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Abstract : 

         In this paper, we discuss estimating the parameters of the restricted gamma ridge 

regression model by combining gamma ridge regression with restricted maximum likelihood. 

The characteristics of the new estimator and its superiority over the restricted gamma ridge 

regression estimator and restricted maximum likelihood will be identified, using several 

formulas for the shrinkage factor k, and it will also be Using the Monte Carlo simulation method 

to generate data that suffers from the problem of multicollinearity with different sizes 

(n=25,50,100,250) in light of other influential factors (degree of correlation, number of 

explanatory variables), and subjecting the parameters to linear restrictions, to get rid of the 

problem of multicollinearity in light of the subjection of the parameters to the model has linear 

constraints and the model parameters will be estimated using four estimation methods that rely 

on the mean square error (MSE) as a standard for comparison between the estimation methods, 

Through the results of the simulation experiment it was shown that the compound estimator 

method is the best way to estimate the parameters of the finite gamma regression model . 
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1. Introduction : 

         The Gamma Regression Model (GRM) is considered one of the commonly used models in 

the field of economics and medicine, in addition to several other fields, with the presence of  

multicollinearity between the explanatory variables an ordinary ridge regression ORR  used, and 

because the explanatory variable is positively skewed and follows the Gamma distribution this 

method has proven ineffective because it gives high variances. Therefore, the Gamma ridge 

Regression method (GRRE) is used to estimate the parameters of the restricted gamma ridge 

regression model, but when the parameters fall under the influence of a linear constraint Rβ=r, 

since R is m × p, which is a known matrix. And r is a vector of known elements m × 1, so in this 

case we resort to the restricted maximum likelihood (RMLE) to get rid of the effect of 

restrictions imposed on the model parameters, and with the problem multicollinearity In this 

case, we resort to using a method that combines constrained maximum likelihood and gamma 

ridge regression to overcome the problem of multicollinearity in the presence of restrictions 

imposed on the parameters. 

 

1.1 Literature review: 

          Many research papers have been published on the study of choosing the best 

estimator for ridge regression with regard to linear regression, multiple regression, and other 

types of regression models, as well as with regard to the gamma ridge regression model. The 

following are the most prominent published researches on this topic: 

 Francis et al (2016)  suggested  the  restricted  Liu estimator to find a regression model 

parameter estimate in the presence of the multicollinearity problem, and they assumed the 

constraint Rb=r. The properties of this estimator were compared with the properties of the 

restricted maximum likelihood estimator RMLE, and the effectiveness of the restricted Liu 

estimator was demonstrated. 

 El-Gammal (2018) proposed the gamma ridge model by proposing a modification of the 

estimator with the gamma ridge regression model. The gamma regression model is considered 

common in practical application when the data are positively skewed in order to overcome the 

problem of multicollinearity, which has a negative impact on the variance of the model’s 

estimators. 

Qasim,et al (2018) used the maximum likelihood method to estimate the unknown 

gamma regression parameters in the presence of the multicollinearity problem. It was noted that 

the variance of the estimator using the maximum likelihood method MLE was exaggerated, so 

the Liu estimator was used, as this estimator is considered an important estimate to address the 

problem of multicollinearity in gamma regression. 

 Amin et al (2020) proposed some ridge estimators for the gamma regression model 

GRM, which is considered a special form of the generalized linear model (GLM) in which the 

response variable is positively skewed and suitable for the gamma distribution, and the 

maximum likelihood method ML is considered it is the most widely used method for estimating 

GRM coefficients if the explanatory variables are not related. However, if the explanatory 

variables are related, ML is unable to estimate GRM coefficients. Researchers have proposed 

ridge estimates as a method to address the problem of multicollinearity or correlation between 

variables. 

 Mahmoudi et al (2020) proposed improved estimators based on the initial test and 

Stein-type strategies for estimating parameters in the gamma regression model, two penalty 

estimators were introduced, such as lasso and ridge regression. 

 Qasim et al (2021) proposed a new estimator for beta series regression (BRR) as a 

treatment for the instability of MLE due to the presence of the multicollinearity problem, and 

Monte Carlo simulation was used as a tool to evaluate the performance of BRR and MLE. 
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Yassin,et al (2022) studied the estimation of the parameters of the gamma regression 

model using the hillslope regression estimates used in estimating the parameters of the linear 

regression model in the presence of the multicollinearity problem and generalizing them to the 

gamma regression model. These estimators were compared with Least squares estimator and 

prove the effectiveness of these estimators. 

