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Abstract :

In this paper, we discuss estimating the parameters of the restricted gamma ridge
regression model by combining gamma ridge regression with restricted maximum likelihood.
The characteristics of the new estimator and its superiority over the restricted gamma ridge
regression estimator and restricted maximum likelihood will be identified, using several
formulas for the shrinkage factor k, and it will also be Using the Monte Carlo simulation method
to generate data that suffers from the problem of multicollinearity with different sizes
(n=25,50,100,250) in light of other influential factors (degree of correlation, number of
explanatory variables), and subjecting the parameters to linear restrictions, to get rid of the
problem of multicollinearity in light of the subjection of the parameters to the model has linear
constraints and the model parameters will be estimated using four estimation methods that rely
on the mean square error (MSE) as a standard for comparison between the estimation methods,
Through the results of the simulation experiment it was shown that the compound estimator
method is the best way to estimate the parameters of the finite gamma regression model .

Paper type : Research paper
Keywords: Restricted Gamma Ridge Regression (RGRR), Gamma Ridge Regression (GRR),

Restricted Maximum Likelihood Estimator (RMLE), Shrinkage factor k, Mean Square Error
(MSE).
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1. Introduction :

The Gamma Regression Model (GRM) is considered one of the commonly used models in
the field of economics and medicine, in addition to several other fields, with the presence of
multicollinearity between the explanatory variables an ordinary ridge regression ORR used, and
because the explanatory variable is positively skewed and follows the Gamma distribution this
method has proven ineffective because it gives high variances. Therefore, the Gamma ridge
Regression method (GRRE) is used to estimate the parameters of the restricted gamma ridge
regression model, but when the parameters fall under the influence of a linear constraint Rp=r,
since R is m x p, which is a known matrix. And r is a vector of known elements m x 1, so in this
case we resort to the restricted maximum likelihood (RMLE) to get rid of the effect of
restrictions imposed on the model parameters, and with the problem multicollinearity In this
case, we resort to using a method that combines constrained maximum likelihood and gamma
ridge regression to overcome the problem of multicollinearity in the presence of restrictions
imposed on the parameters.

1.1 Literature review:

Many research papers have been published on the study of choosing the best
estimator for ridge regression with regard to linear regression, multiple regression, and other
types of regression models, as well as with regard to the gamma ridge regression model. The
following are the most prominent published researches on this topic:

Francis et al (2016) suggested the restricted Liu estimator to find a regression model
parameter estimate in the presence of the multicollinearity problem, and they assumed the
constraint Rb=r. The properties of this estimator were compared with the properties of the
restricted maximum likelihood estimator RMLE, and the effectiveness of the restricted Liu
estimator was demonstrated.

El-Gammal (2018) proposed the gamma ridge model by proposing a modification of the
estimator with the gamma ridge regression model. The gamma regression model is considered
common in practical application when the data are positively skewed in order to overcome the
problem of multicollinearity, which has a negative impact on the variance of the model’s
estimators.

Qasim,et al (2018) used the maximum likelihood method to estimate the unknown
gamma regression parameters in the presence of the multicollinearity problem. It was noted that
the variance of the estimator using the maximum likelihood method MLE was exaggerated, so
the Liu estimator was used, as this estimator is considered an important estimate to address the
problem of multicollinearity in gamma regression.

Amin et al (2020) proposed some ridge estimators for the gamma regression model
GRM, which is considered a special form of the generalized linear model (GLM) in which the
response variable is positively skewed and suitable for the gamma distribution, and the
maximum likelihood method ML is considered it is the most widely used method for estimating
GRM coefficients if the explanatory variables are not related. However, if the explanatory
variables are related, ML is unable to estimate GRM coefficients. Researchers have proposed
ridge estimates as a method to address the problem of multicollinearity or correlation between
variables.

Mahmoudi et al (2020) proposed improved estimators based on the initial test and
Stein-type strategies for estimating parameters in the gamma regression model, two penalty
estimators were introduced, such as lasso and ridge regression.

Qasim et al (2021) proposed a new estimator for beta series regression (BRR) as a
treatment for the instability of MLE due to the presence of the multicollinearity problem, and
Monte Carlo simulation was used as a tool to evaluate the performance of BRR and MLE.

