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Abstract: 

This paper, utilized the Restricted Partially Additive Regression Model to analyze air 

quality data in Baghdad governorate, with a focus on addressing multicollinearity issues among 

independent variables and outliers in the dependent variable. Through the implementation of 

classical estimators, ridge estimators, robust estimators, and the imposition of non-random 

constraints on the parametric parts of the model Through method of Robust Ridge-MM 

Estimator in Restricted Additive Partially Regression Model, the study aimed to assess the 

model's effectiveness in dealing with air pollution challenges during the summer season. Results 

obtained through the use of pre-built packages and algorithms in the R programming language 

indicated that integrating non-random constraints with robust estimators positively impacted the 

accuracy of estimating functions. Furthermore, certain variables, such as PM10 (airborne 

particles with an aerodynamic diameter of up to 10 micrometres), were found to have a 

significant impact on air quality This is through the parameter values. Non-linear effects were 

observed for some non-parametric variables. The study highlights the importance of 

understanding the effects of air pollutants on public health and emphasizes the urgent need for 

quick solutions to mitigate these negative effects. 
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1. Introduction: 
      When reviewing contemporary literature, it has been demonstrated that the 

semiparametric regression is of great value in many applications across various fields such as 

space science, medicine, economics, and others. This is achieved through the utilization of 

semiparametric regression models. the term 'semiparametric models' is attributed to 

(Oakes,1981; Begun et al., 1983), the parameters for the infinite-dimensional variables (the 

nonparametric component) and the limited-dimensional parameters of interest (the parametric 

component) are considered. Although this distinction is a fundamental feature of semiparametric 

modelling, it seems comprehensive in itself. Many issues that are typically considered 

'nonparametric' or 'parametric' can be classified as 'semiparametric' according to this framework. 

There is a middle ground between fully parametric and nonparametric models provided by 

semiparametric techniques. The semiparametric approach makes assumptions about m(t) less 

restrictive than those of a fully parametric model, yet it is more powerful than those of 

nonparametric estimation. 

as a result, semiparametric methods are capable of mitigating the impact of the 

dimensionality problem in estimation, enhancing the precision of estimation compared to 

nonparametric estimation while allowing for greater flexibility and lower risks of model 

misspecification errors than what is possible with a fully parametric model. Compared to 

nonparametric methods, dimensionality reduction and higher precision in estimation serve as 

primary justifications for semiparametric approaches. 

Sometimes, the parametric component of the semiparametric model faces challenges, 

and one of these challenges is the presence of correlation among some explanatory parametric 

variables, leading to the issue of linear multicollinearity. This issue has negative effects on the 

model estimation process. Additionally, apart from the problem of linear multicollinearity, other 

issues arise in the model, especially when some observations of the response variable follow a 

non-normally distributed distribution, referred to as outlier observations. The existence of these 

outlier values in the response variable affects the estimation of both parametric and 

nonparametric components in the model, thereby influencing the error boundary and resulting in 

the problem of heteroscedasticity .other issues arise in the model, especially when some 

observations of the response variable follow a non-normally distributed distribution, referred to 

as outlier observations. The existence of these outlier values in the response variable affects the 

estimation of both parametric and nonparametric components in the model, thereby influencing 

the error boundary and resulting in the problem of heteroscedasticity. 

Most prior studies have concentrated on the special case of partially additive linear 

models. For instance, Jean and David (1999) studied additive models that combine parametric 

and nonparametric terms, proposing a consistent    backfitting estimator for the parametric 

component of the model. They achieved this by developing a fast implementation algorithm for 

model fitting and selecting package width through simulation experiments. Li (2000) suggested 

an estimation of the additive partially linear regression model using a generalized sequential 

method based on boundary-adaptive splines, which proved to be more efficient in approximating 

the semiparametric estimator, ignoring the additive structure. 

Liang et al. (2008) studied the standard additive model, a generalization of multiple 

linear regression models, extensively. To strike a balance between the interpretability of linear 

models and the flexibility of additive models, they developed well-behaved partially additive 

semiparametric models. 

Heng and Hua (2013) studied into high-dimensional generalized partially additive linear 

models with shared variables. They attempted to identify which components (including both 

parametric and nonparametric components) were non-zero. They proposed employing double-

penalized functions to obtain initial estimates and then using a shrinkage factor and adaptive 

least angle selection to identify non-zero components. Through simulation studies, they 

demonstrated that the proposed procedure worked well with moderate sample sizes. 
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Several researchers addressed the issue of imposed random constraints on 

semiparametric models, such as Jibo and Yasin (2017) reviewed the estimation of partially linear 

models when random linear constraints on the parametric components are assumed to exist. 

Based on the weighted mixed estimator, the least squares method for the profile, and the ridge 

method, they introduced the constrained weighted random estimator for the parametric 

component. They also discussed the properties of the new estimator. Finally, a simulation study 

was conducted to illustrate the performance of the new estimator. 