The research problem is summed up in estimating the parameters of the restricted 

gamma ridge regression model when the explanatory variable are related to each other, as it is 

difficult to reach sound estimates of the model parameters using ordinary estimation methods 

such as the maximum likelihood method MLE, Especially in light of imposing restrictions on the 

model’s parameters, as it will give estimates with high variances and thus it will not be possible 

to the researcher is able to know which explanatory variables have an impact on the regression 

model. 

This research aims to find the best estimator for the restricted gamma ridge regression 

model by combining the gamma ridge regression GRR method with the restricted maximum 

liklihood RMLE to obtain a new estimator for the model. The mean square error MSE will be 

used as a comparison standard to test the effectiveness of the new estimator. 

 

2. Materials and Methods: 

2.1 Gamma Regression Model: 

         Gamma Regression Model GRM is considered an extension of the topic of generalized 

linear models GLM, as generalized linear models differ from the well-known linear regression in 

that the distribution of the dependent variable is required to belong to the exponential family and 

that the expected values   are for the random variable Y, It is replaced by a link function 

  =g(  ) and η is a linear combination of independent variables. The goal of the link function is 

to make the error variance more stable. In addition, the error distribution of the model can be 

chosen in a way that is independent unlike linear regression, which should be the error 

distribution normal distribution (Hardin and Hilbe, 2007; Qasim  et al. 2021). 

Because the gamma distribution is a specific form of the family of exponential distributions, the 

scientists Hardin and Hilbe in 2007 formulated the equation of the probability density function 

for the gamma distribution to become as in equation (1)( Algamal 2018 ; Amin et al. 2020) : 

     f(Y,µ, )  =
 

      (
 

  
    

            ⁄                                     (1)  

 

Assuming that                  ;         

   dispersion parameter 

μ: arithmetic mean  

The probability mass function for the exponential family is given as in equ(2): 

    f(       = exp*
       

    
        +                                                          (2) 

θ: location parameter 

b(𝛳): cumulative distribution function (c.d.f) of the variable   if 

b(  = - ln (µ)                 θ = 1/μ 

a(ϕ)= - ϕ: constant value required to estimate the standard error 

C(Y, ) = 
   

 
      

      

 
     

 

 
  

Equation (2) can be written as in equ(3): 

   f(    ϕ  *
           ⁄

  
 

   

 
       

      

 
     

 

 
 +                                          (3) 

Therefore, the expectation and variance take the following form: 

  E(Y) =       
  

  

  

  
 

  

 
       = µ                                                                    (4) 
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   Var (Y) =                (𝛳)=(-  (-  )=                                                      (5) 

The link function for the mean of the explanatory variable Y, which follows the gamma model, 

can be written in the equation(6) form (Qasim et al,2021 ; Yasin et al, 2022;Kamary et al,2023): 

   g(  )= (
 

  
   =   

                  i=1, 2, …, n                                                                    (6) 

    rows of the variable matrix X=(                 

X: explanatory variable matrix of degree n × (p+1) 

β: the normal vector of regression coefficients of degree (p+1)×1 

The maximum likelihood function MLE: 

L=I(  , )=∑ ,(
    ⁄           

  
)  

   

 
        

      

 
     

 

 
 - 

                              (7)                                               

The MLE is calculated by means of the reweighted least squares algorithm IRLS 

   ̂   = (   ̂          ̂                                                                                           (8) 

Since: 

 ̂      {    
 ⁄    

 }     and            =  ̂ +(    ̂ )/ ̂ 
 
                                                                

They are modified variables that use an inverse link function(Abdeljabbar 2020): 

 ̂      
   ̂              

                         

The covariance matrix for  ̂  is: 

   Cov ( ̂    =ϕ̂ (   ̂                                                                                              (9) 

The estimated value of the dispersion coefficient  ̂ is calculated by the equation(10): 

     ̂   
 

   
∑

     ̂  
 

  ̂  
 

 
                                                                                                   (10) 

Where    q=p+1 

 P :  Number of independent variables 

The mean square error MSE is extracted: 

    E(   
 )=E( ̂        ̂      =tr(  ̂    = ̂ ∑

 

  

 
                                          (11)  

  :  Eigenvalue of the matrix (   ̂   

The observation recorded when using the MLE method in the presence of the problem of 

multicollinearity is that the MSE value is large as a result of the increased correlation between 

the explanatory variables, which leads to the value of    being small.  

