 

nbi = represents the number of input terms, 𝑖 =  1, 2,⋯ , 𝑟 
nk = represents the lag of the output from the input  



JEAS, Vol. 31 No. 146 (2025)                                                                     Fakhri  et al. 

159 Journal of Economics and Administrative Sciences 

 

Whereas the following formula gives polynomials: 

A(L) =  1 + 𝑎1𝐿
−1 + 𝑎2𝐿

−2 +⋯+ 𝑎𝑛𝑎𝐿
−𝑛𝑎  … (2) 

Bi(L) =  𝑏𝑖1𝐿
−1 + 𝑏𝑖2𝐿

−2 +⋯+ 𝑏𝑖𝑛𝑏𝑖𝐿
−nbi …(3) 

And (L) represents the backshift operator, where 𝐿−𝑘𝑦(𝑡) = 𝑦(𝑡 − 𝑘).  
It can be written as a regression model as follows (Zhang, 2011): 

 y(t)   =  ϻ + 𝜑𝑇(𝑡) 𝜃 +  v(t)  … (4) 

𝜑(𝑡) = [−y(t − 1) , −y(t − 2) , … , − y(t − 𝑛𝑎)       x1(t − nk − 1) , … , x1(t − nk − nb1) , … , x𝑟(t −
nk − 1)  , …  , x𝑟(t − nk − nbr) ]

𝑇       

Model parameters. 

θ =  [𝑎1         𝑎2 , … 𝑎𝑛𝑎        𝑏11 , … , 𝑏1𝑛𝑏1 , … , 𝑏𝑟1 , … , 𝑏𝑟𝑛𝑏𝑟]
𝑇 

The conditional information variance (Ft-1) of this model is constant regardless of the rank of the 

model. 

𝑉𝑎𝑟(𝑦𝑡  /𝐹𝑡−1)  =  𝜎𝑡
2 

This means that the conditional distribution of the time series y(t) follows the normal distribution 

as follows (Mohammed & Tawfeeq, 2021) (Hamid & Mohammed, 2018) : 

𝑦𝑡  /𝐹𝑡−1  ∼ 𝑁 (ϻ𝑡 𝜎𝑡
2 ) 

Matrix of regression elements  :𝜑𝑇(𝑡) 
 A constant representing the mean of the time series :ϻt 

 

 
Diagram (1): The structure of the MISO-ARX model 

Source: Prepared by the researchers. 

3.2 Non-Linear Model: 

The process of modelling the residuals of the linear model (MISO 

ARX(𝑛𝑎, 𝑛𝑏1, 𝑛𝑏2, … , 𝑛𝑏𝑟 , 𝑛𝑘)) in equation (1) is done by applying a non-linear model (GARCH 

(q,p)-X(b1, b2, … , br)) and the following sections explain these models: 

3.2.1 GARCH (q, p)-X(𝐛𝟏, 𝐛𝟐, … , 𝐛𝐫) Model: 

Generalized autoregressive conditional heteroscedasticity (GARCH) models have gained 

increasing popularity since their introduction due to their ability to predict volatility. The 

GARCH model is usually considered to be able to capture this volatility based on its past 

volatility and prior squared residuals, but it does not take into account the effect of exogenous 

variables on this process, where exogenous variables play a critical role, (Kazim & Hassan, 

2017). Therefore, this study seeks to present and apply the GARCH-X model. 

 A major problem appears for us, which is how to include the external variables in the model, as 

for how to include external variables in the model, it is as follows: 
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The following formula gives the average equation (Ketz, 2022) (Md Yeasin, K.N. Singh, 2020)           

(Hu, 2019) (Mohammed &Yadkar, 2015). 

𝑦(𝑡)   =  ϻ(𝑡)  +  𝑣𝑡 … (5) 
 

The following formula gives the random error equation: 

vt =  ηt√ℎ𝑡   ,  𝜂𝑡 ℱt−1 ≅  iid N (0, 1)⁄  … (6) 

 

The following formula gives the conditional variance equation: 

ℎ𝑡  = ∝0+∑ ∝𝑖 𝑣𝑡−𝑖
2𝑝

𝑖=1 + ∑ 𝜃𝑗 ℎ𝑡−𝑗
𝑞
𝑗=1 + ∑ ∑ 𝜆𝑖𝑘 𝑥𝑖(𝑡−𝑘)

2𝑏𝑖
𝑘=1

𝑟
𝑖=1  … (7)  

Where: 

∝0: The fixed term. 

𝜃𝑗 , ∝𝑖: The parameters of the GARCH (q, p) model. 

𝜆𝑖𝑘 : The parameter of the exogenous variables. 

𝑥𝑖(𝑡−𝑘)
2 : The square of the exogenous variable (i) at time t-k. 