Presenting the latest studies on ridge and robustness estimators, such as Kingsley and 

Fidelis (2022), suggested a new estimator to jointly address the issue of multicollinearity and 

extreme values by combining the following estimators: M-estimator, principal components, and 

ridge estimator. The new estimator is called the robust r-k estimator and is used in the partially 

semiparametric model. They theoretically demonstrated that the new estimator outperforms 

some existing estimators, supported by simulation studies and real-world applications 

showcasing the efficiency of the new method. 

In addition, Dayang and Dabuxilatu (2023) suggested a generalized Liu-type estimator 

(GLTE) to address the issue of multicollinearity in the linear part of the partially logistic linear 

regression model. Using the maximum likelihood method, the researchers suggested GLTE as a 

general formula for a Liu-type estimator, including the maximum likelihood estimator, ridge 

estimator, Liu estimator, and Liu-type estimator as special cases. They derived the conditional 

superiority of the proposed GLTE over other estimators under the mean squared error matrix 

approximation (MSEM) criterion. Moreover, optimal choices for biasing parameters and biasing 

function were presented. This was illustrated through numerical simulation processes, showing 

that the performance of the proposed GLTE was superior to current estimators. They further 

demonstrated the application of a dataset arising from a study of Indian liver disease patients to 

clarify their theoretical results. 

Talib and Hmood (2022) studied investigated the relationship between variables related 

to factors affecting stock prices for Pepsi Baghdad. They reviewed Partially Linear Additive 

Models as an effective tool for representing these relationships, whether linear or nonlinear, 

especially in cases that involve both types. The simulation results were analyzed using various 

criteria. The findings demonstrated that the Spline Approximation method was the most 

effective in model estimation. The Adaptive Lasso method showed high efficiency in cases of 

weak relationships and small sample sizes. The SCAD method proved its efficiency in cases of 

moderate correlation and small sample sizes. The MAVE Lasso method demonstrated 

effectiveness in large sample sizes. In cases of a strong relationship with explanatory variables 

and small sample sizes, the MAVE Elastic Net method was effective, while the MAVE Adaptive 

Elastic Net method showed efficacy in large sample sizes. 

The problem of the research is dealing with the analysis of air quality data in Baghdad 

Governorate. The challenges include the presence of multicollinearity and outlier values in the 

data, requiring an enhancement of the model's accuracy to better understand air quality and 

address pollution. 

The objective of the research is to analyze air quality data in Baghdad Governorate 

using the Restricted Additive Partially Regression Model. The research focuses on addressing 

multicollinearity and outliers in the data, evaluating the model's performance in dealing with air 

pollution challenges, especially during the summer season. The results indicate that integrating 

non-random constraints with robust ridge positively impacts the accuracy of embedding 

functions. The study highlights the importance of understanding the impact of air pollutants on 

public health and underscores the urgent need for effective solutions. 
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2. Material and Methods: 

2.1 Additive Partially Linear Model (APLM): 

It is a generalization of multiple linear regression models that replaces one-dimensional 

non-parametric functions for linear components, used to investigate the complex relationship 

between treatment response and potential predictors (Stone, 1977). Additionally, efforts have 

been made to find a compromise between the flexibility of additive models and the 

interpretability of linear models through partially additive linear models. In these models, some 

of the additive component functions are linear, while the remaining functions are treated as non-

parametric (Opsomer and Ruppert, 1999). The additive partially linear model is defined as 

follows: 

       ∑   (  )     
                                                         (1) 

Where   (          )
  represents the linear variables, and   (          )

  represents 

the non-parametric variables. Additionally, (          ) are the unknown smoothing functions, 

and   (          )is the vector of unknown parameters, and ϵ is the error term with a mean 

of zero. The conditional distribution between the error term and the variables (X, Z) is equal to 

zero. The model (1) can be reformulated as follows in equation (2): 

     
     (   )     (   )      (   )                        (2) 

Where Y is a vector representing the response variable with dimensions n×1.    represents the 

matrix of explanatory variables with dimensions (n×p), where p is the number of parameters.    
represents the vector of unknown parameters with dimensions p×1, and   (   ) represents the 

additive component for the first unmeasured variable (   ). Similarly,   (   ) represents the 

additive component for the second unmeasured variable (   )  and    represents the error term. 

The random errors are assumed to be independent of (     ). 

Ε,        -     Ε,  -       Ε,   -       
 When    is unknown, and V is a known matrix with dimensions n*n as a positive definite 

symmetric matrix (meaning all its eigenvalues are positive), the unmeasured component is 

estimated as follows: 

 ̂ (   )   ∑   (   ) (     
  )

 

   

 

 ̂ (   )   ∑   (   ) (     
  )

 

   

 

                         
                         
                         

 

 ̂ (   )   ∑   (   ) (     
  )

 

   

 

When    (   )     (   )            (   )- are positive weight functions, and each function 

satisfies the following conditions: 

1- Max 1≤ i ≤ n  ∑    (  )   ( )  
    

2- Max 1≤ i,j ≤ n     (  )   .  
 