511



Journal of Economics and Administrative Sciences P-1SSN 2518-5764
2024; 30(143), pp. 510-522 E-ISSN 2227-703X

Yassin,et al (2022) studied the estimation of the parameters of the gamma regression
model using the hillslope regression estimates used in estimating the parameters of the linear
regression model in the presence of the multicollinearity problem and generalizing them to the
gamma regression model. These estimators were compared with Least squares estimator and
prove the effectiveness of these estimators.

The research problem is summed up in estimating the parameters of the restricted
gamma ridge regression model when the explanatory variable are related to each other, as it is
difficult to reach sound estimates of the model parameters using ordinary estimation methods
such as the maximum likelihood method MLE, Especially in light of imposing restrictions on the
model’s parameters, as it will give estimates with high variances and thus it will not be possible
to the researcher is able to know which explanatory variables have an impact on the regression
model.

This research aims to find the best estimator for the restricted gamma ridge regression
model by combining the gamma ridge regression GRR method with the restricted maximum
liklihood RMLE to obtain a new estimator for the model. The mean square error MSE will be
used as a comparison standard to test the effectiveness of the new estimator.

2. Materials and Methods:
2.1 Gamma Regression Model:

Gamma Regression Model GRM is considered an extension of the topic of generalized
linear models GLM, as generalized linear models differ from the well-known linear regression in
that the distribution of the dependent variable is required to belong to the exponential family and
that the expected values y;are for the random variable Y, It is replaced by a link function
1;=9(1;) and n is a linear combination of independent variables. The goal of the link function is
to make the error variance more stable. In addition, the error distribution of the model can be
chosen in a way that is independent unlike linear regression, which should be the error
distribution normal distribution (Hardin and Hilbe, 2007; Qasim et al. 2021).

Because the gamma distribution is a specific form of the family of exponential distributions, the
scientists Hardin and Hilbe in 2007 formulated the equation of the probability density function
for the gamma distribution to become as in equation (1)( Algamal 2018 ; Amin et al. 2020) :

f(Y 1) = (—)¢ y# i leY/ue Y =0 (1)

F(¢) !

Assuming that a=¢ 1 ; B=up

¢: dispersion parameter

u: arithmetic mean

The probability mass function for the exponential family is given as in equ(2):
(r,0,¢) = exp| oo + (¥, 9] 2

0: location parameter

b(6): cumulative distribution function (c.d.f) of the variable Y if
b(6)=-In (n) 0=1/n

a(d)= - ¢: constant value required to estimate the standard error
C(Y.¢) = =2In(Y) — =22 — Inl (3)

Equation (2) can be written as in equ(3):

In(8)) , 1- 1
f(v,6,¢) = [L=m @2+ Zoinen) - 22— Inrp)| 3)
Therefore, the expectation and varlance take the following form:
— ! _ a_ba_ﬂ _ __1 2 =
E(Y)=b'(0) =5 55 == X (=) =} @)

b"(0) = 52 (%) + 22 (35%) = 0(1? + (D(—?) = 2
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Var (Y) =a(p)V(w) = —¢ b"(0)=(-¢) (-u?)=¢ u? (5)
The link function for the mean of the explanatory variable Y, which follows the gamma model,
can be written in the equation(6) form (Qasim et al, 2021 ; Yasin et al, 2022;Kamary et al,2023):

1 .
g(k)= ([i) =x"B i=1,2,..,n (6)
x;: rows of the variable matrix X=(x;;, x;2, ..., Xjp)’
X: explanatory variable matrix of degree n x (p+1)

B: the normal vector of regression coefficients of degree (p+1)x1
The maximum likelihood function MLE:

L= )=S0, {(ME5ER) + 22 InGy) — 7 — nr () ™
The MLE is calculated by means of the reweighted least squares algorithm IRLS

Bur, = XTWX)~ XT Wy~ (8)
Since:

W = diag{(1/wHw?} and  y*=, i — LA

They are modified variables that use an inverse link function(Abdeljabbar 2020):
ﬁi= [xiT BML ]_1 Ni = X; [} ) i = 1)2) e n

The covariance matrix for 8, is:

Cov (Bm) = XTWX)™* R )
The estimated value of the dispersion coefficient ¢ is calculated by the equation(10):
2_ 1 on imm)?
P =g iz e (10)
Where g=p+1

P : Number of independent variables
The mean square error MSE is extracted:

E(Lmi?)=E@BuL — B) " (Bmw — B) =tr(XWX) =3 2}11%}_ (11)
A;: Eigenvalue of the matrix (x'wx)
The observation recorded when using the MLE method in the presence of the problem of

multicollinearity is that the MSE value is large as a result of the increased correlation between
the explanatory variables, which leads to the value of A; being small.