 

2.2 Ridge Regression: 

         The least squares method (OLS) is considered the best unbiased linear estimation method 

for regression model parameters because it gives parameters with the lowest variance value, but 

in the presence of the multicollinearity problem, using this method will give us inaccurate 

estimates for the regression model, because the parameters will have large variances, so the 

researchers proposed Horel - Bennared in 1970 developed a method to address the problem of 

multicollinearity by adding a small positive quantity to the diagonal elements of the information 

matrix (   ) and Its calculated according to the equation(12)(Sampreet 1989; Kazem 2002): 

                    

    *

    

 
    

+                                                                                                                       

    represents the Ordinary Ridge Regression estimator and is symbolized by the symbol 

(ORR). 
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2.3 Gamma Ridge Regression: 

         The best method used to estimate the regression coefficient in the presence of the 

multicollinearity problem is the ridge method, and the most important advantages and 

disadvantages of this method are reducing the value of the mean square error MSE and 

increasing the value of the shrinkage factor k, In the presence of the problem of 

multicollinearity, the MSE value of the maximum likelihood estimates MLE is inflated and 

misleading. To solve this problem, the ridge regression method for generalized regression was 

proposed. In the same way, the scientists  adopted the estimation of the regression coefficient for 

the gamma ridge regression model (Asar et al. 2017): 

     ̂  =    ̂               ̂     ̂                                                                       (13) 

                                                ̂  =     ̂           ̂         

 
2.4 Restricted Maximum Likelihood Estimator: 

         One of the methods used to prove the efficiency of the estimator is by using previous 

information, such as information related to the regression coefficients. The primary goal is to 

estimate the coefficient β when β is subject to a linear constraint   
      Since 

    is a constant number 

    is a known vector p×1 

m is an independent restriction imposed on the feature vector   

With this case, a restricted estimator used for β, where the restricted maximum likelihood 

method RMLE gives us the largest value of the link function for the GRM gamma regression 

model on β under the restrictions    
      , and it is calculated RMLE according to the 

equation (14) (Sarkar 1992 ; Kurtoglu 2017 ; Qasim et al. 2021): 

 ̂      ̂        ́(     ́)
  

(    ̂   )                                                        (14) 

 

2.5 Built-in estimator: 

         To obtain the RMLE estimator, It is done by maximizing the maximum potential function 

of the gamma regression model, taking into account the constraint    
     , where m=1,2,..t, 

and with the presence of the multicollinearity problem, the RMLE method can give us weak 

estimators and thus give false information as This is the case for the MLE estimator with 

existence of the multicollinearity problem, so itis necessary to Add modifications to the RMLE 

estimator in order to obtain an effective estimator under the framework of a set of linear 

constraints. The restricted letter regression estimator for the general regression model GLM was 

presented by Ozkale and Kurtoglu (2017) and itis the same estimator used for gamma regression 

model GRM (Qasim et al. 2018 ; Amine et al. 2020 Qasim et al. 2021): 

   ̂    =    ̂                                                                                                           (15) 

 

2.6 Estimation of the shrinkage coefficient: 

         It is better in practical application for the shrinkage coefficient (k) estimation to be in a 

way that reduces the value of the mean square error MSE of the maximum possible estimator 

RMLE and the combined estimator RGRRE. For this purpose, equation (16) was used 

(Tibshirani  1996 ; Qasim et al. 2021 ; Yasin et al. 2022): 

EMSE= ̂ ∑
  

       

   
    +   ∑

  
 

       

 
                                                                     (16) 

Equation (16) is derived with respect to k and equalized to zero to find the best value for 

k... Researchers Qasim , Akram , Amin and Manson in ( 2021) proposed a number of methods to 

estimate the shrinkage coefficient for the purpose of choosing the best method that gives us the 

lowest MSE, which is : 
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         ̂       (√
 ̂     
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 )                                                                                 (20) 

         ̂   (∏  
 ̂     
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                                                                                  (21) 

 