 /  

3- Max 1≤ i ≤ n  ∑    (  )   (|     |    )    (  ) 
 
    

When I represent the indicator function and    satisfies the following condition: 

            
    

And     satisfies the following condition: 
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The semi-parametric additive partial linear model studied in this paper consists of two latent 

variables and is formulated as follows: 

     
     (   )     (   )                                                   ( )  

The model (3) is estimated by estimating the parametric part, which is linear and suffers from 

several issues. It is then employed to estimate the non-parametric part, followed by re-estimating 

the parametric part using the estimated non-parametric values. This process is repeated until the 

difference between the new estimates and the previous ones is close to zero. Additionally, there 

are outlier values in the model's response variable. 

2.2 Model issues: 

2.2.1 Multicollinearity: 

Multicollinearity occurs when two or more explanatory variables are highly linearly 

correlated, making it difficult to separate the effect of each variable on the response variable. 

This issue also arises when one of the explanatory variables has the same value for all 

observations or when one or more explanatory variables are linearly dependent on the studied 

model. In the presence of multicollinearity, applying the least squares method leads to a problem 

of variance inflation in the estimated regression coefficients. This is due to the singularity of the 

information matrix (X'X), resulting in an inflation in the diagonal elements of the (X'X) matrix. 

To address this problem, biased methods are used (Daoud, 2017; Kazem and Muslim, 2002). 

Several methods or tests exist to detect multicollinearity among explanatory variables, 

one of which is the Condition Number measure. The Condition Number was introduced by Muir 

in 1981 and is primarily based on the eigenvalues of the explanatory variables matrix (X'X). It 

measures the sensitivity of regression estimates to small changes in variances. Another method 

is calculating the Variance Inflation Factor (VIF), which quantifies the extent of 

multicollinearity (Adeboye et al., 2014). 

 

2.2.2 Outlier observations: 
Bross (1961) defined an outlier as an observation that deviates significantly from the 

other components in the sample set where this observation was found, As for (Freeman, 1980), 

an outlier is defined as any observation that did not arise in the general manner in which the vast 

majority of data observations were generated. (Keller, G. and Warrack, B.2000), define an 

outlier as an observation that deviates significantly from the regression equation and has a large 

error compared to the other natural observations in the data. Therefore, it will have an impact on 

the model and its estimates. The causes of the appearance of outlier values are often related to 

the data having an asymmetrical distribution. Outliers can also occur due to errors made by the 

researcher when recording measurements or as a result of faults in measuring devices, especially 

in laboratory experiments, or due to errors in calculations, leading to the emergence of outlier 

observations. 

 

2.3 Generalized Least Squares Estimator: 

To estimate the parametric part, we use the Generalized Least Squares Estimators 

(GLSE), which are the best unbiased linear estimators when the model does not suffer from any 

issues (Kutner and at al., 2005; 

 Roozbeh, 2016). 

 ̂          ( ̃   ̃ )     ( ̃   ̃ )                     (4) 

 ̂        ̃     ̃                                                       (5) 

Where:  

   ̃     ̃ 

Where  ̃  ( ̃     ̃ ) is the vector of the dependent variable with dimensions n*1, which is 

calculated based on the weight matrix    . 

    is computed using kernel functions and bandwidth, according to the following formula: 

 ̃      ∑ ∑    (   )  
 
   

 
                                     (6) 
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In the case of studying only non-parametric variables, as mentioned earlier, the formula is as 

follows: 

 ̃      ,∑    (   )    ∑    (   )  
 
   

 
   -        (7) 

As for  ̃ , it represents the explanatory variable vector and is calculated according to the 

following formula: 

 ̃      ∑ ∑    (   )  
 
   

 
                                                       

 ̃      ,∑    (   )    ∑    (   )  
 
   

 
   -      (8) 

 

2.4 Generalized least-squares restricted (GRLS): 

Assuming the existence of non-random linear constraints imposed on the model 

parameters, they can be expressed as follows: 

Where:     

R: is a known matrix of rank (q*p) where q<p. The rows of R are linearly independent, and the 

number of rows equals the number of constraints. The number of columns equals the number of 

model parameters. 

r:  is a known vector with dimensions q×1. Its elements represent the fixed bounds in the 

constraints. 

The assumption of full row rank for the fit is chosen and can be justified by the fact that each 

consistent linear equation can be transformed into an equivalent equation representing a full row 

rank in the matrix. Considering the imposed linear constraints, the Generalized Constrained 

Generalized Least Squares Estimator (GLSRE) is formulated as follows (Roozbeh, 2016): 

 ̂             ( ̃   ̃ )      ( ̃   ̃ )                          (9) 

s.t        

 ̂      ̂         (      )  (  ̂     )                          (  ) 
The constrained generalized least squares estimators are inefficient when dealing with the 

multicollinearity issue along with the presence of outliers in the dependent variable. This is 

because they fail to meet the conditions that would minimize the variance. Therefore, ridge 

estimators will be used instead. 