2.2 Ridge Regression:

The least squares method (OLYS) is considered the best unbiased linear estimation method
for regression model parameters because it gives parameters with the lowest variance value, but
in the presence of the multicollinearity problem, using this method will give us inaccurate
estimates for the regression model, because the parameters will have large variances, so the
researchers proposed Horel - Bennared in 1970 developed a method to address the problem of
multicollinearity by adding a small positive quantity to the diagonal elements of the information
matrix (X X) and Its calculated according to the equation(12)(Sampreet 1989; Kazem 2002):

birr
Brr=| i [=&X'X+kI)X'Y (12)

prR
Brr represents the Ordinary Ridge Regression estimator and is symbolized by the symbol
(ORR).
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2.3 Gamma Ridge Regression:

The best method used to estimate the regression coefficient in the presence of the
multicollinearity problem is the ridge method, and the most important advantages and
disadvantages of this method are reducing the value of the mean square error MSE and
increasing the value of the shrinkage factor k, In the presence of the problem of
multicollinearity, the MSE value of the maximum likelihood estimates MLE is inflated and
misleading. To solve this problem, the ridge regression method for generalized regression was
proposed. In the same way, the scientists adopted the estimation of the regression coefficient for
the gamma ridge regression model (Asar et al. 2017):

Brr=(X"WX + kI, )™* (XTWX) By (13)
Bur= XTWX) "1 XT W y*

2.4 Restricted Maximum Likelihood Estimator:

One of the methods used to prove the efficiency of the estimator is by using previous
information, such as information related to the regression coefficients. The primary goal is to
estimate the coefficient p when B is subject to a linear constraint R',,, = 13, Since
Ty, IS @ constant number
R,,: is a known vector px1
m is an independent restriction imposed on the feature vector 8
With this case, a restricted estimator used for P, where the restricted maximum likelihood
method RMLE gives us the largest value of the link function for the GRM gamma regression
model on B under the restrictions R',,8 =1, , and it is calculated RMLE according to the
equation (14) (Sarkar 1992 ; Kurtoglu 2017 ; Qasim et al. 2021):

BrMLE = BumLe + A_lR(RA_lR)_l(F — RBumie) (14)

2.5 Built-in estimator:

To obtain the RMLE estimator, It is done by maximizing the maximum potential function
of the gamma regression model, taking into account the constraint R,,’ = 7,,, where m=1,2,..t,
and with the presence of the multicollinearity problem, the RMLE method can give us weak
estimators and thus give false information as This is the case for the MLE estimator with
existence of the multicollinearity problem, so itis necessary to Add modifications to the RMLE
estimator in order to obtain an effective estimator under the framework of a set of linear
constraints. The restricted letter regression estimator for the general regression model GLM was
presented by Ozkale and Kurtoglu (2017) and itis the same estimator used for gamma regression
model GRM (Qasim et al. 2018 ; Amine et al. 2020 Qasim et al. 2021):

BR(k):Ak GRMLE (15)

2.6 Estimation of the shrinkage coefficient:

It is better in practical application for the shrinkage coefficient (k) estimation to be in a
way that reduces the value of the mean square error MSE of the maximum possible estimator
RMLE and the combined estimator RGRRE. For this purpose, equation (16) was used
(Tibshirani 1996 ; Qasim et al. 2021 ; Yasin et al. 2022):

P+l _ A 2yp 9"

EMSE=0 ¥’_, G +k J=1 G0 (16)