2.7 Comparison between  ̂    and  ̂    when the previous constraints are true τ=r-

Rβ=0 

           ̂     is an unbiased estimate when τ=0, but  ̂     is a biased estimate under the GRM 

gamma regression model, so (Qasim  et al. 2021):  

     ̂          ̂                       

      ̂           ̂      

  ̂                          

  ̂                              
    

                     [ ̂                           
 ]                                                 

                         ̂   ̂      
                                                           (22) 

From equation (22) we conclude that: 

                           (G= positive semidefinite (psd))           

     ̂      (Positive definite) 

   (       )
  

 

     is a matrix whose values are definite and non-negative  

        psd matrix 

So[   ( ̂    )     ( ̂    )] psd matrix            k ≥ 0      

It is clear from the above that the field of variation for  ̂    is less than the field of variation for 

 ̂     

To discuss the MSE characteristic of  ̂    , we can show that the  ̂     estimator is better than 

the  ̂     estimator, and the MSE of  ̂     can be written for the GRM gamma regression 

model as in equation(23): 

          ̂       ̂       ̂ ∑    
 
                                                                      (23)  

So     represents the elements of the main diagonal of the matrix        , and   is an 

orthogonal matrix, so Λ       and Λ is a diagonal matrix whose main diagonal elements 

(          ) represent the characteristic roots of the matrix G, and the MSE of RGRRE is 

calculated by the equation(24): 

     ( ̂    )   ̂  *   ( ̂    )+  *    ( ̂    )+ *    ( ̂    )+
́

               (24) 

If we assume that the constraint value τ = 0, then equation(23) can be written as follows: 

   ( ̂    )   ̂        
       (     )
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After simplifying we arrive at the equation(24): 

          ̂      ̂ ∑
  

 

(    )
       ∑

  
 

(    )
 

 
   

 
    

                                                                                                    (25) 

The value of    represents the elements of     and    is the eigenvalue of matrix A, and the 

value of         and         represent variance and bias square for  ̂     respectively, from 

equation (25) we can find We conclude that the amount of bias for RGRRE and GRRE is the 

same when the constraints imposed on the equations are true τ=(f-Fβ)=0. 

Also, the total variance of         is continuous and decreases directly with respect to k, as in 

equation (26): 

    
 {      }

  
    ∑

  
 

(    )
 

 
                                                                                   (26) 

From equation (26) we conclude that the variance is directly decreasing for k as long as  

 
 {      }

  
                        

The square of the bias of         is a directly increasing continuous function of k. 

         
 {  (    )}

  
   ∑

    
 

(    )
 

 
        k > 0 ,                                                               (27)         

In the GRM gamma regression model, there will be a value of k > 0 with range 

    
 

0   .
  

 

     
/1

 

It will lead to the value of MSE       MSE       when τ=0 

    
 (   ( ̂  ))

  
    ∑

  
 

(    )
       ∑

    
 

(    )
 

 
   

 
    

              ∑
     

     
    

(    )
 

 
                                                                           (28) 

 It was previously pointed out that the value          and      for each j=1,2,…,p, and that 

the value of the variance and the square of the bias are increasing and decreasing functions of k, 

so we can say that the value of ∂MSE(      )/∂k It will be negative if the condition is true 

       
 

0   .
  

 

     
/1

  

and that there is a certain value for k at which we proved that the built-in estimator RGRRE is 

better than gamma regression estimator GRRE  Since it is a value 

                               M= ́         

   ́    ́               
And M positive semidefinite matrix 

Therefore      
 

  
     

 

  
  , also              . It can be noted that: 

  .   
  

 

     
/⁄     

   ⁄   

So we conclude from the above that the availability of accurate prior information is of great 

importance because it will reduce the range value of k for the domination of the RGRRE 

estimator over the restricted maximum possible estimator RMLE compared to the dominance the 

GRRE gamma regression estimator over the MLE maximum possible estimator with the MSE 

comparison standard. 
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2.8 Comparison of  ̂(k) and  ̂ (k) when the prior information is correct τ=(r-Rβ)=0 

          In this part, we will compare the estimator  ̂     and  ̂     when the imposed constraint 

τ=r-Rβ=0 in the gamma regression model is  

     if                          ̂         ̂    

if τ=0 Both       and        have the same bias magnitude and it could be written as follows: 

     ( ̂    )       ( ̂   )    (     )
  

  

We can compare the value of the variance and covariance matrices for  ̂ (k) and  ̂ (k) 

      ̂          ̂      

  ̂                 ̂   {                       }  
   

      ̂                                                                                       (29) 

                  (     ) ,                                 , We showed that the 

matrix       ̂          ̂       It is a matrix psd   k≥0, and this is sufficient to prove that 

the built-in estimator RGRRE is better than the gamma regression estimator GRRE (Qasim  et 

al. 2021). 