 

2.5 generalized least-squares ridge estimator (RGLS): 

They proposed this method, both (Hoerl and Kennard, 1970). This approach is used to 

address the issue of multicollinearity, where they suggested introducing a small positive number 

added to the main diagonal elements of matrix C, as in the following formula: (Najm A. and 

Khorshid, E, 2018). 

    ( )     
   ̃    ̃                                                                 (11) 

Where:           

Matrix C is a specific positive semi-definite matrix, meaning that its eigenvalues are greater than 

or equal to zero (Roozbeh,2012). 

There exists an orthogonal matrix Γ such that           , where        (      )  is a 

diagonal matrix representing the eigenvalues of matrix C. Therefore, the model (1) will become 

in the following form: 

 ̃    ̃                                                                                         (12) 

 ̃     ̃         ,              
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Now, the parameter K in the ridge-constrained semi-parametric regression model can be 

estimated using generalized least-squares restricted (Swamy et al., 1978). 

 ̂    
   ̂  

 

 ̂    
   ̂    

                                                                               (13) 

 ̂  
   

 

  (   )
 ( ̃    ̃  ̂    )

     ( ̃    ̃  ̂    )                           (14) 

2.6 generalized least squares restricted ridge estimator (RGRLS): 

The ridge parameter can be obtained by minimizing the sum of squared residuals with 

linear constraints, transforming the ridge-constrained semi-parametric regression into a model 

that includes the multicollinearity problem along with two constraints, as follows: 

   ( ̃   ̃ )    ( ̃   ̃ ) 

s.t 

           

     

Results of the estimators are given by the following formula: 

 ̂    ( )  (    )   ̃     ̃  (    )     ( (    )    )  ( (    )   ̃  
   ̃  

      

        ( )     
    (   

    )  (     ( )   )                                           (15) 

The above estimator is referred to as the generalized least-squares restricted ridge estimator 

(RGRLS) 

 Can be expressed in another form. 

 ̂    ( )  (    
    (    

     )   )    ( )     
 (   

    )    (16) 

As:   (  
    (    

     )  )    

The generalized inverse of R, denoted as   , can be expressed using the following formula: 

    (  
    (    

     )  ). 

So, the equivalent equation for equation (16) is: 

 ̂    ( )  (     ) ̂                                                                  (17) 

2.7 The Robust approach: 

The term "robustness" was first coined by (Box, 1953), and (Tukey, 1960a) highlighted 

the lack of robustness in the arithmetic mean and proposed alternative measures that are more 

robust. The theory has extended over the years to other applications, such as regression. Despite 

the abundance of methods introduced, there is no single method or approach considered the best 

in all aspects. Several criteria are used to determine the strengths of an estimator, and The 

optimal estimator is the one that possesses all the positive attributes across all criteria. Some of 

these important criteria include: (Leroy and Rousseeuw, 1987;  Rousseeuw and Van Driessen, 

2006) 

i. Breakdown Point: The point at which the estimator ceases to provide reasonable results. 

ii. Efficiency: How well the estimator performs in terms of precision and accuracy compared to 

other estimators. 
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iii. Computational Simplicity: The ease with which the estimator can be computed. 

iv. Asymptotic Behaviour: The performance of the estimator as the sample size approaches 

infinity. 

 

2.8  The Robust MM Estimator : 

The Robust MM Estimator, as introduced by (Yohai, 1987) and developed by (Wilcox, 

2021), is a powerful statistical estimator that aims to provide reliable estimates even in the 

presence of outliers. This estimator is designed to be less sensitive to extreme observations, 

making it suitable for situations where the data may contain outliers or outliers.  

The “MM” in MM Estimator stands for “M estimate based on robust M estimators.” These 

estimators are formulated to minimize a robust objective function, by assigning less weight to 

outliers.  

Different functions have been proposed based on the desired properties of the estimator. The 

MM estimator is particularly useful in regression analysis and other statistical modelling tasks 

where outliers can significantly affect the results. (Rasheed, Z. H. and Abdulhafiz, A. S, 2013). 

∑  (
     

  

   

 
   )  

                                                                  (  )  

Where     represents the standard deviation obtained from the robust S method.   represents 

the Tukey's square weight function. 

 (  )  

{
 

 
  

 

 
 

  
 

   
 

  
 

   
                                 

  

 
                                                       

 

Using the WLS method and the weight matrix W, we obtain the MM estimators. 

 ̂   ( ̃   ̃)    ̃   ̃                                                       (  ) 
Algorithm MM: 

1. Estimate regression coefficients on the data using the Generalized Least Squares (GLS) 

equation (5). 

2. Detect the presence of outliers in the data. 

3. Determine the preliminary estimated estimator, which has a breakdown point of 50%, usually 

using the S-estimator or the Least Trimmed Squares (LTS) estimator. 

4. Calculate the residual values        ̂  for the S-estimator. 

5. Calculate the value  ̂ . 

 ̂  {

          (  ) 

      
                      

√
 

  
∑     

  
                                     

  

where t represents the number of iterations.  