According to the restrictions or conditions imposed on the parameters, which ensures a positive 

conditional variance, where: 

 

∝0≥ 0   

 ∝𝑖 , 𝜃𝑗 , 𝜆𝑘  ≥ 0                                                      

i = 1, 2,3, ……, p-1, ∝𝑝> 0 

j = 1, 2,3, ……, q-1, 𝜃𝑞> 0 

k = 1, 2,3, ……, b-1, 𝜆𝑏> 0 

 

3.3 Stages of Building Hybrid Model  

3.3.1 The first stage: 

The first stage in building hybrid models depends on choosing the best model from the models 

(MISO ARX(𝑛𝑎 , 𝑛𝑏1, 𝑛𝑏2, … , 𝑛𝑏𝑟 , 𝑛𝑘), and this is based on choosing the best orders 

(𝑛𝑎 , 𝑛𝑏1, 𝑛𝑏2, … , 𝑛𝑏𝑟 , 𝑛𝑘) for the model (MISO ARX). 

Depending on Akaike's Information Criterion (AIC), Akaike's Final Prediction Error Criteria 

(FPE), and Minimum Description length  (MDL) These criteria are mathematically defined as 

follows  (Anderson, 2004): 

 AIC = ln (
1

n
∑ υ2(t)n
t=1 ) +

2𝐹 

n
 ⋯ (8) 

FPE = [
1 + (

𝐹
𝑛)

1 − (
𝐹
𝑛
)   
] ∗  
1

𝑛
 ∑𝜐2(𝑡)

𝑛

𝑡=1

…(9) 

𝑀𝐷𝐿 = ln(
1

𝑛
∑𝜐2(𝑡)

𝑛

𝑡=1

) +
𝐹 ln(𝑛)

𝑛
  ⋯ (10)  

Where: 

n: Sample size. 

𝑣𝑡 : represents the error term 

F: represents the number of parameters. 

 

 

 

 

 

3.3.2 The second stage: 



JEAS, Vol. 31 No. 146 (2025)                                                                     Fakhri  et al. 

161 Journal of Economics and Administrative Sciences 

 

The parameters of the hybrid model are estimated through a two-step procedure. Three estimation 

methods (IV4, RELS-HF, and RELS-SE) are used in the first step to estimate the model 

parameters (MISO ARX). The model's parameters (GARCH-X) are estimated in the second step 

using the (QMLE) method. The following statistical methods are used to estimate the parameters 

of the model (MISO ARX): 

3.3.2.1 Four-Stage Instrument Variable Method (IV4): 

The (IV4) method is an extension of the instrumental variable (IV) method, and the (IV) method 

can be considered an alternative approach to modifying the least squares (LS) method since the 

error 𝑣(t) in optimal cases is independent of the previous data, i.e. 𝑧𝑡−1 as: 

𝑧(𝑡−1) = [x1(1)… x𝑟(1) , … , x1(𝑡 − 1)… x𝑟(𝑡 − 1)𝑦(1)…𝑦(𝑡 − 1)]  
If there is a relationship between them, it suggests that the information contained in 𝑧𝑡−1 about 

y(t) is greater than what is extracted by �̂�(t) to address this issue, we can select the instrumental 

variables vector 𝜁(𝑡) with finite dimensions that is derived from 𝑧𝑡−1, So it achieves the 

following: 

1

𝑛
∑𝜁(𝑡) 𝑒(𝑡) = 0

𝑛

𝑡=1

 

Thus, the estimator of the instrumental variables can be obtained in  

𝜃 𝐼𝑉 = [SOL
1

𝑛
∑ 𝜁(𝑡)[y(t)  − 𝜑𝑇(𝑡)𝜃] = 0𝑛
𝑖=1 ] 

𝜃 𝐼𝑉 = [
1

𝑛
∑ 𝜁(𝑡)φT(t)n
t=1 ]

−1
[
1

𝑛
∑ 𝜁(𝑡)y(t)n
t=1 ]        

 

For large sample sizes, for 𝜃 𝐼𝑉 to tend to 𝜃. 
1

𝑛
∑ 𝜁(𝑡) 𝑒(𝑡)𝑛
𝑡=1  Must tend to zero in general, the 

desirable characteristics of the instrumental variables 𝜁(𝑡) are: 

E̅ 𝜁(𝑡) φT(t)                                (Nonsingular) 

E̅ 𝜁(𝑡) 𝑒(t) = 0 

This means that the instrumental variables must be related to the elements of the regression vector 

and not to the error term, so the aids can be generated as follows: 

𝜁(𝑡) =  [−χ (t − 1) … − χ (t − 𝑛𝑎)     x1(t − 1) … x1(t − 𝑛𝑏)… x𝑟(t − 1)… x𝑟(t − 𝑛𝑏) ]
𝑇                    

χ(t) is generated from the input through a linear system. 