Equation (16) is derived with respect to k and equalized to zero to find the best value for
k... Researchers Qasim , Akram , Amin and Manson in ( 2021) proposed a number of methods to
estimate the shrinkage coefficient for the purpose of choosing the best method that gives us the
lowest MSE, which is :
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P 5"1“;51
1= o
k(1) = Kmean = Tj (17)
k(Z) = lEmedian = median (Q};?ii> (18)
Ky = kyy = ———— (19)
3) HM —
5P, (/)
]
Ky = Knax = max % (20)
_ 1
~ OAim:;
ki) = ke = (H,-pzl(azTT”))p (21)

2.7 Comparison between Bgr(k)and BryrWhen the previous constraints are true t=r-
Rp=0

BruLE is an unbiased estimate when =0, but Sz (k) is a biased estimate under the GRM
gamma regression model, so (Qasim et al. 2021):
Cov fr(k) < CovPryg VY k=0

[COU(BRMLE) - CO}](ﬁR (k)]
=0@[A"1 — A"1R"(RA'R")"1RA™]
— B[A,[A™ = A"'R"(RA™'R")"IRA 14", ]
= [@AL[K2AT1GA™ + kGA™' + kAT1G]A' ]
= ¢G — P[ArGA,'] (22)
From equation (22) we conclude that:
G=A"1—A"IR'(RATIR")"1RA™1 (G= positive semidefinite (psd))
A=XTWX (Positive definite)
A = (I, + ka )™
A~1G is a matrix whose values are definite and non-negative
A71GA™1 psd matrix
So[Cov(Brure) — Cov(Br(k))] psd matrix vV k>0
It is clear from the above that the field of variation for B (k)is less than the field of variation for
BRMLE R R
To discuss the MSE characteristic of S (k), we can show that the Sz (k) estimator is better than
the Bruye estimator, and the MSE of fgu.z can be written for the GRM gamma regression
model as in equation(23):
MSE (Bruie) = Otr(G) = 621};1 m;; (23)

So my; represents the elements of the main diagonal of the matrix M = Q'GQ, and Q is an
orthogonal matrix, so A = Q'GQ and A is a diagonal matrix whose main diagonal elements
(14,42, ..., Ap) represent the characteristic roots of the matrix G, and the MSE of RGRRE is
calculated by the equation(24):

MSE (BR (k)) = Qtr [Cov (BR (k))] + [Blas (BR (k))] [Blas (ﬁR (k))] (24)
If we assume that the constraint value T = 0, then equation(23) can be written as follows:
MSE(fBr(Kk)) = Btr(AGA") + k2B (A + kI,) B
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After simplifying we arrive at the equation(24):
MSEﬁR(k) Q)Z] 1( )zm]] 221 1(/1 +k)

=Y; (Fx )+ Y2 (Fr) (25)
The value of a; represents the elements of Q'8 and 4; is the eigenvalue of matrix A, and the
value of Y; (F,) and Y, (Fy) represent variance and bias square for B (k) respectively, from
equation (25) we can find We conclude that the amount of bias for RGRRE and GRRE is the
same when the constraints imposed on the equations are true z=(f~Ff)=0.
Also, the total variance of Y; (Fj) is continuous and decreases directly with respect to k, as in
equation (26):
A (Fi)} _ A
ok Q)Z] L(a4k)° m;j (26)

From equation (26) we conclude that the variance is directly decreasing for k as long as

o{Y: (Fi)}

— —ocowhenk -0 and/lj—>0

The square of the bias of Y, (F) is a directly increasing continuous function of k.

{Y2(Fa)} _ p _Ae’
o = 2k k) k>0, 4;>0 (27)
In the GRM gamma regression model, there will be a value of k > 0 with range
0<k< ¢

(777
max
Aymy;

It will lead to the value of MSE B (k) <MSE Bgrur when 1=0

o(MSE(Brk)) 27 A
——— = ZQ)Z] 1( )3m”+ kZ] 1(/1; l’()
_oyp  KAaP-0amy;
= 23) My (28)

It was previously pointed out that the value of m;; = 0 and 4; > 0 for each j=1,2,...,p, and that
the value of the variance and the square of the bias are increasing and decreasing functions of Kk,
so we can say that the value of OMSE(SR ( k))/Jk It will be negative if the condition is true