6. Calculate the value         . 
7. Compute the diagonal weight matrix. 

8.    {(
,  (

  
     

) -                                     

                                                                 
)   

            
  

8. Find  ̂  , Or  ̂   . 

9. Repeat steps 5 to 8 using the new estimate  ̂   until obtaining a close value for  ̂    
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To express robust MM estimators in the constrained semi-parametric regression model RSRM 

(Nyquist, 1992): 

       (   )  ( ̃   ̃ )   
 

    
 

 ( ̃   ̃ )                               (21) 

s.t 

     

The resulting estimate is the Restricted robust estimator (MMRSRE) in the semi-parametric 

regression model, expressed in the following formula: 

 ̂      ̂  ( )   ( )    (  ( )    )  (  ̂  ( )   )   (22) 

Where:  

 ( )    ̃   
 
      

 
  ̃ 

 ̂  ( )   ( )   ̃   
 
    

 
  ̃ 

2.9 Ridge estimators based on the robust approach: 

To estimate the ridge parameter relying on the robust MM in the Restricted semi-parametric 

regression model (RSRM), this method is referred to as Robust Ridge MM Estimation 

(RRMME). (Qazaaz, Q. N. and Saleh, R. A,2015). 

 ̂   
   ̂  

 

 ̂   
 ( )   ̂   ( )

                                                                        (23) 

 ̂  
   

 

  (   )
 ( ̃    ̃  ̂   ( ))    

 

      
 

 ( ̃    ̃  ̂   ( ))   (24) 

 ̂    ( ̂    )   ̂  ( ̂    )   ( ̂    )
  

  (  ( ̂    )    )  (  ̂  ( ̂    )  
 )   (25) 

Where: 

C ( ̂    )   ( )   ̂    

 ̂  ( ̂    )   ( ̂    )   ̃   
 

    
 

  ̃                                             (26) 

2.9 Non-parametric estimation methods in Restricted Additive Partially Regression 

Models: 

Model (3) is estimated by initially estimating the parametric part, which is linear and suffers 

from various issues. This estimate is then utilized in estimating the non-parametric part. 

Subsequently, the parametric part is re-estimated using the non-parametric estimates, and this 

process is iterated until the difference between the new estimates and the previous ones becomes 

close to zero. The non-parametric part is estimated using the Local Polynomial estimation 

method (Speckman, 1988; Li and Yin, 2008; Yang, 2010; Hmood, M. and Muslim, A, 2012). 

2.10  Local polynomial estimator : 

The local linear regression is considered a good smoothing method because it has high 

efficiency compared to other smoothing methods. Assuming (d=2) in model (3), i.e. 

The additive functions can be written as follows: (Talib.H and Hmood.M, 2022; Hamood, K. 

and Qais, S. ,2013; Talib, H. R. and Hmood, M. Y,2022). 
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    *  (   )   (   )          (   )+
  

The backfitting algorithm is utilized for the model (3), assuming that      

        

 represent 

equivalent kernel functions for the local linear regression at        respectively. (Lexin Li and 

yin 2008) 

     

     
  (  

       )
  

  
                                                                    (  ) 

     

     
  (  
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                                                                    (  ) 

    (     )  

       {
 

  
 (

      

  
)     

 

  
 (
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Where  ( ) represents the kernel function,       are the bandwidths, and       are design 

matrices with dimensions (    )defined as follows: 

    

[
 
 
 
        
 
 

 
 
 

       ]
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       ]
 
 
 

 

      are smoothed matrices representing or equating the kernel functions for the observations 

(          )
(          ) و   

 , respectively. 
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     ]
 
 
 

                    

[
 
 
 
      

 
 

     ]
 
 
 

 

 

and  {  
   (      ⁄ )  }  denotes the centered smoothing matrix for   . 

and  {  
   (      ⁄ )  } denotes the centered smoothing matrix for   . 

1 a unit vector of dimension (n×1)" refers to a vector consisting of n rows, each having a value 

of 1. 

Using the backfitting algorithm for the partially linear additive linear model to estimate both the 

parametric and non-parametric components is as follows: 

 ̂ 
( )

    
  .     ̂     

(   )/

 ̂ 
( )

    
  .     ̂     

(   )/
   }                                                               (  ) 

 ̂ 
( )

 and  ̂ 
( )

 represent the estimators in the     stage of the backfitting algorithm. As a result, 

the non-iterative estimators for β take the form: 

 ̂   *  (        ) +
     (        )                                                             (  ) 

     2  (       
    

  )
  

 (       
  ) 3   2  (     

   
 )

  
(     

 )3 (  ) 

  To ensure that  ̂  is a consistent estimate of the root of n within the necessary bootstrap by 

removing the restriction using the likelihood form procedure, the basic idea can be described as 

follows: 

Let  ̂ (    )   ̂ (    )be the backfitting estimates for   (   )     (   )  respectively, as in 

formula (29), except replacing  ̂          ( ̂    ̂ )can be expressed as follows: 
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 ̂ ( )    2   (       
    

  )
  

 (        
  ) 3 (     )

 ̂ ( )    2   (       
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}                          (  )  