The basic and specific steps of this method can be obtained by applying a four-step algorithm, 

which is as follows (Ljung, 1999) (Zhu, 2001) (Tangirala, 2015) : 

 

Step 1: 

 Estimating 𝜃 using the least squares method and the corresponding transformation function is 

denoted           by Ĝ (1)(L).  

Ĝ (1)(L) =  
B̂ (1)(L)

Â (1)(L)
 

Step 2: 

Generate the instruments as follows: 

𝜒(1)(𝑡) =  Ĝ (1)(L) x(𝑡)… (11) 
𝜁(1)(𝑡) =  [−χ(1) (t − 1)… − χ(1) (t − 𝑛𝑎) x1(t − 1)… x1(t − 𝑛𝑏)… x𝑟(t − 1)… x𝑟(t −
𝑛𝑏)]

𝑇…(12)                    
Then, the parameters should be estimated using the (IV) method   ،by using these instruments 

𝜁(1)(𝑡) and denote the estimate θ̂ (2) and the corresponding transfer function estimate. 

Ĝ (2)(L) =  
B̂ (2)(L)

Â (2)(L)
 

 

Step 3: 
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 Let it be: 

�̂�(2)(𝑡) =  Â (2)(L) 𝑦(𝑡) − B̂ (2)(L) x(𝑡)… (13) 

Assuming an autoregressive model AR with the order (𝑛𝑎 + 𝑛𝑏) for �̂�(2)(𝑡),  as shown below. 

 Z(L) �̂�(2)(𝑡) =  𝑒(𝑡)… (14) 
The Z(L) should be estimated using least squares (LS) and the result is denoted �̂�(𝐿). 
Z(L): linear filter. 

Step 4: 

Let 𝜒(2)(𝑡) be defined very similar to (11), and let 

𝜁(2)(𝑡) =  [−χ(2) (t)… − χ(2) (t − 𝑛𝑎)x1(t − 1)…  x1(t − 𝑛𝑏)… x𝑟(t − 1)… x𝑟(t − 𝑛𝑏)]
𝑇                     

 

Using these instruments, the final estimates of the parameters can be arrived at, shown in the 

formula below. 

φ𝐹(𝑡) =  �̂�(𝐿) 𝜑(𝑡)    
  y𝐹(𝑡) =  �̂�(𝐿) 𝑦(𝑡) 

 𝜃 𝐼𝑉4 = [∑ 𝜁(2)(t)φ𝐹
𝑇(t)n

t=1 ]
−1
[∑ 𝜁(2)(t)𝑦𝐹(t)
n
t=1 ]… (15) 

 

3.3.2.2 Regularized Least Square (RELS): 

The regularized least squares method is considered one of the important methods used in 

estimating the model parameters (MISO ARX), which deals with poor conditioning and has an 

important role in controlling overfitting, especially when modelling high-dimensional models, 

i.e., containing many parameters. Therefore, this problem is addressed by allowing some bias 

through the regularization term, Which is given by the following mathematical formulas (Chen & 

Ljung, 2013) (Chen et al., 2012) (Yusof et al., 2013) (Ljung, 2013) (Chen, 2018): 

y(t)   =  𝜑𝑇(𝑡) 𝜃 +  v(t)     
Then it is rewritten using matrices and in the following form: 

𝑌 = 𝜙𝜃 + 𝜈 … (16) 

Y = [y(1) y(2)… y(N)]T 

𝜙 = [φ(1) φ(2)…φ(N)]T 

ν = [ν(1) 𝜈(2)… ν(N)]T 

Where the estimation of parameter 𝞱 using the least squares method is given by the following 

formula: 

θ̂LS = argθmin  ‖Y − ϕθ‖
2… (17) 

θ̂LS = (ϕTϕ)
−1
ϕTY … (18) 

By implementing the RELS method, we add the regularization term J(θ) to the LS method 

equation, which is given by the following formula: 

θ̂RE = argθmin   ‖Y − ϕθ‖
2 + ψ J(θ)… (19) 

J(θ) = 𝜃𝑇 𝑃−1 𝜃 

ψ= represents the regularization parameter and is a positive number 𝜓 ≥ 0 

P = represents the (regularization matrix), which is a symmetric and positive semi-definite (p.s.d) 

matrix and is known as the kernel matrix in machine learning . 

The presence of the matrix (P) improves the estimate's numerical properties and reduces its 

variance. However, some bias is introduced, and the optimal choice of the matrix (P) makes the 

MSE as low as possible. 

The following formula gives the estimation of the regular least squares method: 

θ̂RE = (ϕTϕ+ ψP−1)
−1
ϕTY  … (20) 

 

1- Regularized Least Square Method with High-Frequency Stable Spline Kernel (RELS – 

HF ( 
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It is known as the high-frequency stable chip core and is symbolized by the symbol (HF) when ρ= 

-√Ɣ, where the following image gives the regulation matrix (Chen & Ljung, 2013).               