0<k< %
[max<lj’£“ﬁ)]

and that there is a certain value for k at which we proved that the built-in estimator RGRRE is
better than gamma regression estimator GRRE Since it is a value
M=QGQ = A~' —
B =0QA'R(RA"'R)"'RA1Q
And M positive semidefinite matrix
Therefore —b;; < % mU i} ,also bj; = diag( B). It can be noted that:

(max -
)] <max ) < @/a?,qx
Aymy;

So we conclude from the above that the availability of accurate prior information is of great
importance because it will reduce the range value of k for the domination of the RGRRE
estimator over the restricted maximum possible estimator RMLE compared to the dominance the
GRRE gamma regression estimator over the MLE maximum possible estimator with the MSE
comparison standard.
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2.8 Comparison of B(k) and Br(k) when the prior information is correct T=(r-Rp)=0
In this part, we will compare the estimator Sz (k) and 8 (k) when the imposed constraint
=r-Rf=0 in the gamma regression model is
Cov Br(k) < CovB(k) V k>0 ifr=0
if =0 Both 8 (k) and By (k) have the same bias magnitude and it could be written as follows:

Bias (Bz(K)) = Bias (B(k)) = —k(A +kI,) "B
We can compare the value of the variance and covariance matrices for Sz (k) and f (k)
[Cov(B(k)) — Cov(Br(K))] R
=dWEK)TAW ()™ — B[4 {A™ L — A"'R'(RAT'R")'RA™1}A,']

=@[W (k) TA TR (RA™IR)IRA™ W (k)] (29)
since  W(k)=(A+kl,), A,=W(WkA4, W (k) = A A~ , We showed that the
matrix [Cov(B (k)) — Cov(Br(k))] It is a matrix psd V k>0, and this is sufficient to prove that
the built-in estimator RGRRE is better than the gamma regression estimator GRRE (Qasim et
al. 2021).

3. Discussion of Results:

In this section the simulation method is dealt with to generate data with different sizes to
discuss the results of estimating the parameters of the restricted gamma ridge regression model
in different methods to know the performance of these methods:

1- Generate a random variable following a gamma distribution using method:

xl-j =4/ 1- pzuij + ,Dui(j+1) i=1,2,...n; j=1,2,...p
2- Choose different sample sizes (n=25, 50, 100, 250) and selected default values for the

parameter § so that $721 g;% = 1
3- Generating the response variable for the gamma ridge regression model using a random
sample of the gamma distribution G(o,B) and the values of the response variable Y; were

calculated:
-1 .
i = E(y) = (Bo + Brxis + Brxip + - + Byxip) i=1,2,...n
4- Estimating the parameters of the gamma regression model with four estimation methods

5- Generate mean square error criterion to compare between methods for estimating restricted
gamma ridge regression model according to the equation (30):

MSE(B) =+ 2By — B)' (B: — B) (30)
6- The constraint value for the number of explanatory variables (p=4,6,8) will be as follows...
R=[1 0 -21 -3 1 1 1] r=[0]
1 -1 1-1 -3 1 =21 0

N: The number of times the experiment will be repeated, which will be equal to 2000
In Tables (1), (2), and (3), the results of estimating the mean square error (MSE) will be
presented
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Table 1 : Value of MSE for all estimation methods for number
of explanatory variables p=4

RGRRE

N p ORR RMLE GRRE K1 K2 K3 K4 K5 Best
0.91 | 0.026778 | 0.021055 | 0.040693 0.018004 0.022042 | 0.017416 | 0.019661 | 0.018746 K3

0.93 | 0.043030 | 0.033834 | 0.065391 0.028931 0.035419 | 0.027985 | 0.031593 | 0.030124 K3

25 0.95 | 0.075260 | 0.059176 | 0.114369 0.050600 0.061948 | 0.048947 | 0.055256 | 0.052687 K3
0.97 | 0.099531 | 0.078260 | 0.151252 0.066919 0.081926 | 0.064732 | 0.073076 | 0.069678 K3