Now, substituting  ̂ ( ),  ̂ ( ) into model (3) and using the least square method, we obtain 

estimates based on the β formula of the form: 

 ̂   *  (     )(        )
   +     (     )(        )

            (  ) 

As discussed by (Hastie and Tibshirani,1990; Opsomer and Ruppert,1999), centering each 

[  
      

 ] is necessary to ensure the convergence of the algorithm and the estimator  ̂ , and is 

well defined by the assumption that 

∑   (   )
 
     ∑   (   )

 
       

Usually, the optimal bandwidth is(     ⁄ ). This means that the estimator  ̂ is consistent for   . 

to apply the mentioned methods in The theoretical aspect of studying air quality standards in 

Baghdad province for a period of 46 days during the summer season, from June 1, 2023, to 

September 1, 2023. 

3. Data Sources: 

Daily averages of particle concentrations (PM10, PM2.5, CO2, CO, NO2, O3, Temp) 

were utilized, derived from daily fixed measurements or data aggregatable into daily averages. 

This index relies on the following: 

i. PM10: Airborne particles with an aerodynamic diameter of up to 10 Micrometres, 

encompassing both fine and coarse particles. 
ii. PM2.5: Airborne particles with an aerodynamic diameter of up to 2.5 Micrometres, also 

referred to as fine particulate matter. 
iii. CO2: Emissions of carbon dioxide gas. 
iv. CO: Emissions of carbon monoxide gas. 
v. NO2: Emissions of nitrogen dioxide gas. 

vi. O3: Emissions of ozone gas. 
vii. Temp: Temperature. 

To present air quality data representing human exposure, urban measurements were 

primarily used, including urban background, residential areas, commercial areas, mixed areas, 

and industrial areas near urban settlements. 

Data from fixed measurements were included, excluding mobile stations. Air quality 

stations covering specific "hotspots" and exclusive industrial areas were not included in the 

analysis, as these measurements often represent areas with higher exposure rather than the 

average exposure of the population. 

"Hotspots" were defined in the original reports or categorized as such because they 

were, for example, near exceptionally congested roads. However, it should be noted that 

omitting these measurements may have led to underestimations of average air pollution in the 

city. Data has been obtained through monitoring the following websites: 

1-[AccuWeather] (https://www.accuweather.com, 2023). 

2-[Tomorrow.io] (https://www.tomorrow.io/weather, 2023). 

3-[IQ Air] (https://www.iqair.com, 2023). 

3.1 Data Modelling: 
To model the data in a semi-parametric regression model (46 observations), the 

variables are defined as follows: The Air Quality Index (AQI) is the dependent variable (Y), and 

the independent variables include (PM10, PM2.5, CO2, CO, NO2, O3, Temp). To determine 

which independent variables are labeled as parametric or not, we plot the variables to ascertain 

whether their relationship is linear with the dependent variable. If the relationship is linear, it 

indicates that the variable is parametric, as shown in the following figure: (Rawya. E. and 

Mohammed. J, 2023). 
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Figure 1: Type of Relationship and Scatterplots Between Each of (PM10, PM2.5, CO2, CO, 

Temp) and the Dependent Variable (Y). 

It is evident from Figure (1) that each of the variables (PM10, PM2.5, CO2, CO, Temp) 

has a somewhat linear relationship with the dependent variable, indicating that they are 

parametric variables. As for the variables (NO2, O3), they are non-parametric variables, as 

shown in Figure (2): the type of relationship between them and the dependent variable. 
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Figure 2: Type of Relationship and Scatterplots Between Each of (NO2, O3) and the Dependent 

Variable (Y). 

Therefore, the dataset is modeled using the partial least squares regression model: 

(   )       (    )    (     )    (   )    (  )    (    )    (   ) 
   (  )                                                                              (  ) 

After clarifying both the parametric and non-parametric variables, it is essential to understand 

and verify the correlations between the parametric variables. This can be achieved by examining 

the correlation matrix as in Table (1): 

Table 1: Correlation Matrix 

 AQI Temp PM2.5 PM10 CO2 CO 

AQI 1 0.69379 0.71231 0.80195 0.83737 0.73008 

Temp 0.69379 1 0.83213 0.65980 0.80386 0.82244 

PM2.5 0.71231 0.83213 1 0.86159 0.77529 0.90963 

PM10 0.80195 0.65980 0.86159 1 0.84527 0.77484 

CO2 0.83737 0.80386 0.77529 0.84527 1 0.87506 

CO 0.73008 0.82244 0.90963 0.77484 0.87506 1 

Upon investigation, it becomes evident that there are multiple strong linear relationships 

between almost all variables. Therefore, it is necessary to calculate the eigenvalues of the 

information matrix (   ), which are as in table (2): 

Table 2: Eigenvalues of the Information Matrix (   ) 

λ1 λ2 λ3 λ4 λ5 

3.8278249 0.0019443 0.0004060 0.0002665 0.0001093 

Based on the eigenvalues provided in Table (2), the Condition Number (C.N) was calculated to 

detect multicollinearity issues, relying on the following formula: 