𝑃𝑖,𝑗
𝐻𝐹 (𝛼) = 𝐶  (−1)𝑖−𝑗min(Ɣ𝑗, Ɣ𝑖)… (21) 

𝛼 = [𝐶   Ɣ]𝑇 ،𝐶 ≥ 0 , 0 ≤  Ɣ < 1      
2- Regularized Least Square Method with Squared Exponential Kernel )RELS – SE) 

It is known as the quadratic exponential kernel and is symbolized by the symbol (SE), where the 

regularization matrix is given in the following form (Zhu, 2001). 

Pi,j
SE(α) = C  e

−(i−j)2

2Ɣ2 … (22) 

𝛼 = [𝐶   Ɣ]𝑇, 𝐶 ≥ 0 , 0 ≤  Ɣ < 1       
3.3.2.3 Comparison of estimation methods (MISO ARX) model  

Two measures were used to compare the estimation methods of the model (MISO ARX ), namely 

Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE), where the measure 

that gives the lowest estimated values is the best, which is given in the following formula (Liu & 

Shi, 2013) (Yusof et al., 2013) (Fakhri & Mohammed, 2016).  

 MAE =
1

𝑛
 ∑|𝑦(𝑡) − �̂�(𝑡)|

𝑛

𝑡=1

…(23) 

 

 MAPE = (
1

𝑛
∑ |

𝑦,𝑡)−�̂�(𝑡)

𝑦(𝑡)
|𝑛

𝑡=1 ) × 100%…(24)  

 

𝑦(𝑡) : is real value. 

�̂�(𝑡) : is an estimated value. 

n: is the size of data. 

 

3.3.3 The third stage: 

After determining the appropriate model and estimating its coefficients, comes the stage of 

verifying the quality of the model suitable for the prediction process. This is done by testing the 

presence of the (ARCH) effect to ensure the validity of the (GARCH-X) model for application or 

not. This is done through the tests given in the following mathematical formulas (Bollerslev, 

1986). 

3.3.3.1 ARCH Test: 

This test was proposed by the scientist Engle in 1982 AD. This test is characterized by ease and 

simplicity of calculation. It is used to find out whether there is a problem of heterogeneity of the 

variance of the random error, which depends on this test to investigate the presence of an effect 

(throne), meaning whether the series of errors follows the ARCH process or not. 

Whereas the hypothesis for testing the presence of the ARCH effect under the null hypothesis and 

the alternative hypothesis is written in the following formula (Wang et al., 2005) (Lee, 1991): 

H0∶αi=0                       (There is no ARCH effect) 

H1:αi≠0                       (There is an ARCH effect) 

 i=1, 2, 3, …, d 

Where the Lagrange multiplier 𝐿𝑀 is calculated, and thus the test statistic is calculated after 

finding the coefficient of determination �̂�2 as follows: 

𝐿𝑀 =  𝐴𝑅𝐶𝐻 𝑇𝑒𝑠𝑡 =  𝑛 ∗  �̂�2 ~𝜒(𝑃)
2 … (25) 

n:  represents the sample size . 

P:  represents the number of estimated model parameters . 

�̂�𝟐: represents the coefficient of determination estimated. 

Where: 
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R̂2 =
SSR

SST
… (26) 

SSR: Represents the regression sum of squares. 

SST: Represents the total sum of squares. 

Where the probability value of the test statistic for (ARCH) is compared with the significance 

level (0.05), if it is (p − value <  0.05), we reject the null hypothesis and accept the alternative 

hypothesis, which states the existence of an effect (GARCH-X), i.e. the existence of a problem of 

Heteroscedasticity. 

3.3.4 The Fourth stage: 

Building a forecasting model (GARCH-X) is done by following the traditional stages of building 

time series models. Still, in hybrid models, the beginning of building these models is by studying 

the residual series resulting from the (MISO ARX) model, as follows: 

3.3.4.1 Model Order Determination: 

The stage of determining the orders of the model (GARCH-X) is one of the important stages 

through which the optimal and appropriate model is chosen for the hybridization process, as 

choosing orders lower or higher than the actual order leads to inconsistency in the model 

parameters, which leads to a decrease in the model’s performance in the prediction process, as 

one of the most important criteria used in choosing the order of the model (GARCH-X) is 

(Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)) and these 

criteria are known mathematically by the following formula (Akaike, 1974) (Ismail & 

Mohammed, 2021): 

AIC = [−2 log (𝐿) + 2(F)]/n … (27)    

BIC = [−2 log (𝐿) + (F ln(n))]/n … (28)  
log (L):  Logarithm of the maximum likelihood function. 

F: Number of model parameters. 

n: Sample size. 