 

3. Discussion of Results: 

          In this section the simulation method is dealt with to generate data with different sizes to 

discuss the results of estimating the parameters of the restricted gamma ridge regression model 

in different methods to know the performance of these methods: 

1- Generate a random variable following a gamma distribution using  method: 

    √                         i=1,2,…n;      j=1,2,…p 

2- Choose  different  sample  sizes (n=25, 50, 100, 250) and selected default values for the 

parameter   so that ∑   
   

   
     

3- Generating the response variable for the gamma ridge regression model using a random 

sample of the gamma distribution G(α,β) and the values of the response variable    were 

calculated: 

                (                      )
  

        i=1,2,…n 

4- Estimating the parameters of the gamma regression model with four estimation methods 

5- Generate mean square error criterion to compare between methods for estimating restricted 

gamma ridge regression model according to the equation (30): 

          ( ̂)  
 

 
∑   ̂       ( ̂   ) 

                                                                                 (00)  

6- The constraint value for the number of explanatory variables (p=4,6,8) will be as follows... 

        *
    
    

    
     

       
  

   
+                   *

 
 
+                             

N: The number of times the experiment will be repeated, which will be equal to 2000 

In Tables (1), (2), and (3), the results of estimating the mean square error (MSE) will be 

presented 
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Table 1 : Value of MSE for all estimation methods for number  

of explanatory variables p=4  

 
 RGRRE  

N   ORR RMLE GRRE K1 K2 K3 K4 K5 Best 

25 

0.91 0.026778 0.021055 0.040693 0.018004 0.022042 0.017416 0.019661 0.018746 K3 

0.93 0.043030 0.033834 0.065391 0.028931 0.035419 0.027985 0.031593 0.030124 K3 

0.95 0.075260 0.059176 0.114369 0.050600 0.061948 0.048947 0.055256 0.052687 K3 

0.97 0.099531 0.078260 0.151252 0.066919 0.081926 0.064732 0.073076 0.069678 K3 

0.99 0.131630 0.103499 0.200031 0.088500 0.108348 0.085608 0.096644 0.092149 K3 

50 

0.91 0.019413 0.015264 0.030770 0.013052 0.015980 0.012626 0.014253 0.013590 K3 

0.93 0.033954 0.026697 0.053817 0.022829 0.027948 0.022083 0.024929 0.023770 K3 

0.95 0.044904 0.035307 0.071173 0.030191 0.036962 0.029204 0.032969 0.031436 K3 

0.97 0.054561 0.042900 0.086479 0.036683 0.044910 0.035485 0.040059 0.038196 K3 

0.99 0.059385 0.046694 0.094126 0.039927 0.048882 0.038623 0.043601 0.041574 K3 

100 

0.91 0.009284 0.007300 0.015361 0.006242 0.007642 0.006038 0.006816 0.006499 K3 

0.93 0.012278 0.009654 0.020315 0.008255 0.010106 0.007985 0.009014 0.008595 K3 

0.95 0.016237 0.012767 0.026867 0.010917 0.013365 0.010560 0.011921 0.011367 K3 

0.97 0.021474 0.016884 0.035532 0.014438 0.017675 0.013966 0.015766 0.015033 K3 

0.99 0.028399 0.022330 0.046991 0.019094 0.023376 0.018470 0.020851 0.019881 K3 

250 

0.91 0.003779 0.002682 0.004610 0.001008 0.002409 0.000885 0.002005 0.001050 K3 

0.93 0.004997 0.003929 0.008641 0.003360 0.004114 0.003250 0.003669 0.003499 K3 

0.95 0.006609 0.005197 0.011427 0.004444 0.005440 0.004298 0.004852 0.004627 K3 

0.97 0.008741 0.006873 0.015113 0.005877 0.007195 0.005685 0.006417 0.006119 K3 

0.99 0.011559 0.009089 0.019987 0.007772 0.009515 0.007518 0.008487 0.008092 K3 

 