    √
    

    
 √

         

         
         

For further verification and confirmation of the presence of multicollinearity issues, we calculate 

the Variance Inflation Factor (VIF) for each variable as in table (3): 

Table 3: Values of the Variance Inflation Factor (VIF) for Independent Variables 

Temp PM2.5 PM10 CO2 CO 

11.22382 49.22341 25.42113 31.33400 28.43729 
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It has become evident that the data suffers from multicollinearity issues. Consequently, 

the information matrix will be highly problematic. Therefore, utilizing ridge regression or 

imposing non-random constraints on the model would be an appropriate solution to address the 

multicollinearity problem. To combine both approaches, we need to impose the following 

constraint matrix, assuming it achieves the least pollution ratio obtainable. The constraints are as 

follows: 

  0
     
     

1    0
 
 
1 

To test the hypothesis        , we use the Chi-square test employing the estimators 

of the least squares method and comparing them to the tabulated value with degrees of freedom 

(2) for two constraints at a significance level of 0.05. The formula for the test is as follows: 

    
  (  ̂     )

 
(  ̂  )

  
(  ̂     )        

Where:  ̂    ̂   
  ( ̃  ̃)   

    
   (      )

       . Since the calculated value is smaller than the tabulated value,    is 

accepted. 

After identifying the presence of multicollinearity in the data and discussing the 

methods to address it, the next step is to test for outliers in the data. We use the Studentized 

Deleted Residuals (SDR) method to detect outliers in the dependent variable. It has been found 

that there are four outliers, representing 8.7% of the total sample. Therefore, robust methods 

should be employed for estimation, utilizing ridge regression with imposed constraints to 

achieve the best estimators and the most representative model of the phenomenon. The 

estimation process using the programming (R) will be as in table (4): 

 

Table 4: Model Estimates and Comparison Criteria 

Methods                MAD R2 

GLS 0.905752 -0.484036 1.074623 1.580387 0.333326 8.3008 0.4131 

GRLS 1.662499 -0.764781 1.988307 0.547714 0.88804 7.5807 0.6175 

RGLS 0.708632 -0.1457 0.872612 1.454519 0.213629 7.9228 0.5828 

RGRLS 1.597204 -0.830483 1.879708 0.549923 0.793004 7.3198 0.6606 

RRMME 1.575838 -0.848313 1.846967 0.550328 0.765097 5.0606 0.8650 

Table (4) displays the parameter estimates of the Restricted Additive Partially 

Regression Model. The parametric part was estimated using Generalized Least Squares (GLS), 

Generalized Ridge Least Squares (GRLS), Ridge Generalized Least Squares (RGLS), Ridge 

Generalized Least Squares with Constraints (RGRLS), and the Robust Method (MM) for 

constrained generalized least squares. The non-parametric part was estimated using Local 

polynomial estimator, employing the Epanechnikov kernel function. The bandwidth was 

selected using Cross-Validation. Model estimation methods were compared using the 

Coefficient of Determination and Mean Absolute Deviation. This criterion was chosen due to its 

sensitivity to outliers in the dependent variable. The results indicate that the method combining 

constraints and ridge estimates outperformed the classical method and individual ridge 

estimates, as well as individual non-random constraints. The best method for estimating of the 

Restricted Additive Partially Regression Model, considering both multicollinearity and outliers, 

is achieved by integrating non-random constraints with ridge estimates using the MM method. 

Examining the estimated parameters for the parametric part reveals that the second independent 

variable, PM2.5, has an inverse relationship with the dependent variable. 
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To assess the suitability of the estimation methods used for the parametric part in 

determining the non-parametric part, this was illustrated through Figure (1). The figure depicts 

the dispersion relationship between the combined non-parametric variables (O3, NO2) and the 

dependent variable (AQI). 

 

Figure 3: Represents the behavior of the combined non-parametric variables with the dependent 

variable. 

Figure 3 shows a drawing of the behavior curve of the two nonparametric variables together with 

the dependent variable y. By knowing the behavior of the curve, it can be compared with the 

nonparametric functions estimated in the nonparametric part of the model. 
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Figure 4: represents the behavior of the combined non-parametric variables with the estimated 

smoothing functions. 

Figures (3) and (4) show that the method that combined both non-random constraints 

and the robust ridge estimator was more suitable than other methods when using its estimates to 

find the smoothing function estimates, Figure 4 also shows that the behavior curve of the two 

nonparametric variables when using the Robust approach MM was closer to their behavior with 

the dependent variable shown in Figure 3. 

 

4. Discussion of Results: 
In this paper, we utilized restricted additive partially regression model to model air 

quality data in Baghdad Governorate, as all the independent variables used collectively influence 

the dependent variable in an aggregate manner. Furthermore, we addressed the issues of 

multicollinearity and outliers in the dependent variable by employing classical estimators. 