0.99 | 0.131630 | 0.103499 | 0.200031 0.088500 0.108348 | 0.085608 | 0.096644 | 0.092149 K3

0.91 | 0.019413 | 0.015264 | 0.030770 0.013052 0.015980 | 0.012626 | 0.014253 | 0.013590 K3

0.93 | 0.033954 | 0.026697 | 0.053817 0.022829 0.027948 | 0.022083 | 0.024929 | 0.023770 K3

50 0.95 | 0.044904 | 0.035307 | 0.071173 0.030191 0.036962 | 0.029204 | 0.032969 | 0.031436 K3
0.97 | 0.054561 | 0.042900 | 0.086479 0.036683 0.044910 | 0.035485 | 0.040059 | 0.038196 K3

0.99 | 0.059385 | 0.046694 | 0.094126 0.039927 0.048882 | 0.038623 | 0.043601 | 0.041574 K3

0.91 | 0.009284 | 0.007300 | 0.015361 0.006242 0.007642 | 0.006038 | 0.006816 | 0.006499 K3

0.93 | 0.012278 | 0.009654 | 0.020315 0.008255 0.010106 | 0.007985 | 0.009014 | 0.008595 K3

100 | 0.95 | 0.016237 | 0.012767 | 0.026867 0.010917 0.013365 | 0.010560 | 0.011921 | 0.011367 K3
0.97 | 0.021474 | 0.016884 | 0.035532 0.014438 0.017675 | 0.013966 | 0.015766 | 0.015033 K3

0.99 | 0.028399 | 0.022330 | 0.046991 0.019094 0.023376 | 0.018470 | 0.020851 | 0.019881 K3

0.91 | 0.003779 | 0.002682 | 0.004610 0.001008 0.002409 | 0.000885 | 0.002005 | 0.001050 K3

0.93 | 0.004997 | 0.003929 | 0.008641 0.003360 0.004114 | 0.003250 | 0.003669 | 0.003499 K3

250 | 0.95 | 0.006609 | 0.005197 | 0.011427 0.004444 0.005440 | 0.004298 | 0.004852 | 0.004627 K3
0.97 | 0.008741 | 0.006873 | 0.015113 0.005877 0.007195 | 0.005685 | 0.006417 | 0.006119 K3

0.99 | 0.011559 | 0.009089 | 0.019987 0.007772 0.009515 | 0.007518 | 0.008487 | 0.008092 K3

Table 2 : Value of MSE for all estimation methods for number
of explanatory variables p=6
RGRRE

N p ORR RMLE GRRE K1 K2 K3 K4 K5 Best
0.91 | 0.088523 | 0.058487 | 0.036910 0.019536 0.023917 0.020341 | 0.021333 | 0.018897 K5

0.93 | 0.142248 | 0.093983 | 0.059311 0.031392 0.038432 0.032686 | 0.034281 | 0.030366 | K5

25 | 0.95 | 0.248792 | 0.164377 | 0.103736 0.054905 0.067218 0.057169 | 0.059957 | 0.053111 K5
0.97 | 0.329028 | 0.217388 | 0.137190 0.072611 0.088896 0.075605 | 0.079293 | 0.070239 | K5

0.99 | 0.435139 | 0.287496 | 0.181434 0.096029 0.117565 0.099988 | 0.104865 | 0.092891 K5

0.91 | 0.064176 | 0.042401 | 0.027909 0.014163 0.017339 0.014747 | 0.015466 | 0.013700 | K5

0.93 | 0.180366 | 0.119168 | 0.078439 0.039804 0.048731 0.041445 | 0.043467 | 0.038503 | K5

50 | 0.95 | 0.112244 | 0.074160 | 0.048814 0.024771 0.030326 0.025792 | 0.027050 | 0.023961 | K5
0.97 | 0.148443 | 0.098076 | 0.064556 0.032759 0.040106 0.034110 | 0.035773 | 0.031689 | K5

0.99 | 0.196316 | 0.129706 | 0.085375 0.043324 0.053040 0.045110 | 0.047310 | 0.041908 | K5

0.91 | 0.030690 | 0.020277 | 0.013933 0.006773 0.008292 0.007052 | 0.007396 | 0.006551 | K5

0.93 | 0.040587 | 0.026816 | 0.018427 0.008957 0.010966 0.009326 | 0.009781 | 0.008664 | K5

100 | 0.95 | 0.053676 | 0.035464 | 0.024369 0.011846 0.014502 0.012334 | 0.012936 | 0.011459 | K5
0.97 | 0.070987 | 0.046901 | 0.032228 0.015666 0.019179 0.016312 | 0.017107 | 0.015154 | K5