Table 2 : Value of MSE for all estimation methods for number  

of explanatory variables p=6  

 
 RGRRE  

N   ORR RMLE GRRE K1 K2 K3 K4 K5 Best 

25 

0.91 0.088523 0.058487 0.036910 0.019536 0.023917 0.020341 0.021333 0.018897 K5 

0.93 0.142248 0.093983 0.059311 0.031392 0.038432 0.032686 0.034281 0.030366 K5 

0.95 0.248792 0.164377 0.103736 0.054905 0.067218 0.057169 0.059957 0.053111 K5 

0.97 0.329028 0.217388 0.137190 0.072611 0.088896 0.075605 0.079293 0.070239 K5 

0.99 0.435139 0.287496 0.181434 0.096029 0.117565 0.099988 0.104865 0.092891 K5 

50 

0.91 0.064176 0.042401 0.027909 0.014163 0.017339 0.014747 0.015466 0.013700 K5 

0.93 0.180366 0.119168 0.078439 0.039804 0.048731 0.041445 0.043467 0.038503 K5 

0.95 0.112244 0.074160 0.048814 0.024771 0.030326 0.025792 0.027050 0.023961 K5 

0.97 0.148443 0.098076 0.064556 0.032759 0.040106 0.034110 0.035773 0.031689 K5 

0.99 0.196316 0.129706 0.085375 0.043324 0.053040 0.045110 0.047310 0.041908 K5 

100 

0.91 0.030690 0.020277 0.013933 0.006773 0.008292 0.007052 0.007396 0.006551 K5 

0.93 0.040587 0.026816 0.018427 0.008957 0.010966 0.009326 0.009781 0.008664 K5 

0.95 0.053676 0.035464 0.024369 0.011846 0.014502 0.012334 0.012936 0.011459 K5 

0.97 0.070987 0.046901 0.032228 0.015666 0.019179 0.016312 0.017107 0.015154 K5 

0.99 0.093880 0.062027 0.042622 0.020718 0.025364 0.021572 0.022624 0.020041 K5 

250 

0.91 0.012492 0.007449 0.004182 0.001094 0.002614 0.001139 0.002175 0.000960 K5 

0.93 0.016521 0.010915 0.007837 0.003646 0.004463 0.003796 0.003981 0.003527 K5 

0.95 0.021848 0.014435 0.010365 0.004822 0.005903 0.005020 0.005265 0.004664 K5 

0.97 0.028895 0.019091 0.013708 0.006377 0.007807 0.006640 0.006963 0.006168 K5 

0.99 0.038213 0.025247 0.018128 0.008433 0.010324 0.008781 0.009209 0.008157 K5 
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Table 3: Value of MSE for all estimation methods for number  