3.3.4.2 Quasi Maximum Likelihood (QMLE): 

The mechanism for estimating hybrid models depends on a two-stage methodology: the first stage 

is estimating the model (MISO ARX), and the second stage is estimating the parameters of the 

model (GARCH-X) by using (QMLE) method As follows (Francq & Zakoian, 2007) (Linton, 

2010) (Han & Kristensen, 2014): 

𝑣𝑡 =  𝜂𝑡√ℎ𝑡      ,     𝜂𝑡 ≅  𝑖. 𝑖. 𝑑 𝑁(0,1)… (29) 

 ht =∝0+∑ ∝𝑖 𝑣𝑡−𝑖
2𝑝

𝑖=1 + ∑ 𝜃𝑗 ℎ𝑡−𝑗 + ∑ ∑ 𝜆𝑖𝑘 𝑥𝑖(𝑡−𝑘)
2𝑏𝑖

𝑘=1
𝑟
𝑖=1 …(30) 

𝑞
𝑗=1   

η : A series of random variables that are independent and identical and that are assumed to follow 

the standard normal distribution with mean (0) and variance (1) 

Where Θ belongs to the model parameter space given by 

𝛩 ⊂  (0, + ∞) × [0,∞)𝒑+𝒒 

Assume that observations are (𝜈1, … , 𝜈𝑛 , x1 , … . , x𝑛 ) constitute a realization (of length n). 

Where: 

ϑ =(∝0 , ∝𝑖 , 𝜃𝑗  , 𝜆𝑖𝑘 )
′  , 𝑖 =  1,2 ,⋯ , 𝑝  , j = 1,2 ,⋯ , 𝑞   , k = 1,2 ,⋯ , 𝑏   

The Gaussian quasi-likelihood is given by and multiply the function n times. 

Ln(ϑ) =  Ln(ϑ, ν1 , … . , ν𝑛 , x1 , … . , x𝑛 ) =  ∏ {
1

√2𝜋ℎ𝑡
𝑒𝑥𝑝 (−

𝑉𝑡
2

2ℎ𝑡
)}𝑛

𝑡=1 …(31)     

A QMLE is thus a measurable solution of the equation: 

ϑ̂𝑛 = argmax Ln(ϑ) 
                           ϑ ϵΘ                  

 

Where (ϑ) represents the vector of unknown parameters to be estimated And taking the logarithm, 

it turns out that maximizing the probability is equivalent to minimizing, for ϑ: 
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𝐼𝑛(ϑ) =  
1

𝑛
∑Ͳ̃𝑡

𝑛

𝑡=1

                        where        Ͳ̃𝑡 = Ͳ̃𝑡(ϑ) =  
𝑣𝑡
2

ℎ𝑡
+  𝑙𝑜𝑔(ℎ𝑡) 

Thus, the QMLE is a measurable solution to the equation  

ϑ̂𝑛 = argmin 𝐼𝑛(ϑ)   
                                                                         ϑ ϵΘ 

3.3.5 Hybrid Model: [(𝐌𝐈𝐒𝐎 𝐀𝐑𝐗(𝒏𝒂, 𝒏𝒃𝟏, 𝒏𝒃𝟐, … , 𝒏𝒃𝒓 , 𝒏𝒌) −𝐆𝐀𝐑𝐂𝐇(𝐪, 𝐩) −
𝐗(𝐛𝟏, 𝐛𝟐, … , 𝐛𝐫) )] 
The use of time series models for forecasting and decision-making has become necessary, and 

hence, the accuracy of forecasting plays an important role in interpreting and analyzing 

phenomena. On this basis, the decision is made to overcome the problems facing time series. 

Researchers have resorted to hybrid models, and one of the most important goals of this research 

is to employ the hybrid (Zhang, 2011)) methodology to build the hybrid model, which is 

represented by merging the linear time series model (MISO-ARX) and the non-linear time series 

model (GARCH-X) into one model known as (MISO ARX(𝑛𝑎, 𝑛𝑏1, 𝑛𝑏2, … , 𝑛𝑏𝑟 , 𝑛𝑘) −
GARCH(q, p) − X(b1, b2, … , br  ).This method deals with data that suffers from fluctuations that 

occur over time and is characterized by giving highly efficient results in the forecasting process, 

which are given in the following formula (Parwati et al., 2023) (Janczura & Pu´c, 2023) (Liu & 

Shi, 2013) (Hickey et al., 2012) :  

y𝑡  =   
1

A(L)
 [ ∑ Bi(L)𝑟

𝑖=1  xi(t – nk) + 𝑣(t) ]… (32) 

 v𝑡 = η𝑡   √ℎ𝑡  … (33) 

 ht =∝0+∑ ∝𝑖 𝑣𝑡−𝑖
2𝑝

𝑖=1 + ∑ 𝜃𝑗 ℎ𝑡−𝑗
𝑞
𝑗=1 + ∑ ∑ 𝜆𝑖𝑘 𝑥𝑖(𝑡−𝑘)