Subsequently, non-random constraints were imposed on the parameters of the parametric part of 

the model and the robust ridge estimators obtained through the robust approach, specifically the 

MM estimators, which exhibit a high breakdown point and efficiency. It was evident that the 

method combining non-random constraints with robust ridge estimators was superior to other 

approaches when used to estimate the smoothing functions in a Local polynomial estimator, as 

indicated by the comparison criteria employed in model estimation. additionally, we 

demonstrated that both variables (O3, NO2) exhibit a non-linear relationship with the dependent 

variable (AQI). The latter, with exceptionally high rates during the summer season, adversely 

affects public health and human life in Iraq. Urgent solutions are required to address the 

prevalent diseases resulting from air pollution. Moreover, based on the estimated parameter 

values, we find that the variable (PM10), representing airborne particles with an aerodynamic 

diameter up to 10 micrometers, has a more significant impact on air quality compared to other 

variables. Additionally, there are non-linear effects observed for the non-parametric variables. 

5. Conclusion: 

In summary, our analysis of air quality data in Baghdad Governorate using the 

Restricted Additive Partially Regression Model has provided valuable insights into the dynamics 

of air pollution and its implications for public health. By effectively addressing issues of 

multicollinearity and outliers in the dependent variable through the application of classical 

estimators and robust modeling techniques, we have gained a deeper understanding of the 

complex relationships among various factors influencing air quality. 
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Our findings underscore the urgent need for interventions to mitigate the adverse effects 

of air pollution, particularly during the summer season when pollutant levels are notably high. 

The non-linear relationship observed between certain variables and air quality indicators 

highlights the complexity of the underlying mechanisms driving pollution levels in the region. 

moreover, our analysis emphasizes the significant impact of airborne particles, particularly 

PM10, on air quality, indicating the importance of targeted measures to reduce their emissions 

and mitigate their harmful effects on public health. 

Overall, our study contributes to the growing body of knowledge on air quality 

management and underscores the importance of adopting robust modeling approaches to better 

understand and address the challenges posed by air pollution in urban environments like 

Baghdad Governorate. Future research in this area should focus on refining modeling techniques 

and exploring additional factors that may influence air quality dynamics, ultimately informing 

more effective policy interventions and public health strategies. 
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 البحث: مسحخلص

فييييه ايييية، ال رليييية  مييييم اسييييتلإداف  ايييي  ج الا  ييييدار الإنييييبفه الاميييييد ج  يييييب لت لييييي  بيب ييييب  جيييي دة ال يييي اء فييييه               

م بفظيية بغييداد  مييك التركييي  جلييض معبلليية لاييبيب العتليية اللإ ييية الاتعييددة بيييا الاتغيييرا  الاسييتملة والميييم الات رفيية فييه               

وفيييري ليييي د  يييير    ال صيييي ةوالاميييدرا   ال ييير  الاتغيييير التيييببك. ميييا  يييتد م  ييييك الاميييدرا  ال تسيييي ية ومميييدرا        

فييييه  ايييي  ج الا  ييييدار  Robust Ridge-MMلل ايييي  ج مييييا  ييييتد  ريميييية ممييييدر  الاعلايييييةجشيييي ا ية جلييييض ا جيييي اء 

فييه التعبميي  مييك م ييديب  مليي   ال يي اء       تيي فعبليو إلييض ممييييم مييد   لييبج ال ايي  ج     ال رلييةالاميييد  اييدف    التلايعييهالل  ييه 

ال تييب ا التيييه مييم ال صيي د جلي ييب مييا  يييتد اسييتلإداف ال يي ف واللإ ار ميييب  الاعييدة مسييي م ب           ييتد فصيي  الصييير.   ييبر      

 ثييير بشييي   إيليييببه جليييض دلييية و يييب ر    ال صيييي ةإليييض  م دميييا الميييي د  يييير العشييي ا ية ميييك الاميييدرا      Rفيييه لغييية برملييية  

والتيييه يصييي  ل رايييب  )الل يئيييب  الا ا لييية بيييبل  اء PM10التميييدير. جيييتوة جليييض  ليييض  وجيييد  م بعييي  الاتغييييرا   م ييي   

مي رومتيييرل  ل يييب مييي ثير ك يييير جليييض جييي دة ال ييي اء  و ليييض ميييا  يييتد لييييم الاعلايييب . وليييد             10اليييدي بمي ه ال ييي ا ه إليييض   

. ومسيييلط الدراسييية الاييي ء جليييض  اايييية ف يييم مييي ثيرا        الاعلاييييةل حظييي  مييي ثيرا   يييير   يييية لييي ع  الاتغييييرا   يييير       

 بجة الال ة إلض حل د سريعة للتلإفير ما اة، الآثبر السل ية.مل ثب  ال  اء جلض الص ة العبمة  ومؤكد جلض ال 

 .مص ير ال رلة اللإبصة بض م    حد اة، التص يفب : ورلة ب  ية :ووع البحث

 

ا ا  ج الا  دار التلايعه الل  ه     الاعلاه  الاربعب  الصغر  الاعااة  المي د  التعدد  :المصطلحات السئيسة للبحث
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