of explanatory variables p=8  

 
 RGRRE  

N   ORR RMLE GRRE K1 K2 K3 K4 K5 Best 

25 

0.91 0.154349 0.101978 0.053797 0.034062 0.041702 0.035467 0.037197 0.032949 k5 

0.93 0.096053 0.063462 0.033479 0.021198 0.025951 0.022072 0.023148 0.020505 k5 

0.95 0.269957 0.178360 0.094091 0.059575 0.072936 0.062032 0.065057 0.057629 k5 

0.97 0.357018 0.235882 0.124436 0.078788 0.096458 0.082037 0.086038 0.076214 k5 

0.99 0.472156 0.311953 0.164566 0.104198 0.127566 0.108494 0.113786 0.100793 k5 

50 

0.91 0.072630 0.047987 0.025315 0.016028 0.019623 0.016689 0.017503 0.015505 k5 

0.93 0.204126 0.134866 0.071147 0.045048 0.055150 0.046905 0.049193 0.043576 k5 

0.95 0.127030 0.083929 0.044275 0.028034 0.034321 0.029190 0.030613 0.027118 k5 

0.97 0.167998 0.110996 0.058554 0.037075 0.045389 0.038603 0.040486 0.035863 k5 

0.99 0.222177 0.146792 0.077438 0.049031 0.060027 0.051053 0.053543 0.047429 k5 

100 

0.91 0.036259 0.023956 0.012638 0.008002 0.009796 0.008332 0.008738 0.007740 k5 

0.93 0.047953 0.031682 0.016713 0.010582 0.012956 0.011019 0.011556 0.010237 k5 

0.95 0.063417 0.041900 0.022104 0.013995 0.017134 0.014572 0.015283 0.013538 k5 

0.97 0.083869 0.055413 0.029232 0.018509 0.022660 0.019272 0.020212 0.017904 k5 

0.99 0.110917 0.073283 0.038659 0.024478 0.029967 0.025487 0.026730 0.023678 k5 

250 

0.91 0.015422 0.009196 0.003793 0.001351 0.003227 0.001407 0.002685 0.001185 k5 

0.93 0.020396 0.013475 0.007109 0.004501 0.005510 0.004687 0.004915 0.004354 k5 

0.95 0.026973 0.017821 0.009401 0.005953 0.007288 0.006198 0.006500 0.005758 k5 

0.97 0.035672 0.023569 0.012433 0.007872 0.009638 0.008197 0.008597 0.007615 k5 

0.99 0.047177 0.031170 0.016443 0.010411 0.012746 0.010840 0.011369 0.010071 k5 

 

4. Conclusions: 

         Table 1 , 2 and Table 3 show the values of the mean square error MSE for all estimation 

methods studied at a number of variables (p=4,6,8). It can be noted that the values of the mean 

square error MSE decrease as the sample size increases, this reflects one of the good 

characteristics when the estimator approaches the true value of the parameter by increasing the 

sample size and holding two factors (degree of correlation, explanatory variables) constant. As 

for the effect of the other factor, which is the degree of correlation, we notice that increasing the 

degree of correlation between the explanatory variables leads to an increase in the average value. 

The mean square error MSE for all estimation methods, in addition to the application of the 

gamma regression method GRR and the combined estimator method RGRR is directly affected 

by the increase in the degree of correlation, as we notice that the value of the mean square error 

MSE increases with the increase in the degree of correlation, as shown by the simulation results, 

We also note that the combined estimator method RGRR with the formula k3 gave the lowest 

value for the mean square error MSE when the number of explanatory variables is (p=4)... 

whereas when the number of explanatory variables is (p=6.8), the formula is k5 It is the most 

appropriate because it gives the lowest value of the mean square error MSE. 
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 البحث: هسخخلص

إَحذاس خايا انحشف يغ انًميذ ػٍ عشيك ديح  خايا انحشف ش يؼانى إًَورج إَحذاسَخُاول في هزا انبحث حمذي 

نحشف والإيكاٌ الأػظى الإيكاٌ الأػظى انًميذ, وسيخى انخؼشف ػهي خصائص انًمذس اندذيذ وحفوله ػهي يمذس إَحذاس خايا ا

يحاكاة يوَج كاسنو نخونيذ بياَاث حؼاَي يٍ يشكهت أسهوب  إسخخذاو  , إر حى kئسخخذاو ػذة صيغ نًؼايم الإَكًاش ب انًميذ , 

فـي ظـم ػـوايم يـؤثشة أخـشى )دسخت الإسحباط , ػذد انًخغيشاث  n=25,50,100,250) (بأحداو يخخهفت  غيانخؼذد انخ

نهخخهص يٍ يشكهت انخؼذد انخغي في ظم خضوع يؼانى الإًَورج اني ليذ خغي  , انخفسيشيت(، وإخضاع انًؼهًاث اني ليذ خغي

ياس نهًماسَت كًؼ MSEوحى الإػخًاد ػهي يخوسظ يشبؼاث انخغأ  أسبغ عشق نهخمذيش , يخى حمذيش يؼانى الإًَورج بئسخخذاووس

ويٍ خلال َخائح حدشبت انًحاكاة حبيٍ إٌ عشيمت انًمذس انًذيح هي انغشيمت الأفضم في حمذيش يؼانى إًَورج بيٍ عشائك انخمذيش 

 إَحذاس انحشف خايا انًميذ. 

 

 وسلت بحثيت : ًىع البحث

، الإيكاٌ الأػظى انًميذ  (GRRإَحذاس خايا انحشف )( , RGRRاَحذاس خايا انحشف انًميذ ) الشئيست للبحث:الوصطلحاث 

(RMLE)  يؼايم الإَكًاش ،k يخوسظ يشبؼاث انخغأ ،MSE . 
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