2𝑏𝑖
𝑘=1

𝑟
𝑖=1 … (34) 

The (Zhang) methodology assumes that time series are a mixture of two components, linear (𝐋𝐭) 
and non-linear (𝐍𝐭). 
To obtain the predictions of the hybrid model, this is done by modelling the non-linear residuals 

obtained from the MISO ARX model and then using them as inputs in building the GARCH-X 

model, as described in the following mathematical equations: 

𝑣t = yt  −   L̂𝑡 …(35) 
�̂�𝒕 : Represents the estimated prediction value in time (t) for the model (MISO ARX) 

L̂𝑡(ℓ) =  �̂�(𝑡 + ℓ) = 𝑤ℓ(𝐿) 𝐺(𝐿) x(𝑡) + [1 − 𝑤ℓ(𝐿)] 𝑦(𝑡)… (36) 
𝑦(𝑡) = 𝐺(𝐿) x(𝑡) + ε(𝑡) 
𝑤ℓ(𝐿) = �̅�ℓ(L)𝐻

−1(𝐿) 

�̅�ℓ(L) = ∑h(k) L−k
ℓ−1

k=0

 

�̂�𝒕 : Represents the estimated prediction value in time (t) for the model (GARCH-X) 

�̂�𝑡(ℓ) =  ℎ̂𝑡(ℓ) =   ∝̂𝑜+ ∑ ∑ (∝̂𝑖+ �̂�𝑖 + �̂�𝑖𝑘)ℎ̂𝑡+ℓ−𝑖\𝑡
𝑏𝑖
𝑘=1 + ∑ ∑ (∝̂1 𝑣

2
𝑡+ℓ−𝑖 + �̂�1ℎ̂𝑡+ℓ−𝑖\𝑡 +

𝑏𝑖
𝑘=1

𝑚
𝑖=ℓ

𝑛
𝑖=1

 �̂�1𝑘�̂�
2
𝑡+ℓ−𝑖\𝑡)… (37) 

By combining the linear predictions (�̂�𝒕 ) of the model MISO ARX with the non-linear 

predictions (�̂�𝒕 ) of the model GARCH-X, we obtain the predictive values of the hybrid model as 

in the following equation: 

�̂�𝑡(ℓ) = L̂𝑡(ℓ)⏟  
MISO ARX

+ �̂�𝑡(ℓ)⏟  
GARCH−X

 … (38) 
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Diagram (2): Prediction process of the hybrid model (MISO ARX – GARCH –X) 

Source: Prepared by the researchers 

 

4. Results And Discussions: 

The data of this study represents a time series consisting of an output series represented 

by (dollar exchange rates) (Allah & Shalaka, 2013) And an input series represented by (cash sales 

and transfer Sales), as daily measurements and with a sample size of (480) from the year (2020 to 

2022) as a training data set to estimate the parameters and then build the model. Therefore, in this 

section, we will study building a linear (MISO ARX) model based on actual data and building a 

non-linear (GARCH-X) model based on a residual time series extracted from the appropriate 

linear (MISO ARX) model. Figures (1), (2), and (3) show the time series plot of dollar exchange 

rates, cash sales, and Transfer Sales. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1): The dollar exchange rates. 

Source: Prepared by the researchers 

 

 

 

 

 

 

 

 

 

 

Figure (t): Transfer sales. 

Source: Prepared by the researchers 
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Figure (3): Cash sales 

Source: Prepared by the researchers 

4.1 Building a linear model (MISO ARX): 

After initializing the input and output series, the appropriate model (MISO ARX) is chosen based 

on the lowest values of the statistical criteria AIC, FPE, and MDL with different ranks and 

estimated according to the equations (8), (9), and (10). The results showed that the optimal model 

that represents the phenomenon is the model: 

Table (1): Diagnostic Scales of the MISO ARX Model 

MODEL  AIC FPE MDL 

MISO ARX (1 5 3 5 3)  2.7569 2.6846 2.8715 

 

4.1.1 Estimation of model parameters (MISO ARX): 

After completing the diagnosis stage and obtaining the orders of the optimal model that were 

diagnosed based on the previous diagnosis criteria, the stage of estimating the parameters of the 

model begins (MISO ARX (1 5 3 5 3)) using three estimation methods, which are (IV4, RELS-

HF, and RELS-SE) which are given through the following equations (15), (21), (22). Based on 

these methods, the estimated results were obtained, which are given in the following table: 

 

Table (2): Estimation of the Parameters of the MISO ARX Model 

Estimation 

methods 

 

Estimated values of parameters  MISO ARX [1 5 3 5 3 ] model 

�̂�1 �̂�11 �̂�12 �̂�13 �̂�14 �̂�15 �̂�21 �̂�22 �̂�23 

IV4 -9.894e-01 1.185e-04 3.79e-05 3.595e-05 5.655e-05 -2.112e-06 6.234e-06 -2.878e-05 6.105e-05 

RELS (HF) 

Kernel 
-1.002e+0 -8.479e-06 -4.98e-06 -2.443e-05 -7.509e-06 -1.625e-05 -1.348e-05 -1.295e-05 1.979e-05 

RELS (SE) 

Kernel 
-1.002e+0 -8.179e-06 -1.016e-05 -1.121e-05 -1.09e-05 -9.488e-06 -9.746e-06 -6.379e-06 9.6e-06 

 

4.1.2 Comparison of estimation methods: 

After estimating the model parameters (MISO ARX) using three estimation methods (IV4, 

RELS-HF, and RELS-SE), the stage of comparing these methods comes to determining the best 

method, depending on  

The following comparison criteria (MAE, MAPE) according to the equations (23), (24), and the 

results are given through the following table: 
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Table (3): Comparison Measures for Model Methods (MISO ARX) 

Estimation 

Methods 

Comparison Measures 

MAE MAPE 

IV4 3.2184 0.2170 

RELS (HF)  1.7845 0.1200 

RELS (SE)  1.7303 0.1164 

From Table (3) above, we observe that the best method for estimating the parameters of Model                   

(MISO ARX) is Method (RELS (SE)) because the values of the statistical measures (MAE = 

1.7303) and (MAPE = 0.1164) are the lowest possible compared to the values of these measures 

for the other methods. 

 

4.1.3 Model validity tests (ARCH Effects): 

Before starting the process of estimating the parameters of the model (GARCH-X), the stage of 

examining the accuracy of the model comes by detecting the presence of non-linear 

characteristics in the series of residuals of the model (MISO ARX), and this is done by using the 

following tests. 

4.1.3.1 Arch Test: 

To test the presence of ARCH effects, Engle's ARCH test, according to the equation (25), was 

performed before estimating the GARCH-X model to detect the presence of heteroscedasticity. 

The result of this test is expressed in the following table: 

Table (4): shows the (ARCH) test for the series of residuals of the MISO ARX model 

p − value Test Statistic Lag Null Hypothesis 

4.2456e-09 5.96367e+01 10 False 

3.7655e-11 8.14651e+01 15 False 

5.2892e-10 8.50866e+01 20 False 

8.9034e-08 8.91264e+01 30 False 

It is clear from table (4) that the probability value (p-value) was smaller than the significance 

level (0.05), which means don’t reject the alternative hypothesis, which is the presence of serial 

correlation in the residuals of the linear model MISO ARX at time shifts (k=10,15,20,30) and 

thus a case of heterogeneity of variance in the residuals. 

4.2 Building a model (GARCH-X) suitable for the hybridization process 

The nonlinear model (GARCH-X) is estimated based on the residuals of the model (MISO ARX). 

By matching the best nonlinear model with different orders to choose the optimal model in the 

prediction process, the best model (GARCH (1, 2) – X (0, 1)) was built according to the lowest 

values of the statistical criteria (AIC) and (BIC) and estimated according to the equations (27) 

and (28). The following table shows the estimation of the parameters of the model (GARCH-X) 

using the method (QMLE) as shown in the following table:  

Table (5): Estimation of the Parameters of the GARCH-X Model 

After estimating and diagnosing the significance of the model (GARCH(1 ,2) − X(0 , 1)), since all 

parameters are important and verification the conditions of the GARCH model, the hybrid model 

for this research can be written as follows:  

 

The conditional mean equation for the hybrid model from Table (2) is written as follows: 

Estimation 

methods 

 

Estimated Values of Parameters  (GARCH(1 ,2) − X(0 , 1)) Model 

 ∝̂o ∝̂1 ∝̂2 ϑ̂1 �̂�21 
QMLE 0.0000 2.3580e-01 1.0210e-01 4.2915e-01 1.71816e-05 

Standard 

error 
2.074228e-04 2.4442e-01 2.5051e-01 1.8655e-01 1.78160e-04 
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y𝑡 =  1.002y(t − 1) −  8.179e − 06𝑥1(t − 5) −  1.016e − 05𝑥1(t − 6)  −  1.121e −

   05𝑥1(𝑡 − 7)   −  1.096e − 05𝑥1(𝑡 − 8) −  9.488e − 06𝑥1(𝑡 − 9)  −  9.746e − 06𝑥2(𝑡 − 3)  −
 6.379e − 06𝑥2(𝑡 − 4) +  9.6e − 06𝑥2(𝑡 − 5)  + 𝑣t 

𝑣𝑡  =  𝜂𝑡√ℎ𝑡   ,     𝜂𝑡 ℱt−1  ≅  iid N (0, 1)                  ⁄   

The equation of time Volatility for the hybrid model from table (5) is written as follows: 

ht = 0.2358059 𝑣 t−1
2 +  0.1021029 𝑣 t−2

2  + 0.4291555 ht−1 + 1.718164𝑒 − 05 
 𝑥2 (𝑡−1)
2  

The above equations represent the hybrid models employed in the forecasting of the dollar 

exchange rates. 

4.2 Model validity (ARCH Effects): 

After completing the estimation of the hybrid model parameters (MISO ARX-GARCH-X), comes 

the stage of examining the accuracy and efficiency of the hybrid model in describing the time 

series data under study, where the (ARCH) test was used to verify the absence of an (ARCH) 

effect in the residuals of the hybrid model, and the result of this test appears in the following 

table: 

Table (6): The ARCH test for the series of residuals of the hybrid model  

(MISO ARX – GARCH-X) 

p − value Test Statistic Lag Null Hypothesis 

1.0000 0.4061 10 True 

1.0000 0.6349 15 True 

1.0000 0.9575 20 True 

0.9964 13.2673 30 True 

From table (6), the p-value was greater than (0.05) at the time shifts taken, and this indicates 

Don’t reject of the null hypothesis, i.e., there is no effect (ARCH). 

4.3 Forecasting using the hybrid model according to the hybrid (Zhang) methodology 

After completing the stages of building the hybrid model, the most important and final stage 

comes, which is obtaining the forecasting values of the dollar exchange rates by applying 

equations (36), (37), and (38) and forecasting (20) values forward, as follows (Ngailo et al., 

2014): 

 

Table (7): Forecasting values using the hybrid model 
[MISO ARX (1,5,3,5, 3) − GARCH(1 ,2) − X(0 , 1)] 

�̂�𝑡(ℓ) = �̂�𝑡 + N̂t 
HYBRID MODEL 

N̂t 
GARCH-X MODEL 

�̂�𝑡 
MISO ARX MODEL 

NO 
 

1498.175326 2.775326013 1495.4 1 

1495.712026 -5.487974389 1501.2 2 

1503.550146 0.250145564 1503.3 3 

1508.04339 -1.256610326 1509.3 4 

1504.939027 -7.26097269 1512.2 5 

1525.235308 16.73530781 1508.5 6 

1510.889884 4.289883843 1506.6 7 

1496.980853 -12.21914658 1509.2 8 

1499.139939 -4.660061055 1503.8 9 

1519.257058 -0.642941563 1519.9 10 
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1538.919918 13.91991795 1525 11 

1514.984124 1.084123563 1513.9 12 

1520.061184 6.861184297 1513.2 13 

1512.807395 -0.692604501 1513.5 14 

1521.440023 -7.859977365 1529.3 15 

1523.632266 -7.567733756 1531.2 16 

1534.163451 -3.136549192 1537.3 17 

1552.051077 14.95107694 1537.1 18 

1555.983263 25.98326319 1530 19 

1531.219665 3.919665461 1527.3 20 

 

Based on the predictive values in table (7), two series were drawn, the first representing the 

predictive values and the second representing the actual values, to determine the accuracy and 

efficiency of the hybrid model in the prediction process, as in Figure (4). 

 
Figure (4): The forecasting values using the hybrid model with the actual value 

Figure (4) shows that the predicted values were close to the actual values, which indicates that the 

hybrid model used can accurately predict future values.                               

5. Conclusion 

The main objective of this research is to use a hybrid model that addresses the problems facing 

the time series and consists of a linear part and a non-linear part, modeling each part separately, 

and then collecting them according to the (Zhang) methodology to obtain the best predictions for 

the phenomenon to be studied. Based on the results obtained, we can conclude the following 

results: 

1- Three criteria (AIC), (FPE), and (MDL) were used to diagnose the order of the linear model, 

and it became clear that the (MISO ARX (1, 5, 3, 5, 3)) model is the best model to represent the 

studied data. 

2-The results of the estimation stage of the model parameters (MISO ARX (1, 5, 3, 5, 3)) showed 

that the (RELS—SE) method outperformed the rest of the methods used, using comparison 

measures represented by (MAE) and (MAPE) according to the data studied. 

3-Two criteria (AIC) and (BIC) were used to diagnose the order of the nonlinear model, and it 

became clear that the (GARCH(1 ,2) − X(0 , 1)) model is the best. 

4- After building the hybrid model ((MISO ARX (1, 5, 3, 5, 3) - GARCH(1 ,2) − X(0 , 1)) ,the 

results of the (ARCH) test showed that the hybrid model treated the problem of heteroscedasticity 

and removed the non-linearity that was in the residuals of the (MISO ARX (1, 5, 3, 5, 3) ) model. 
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5- The hybrid model (MISO ARX (1, 5, 3, 5, 3) - GARCH(1 ,2) − X(0 , 1)) provided the best 

results for forecasting the dollar exchange rates, and the results were close to the original results.  
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