0.99 | 0.093880 | 0.062027 | 0.042622 0.020718 0.025364 0.021572 | 0.022624 | 0.020041 | K5

0.91 | 0.012492 | 0.007449 | 0.004182 0.001094 0.002614 0.001139 | 0.002175 | 0.000960 | K5

0.93 | 0.016521 | 0.010915 | 0.007837 0.003646 0.004463 0.003796 | 0.003981 | 0.003527 | K5

250 | 0.95 | 0.021848 | 0.014435 | 0.010365 0.004822 0.005903 0.005020 | 0.005265 | 0.004664 | K5
0.97 | 0.028895 | 0.019091 | 0.013708 0.006377 0.007807 0.006640 | 0.006963 | 0.006168 | K5

0.99 | 0.038213 | 0.025247 | 0.018128 0.008433 0.010324 0.008781 | 0.009209 | 0.008157 | K5
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Table 3: Value of MSE for all estimation methods for number
of explanatory variables p=8

RGRRE
N p ORR RMLE GRRE K1 K2 K3 K4 K5 Best
0.91 | 0.154349 | 0.101978 | 0.053797 | 0.034062 | 0.041702 | 0.035467 | 0.037197 | 0.032949 | k5
0.93 | 0.096053 | 0.063462 | 0.033479 | 0.021198 | 0.025951 | 0.022072 | 0.023148 | 0.020505 | k5
25 | 0.95 ] 0.269957 | 0.178360 | 0.094091 | 0.059575 | 0.072936 | 0.062032 | 0.065057 | 0.057629 | k5
0.97 | 0.357018 | 0.235882 | 0.124436 | 0.078788 | 0.096458 | 0.082037 | 0.086038 | 0.076214 | k5
0.99 | 0.472156 | 0.311953 | 0.164566 | 0.104198 | 0.127566 | 0.108494 | 0.113786 | 0.100793 | k5
0.91 | 0.072630 | 0.047987 | 0.025315 | 0.016028 | 0.019623 | 0.016689 | 0.017503 | 0.015505 | k5
0.93 | 0.204126 | 0.134866 | 0.071147 | 0.045048 | 0.055150 | 0.046905 | 0.049193 | 0.043576 | k5
50 | 0.95 | 0.127030 | 0.083929 | 0.044275 | 0.028034 | 0.034321 | 0.029190 | 0.030613 | 0.027118 | k5
0.97 | 0.167998 | 0.110996 | 0.058554 | 0.037075 | 0.045389 | 0.038603 | 0.040486 | 0.035863 | k5
0.99 | 0.222177 | 0.146792 | 0.077438 | 0.049031 | 0.060027 | 0.051053 | 0.053543 | 0.047429 | k5
0.91 | 0.036259 | 0.023956 | 0.012638 | 0.008002 | 0.009796 | 0.008332 | 0.008738 | 0.007740 | k5
0.93 | 0.047953 | 0.031682 | 0.016713 | 0.010582 | 0.012956 | 0.011019 | 0.011556 | 0.010237 | k5
100 | 0.95 | 0.063417 | 0.041900 | 0.022104 | 0.013995 | 0.017134 | 0.014572 | 0.015283 | 0.013538 | k5
0.97 | 0.083869 | 0.055413 | 0.029232 | 0.018509 | 0.022660 | 0.019272 | 0.020212 | 0.017904 | k5
0.99 | 0.110917 | 0.073283 | 0.038659 | 0.024478 | 0.029967 | 0.025487 | 0.026730 | 0.023678 | k5
0.91 | 0.015422 | 0.009196 | 0.003793 | 0.001351 | 0.003227 | 0.001407 | 0.002685 | 0.001185 | k5
0.93 | 0.020396 | 0.013475 | 0.007109 | 0.004501 | 0.005510 | 0.004687 | 0.004915 | 0.004354 | k5
250 | 0.95 | 0.026973 | 0.017821 | 0.009401 | 0.005953 | 0.007288 | 0.006198 | 0.006500 | 0.005758 | K5
0.97 | 0.035672 | 0.023569 | 0.012433 | 0.007872 | 0.009638 | 0.008197 | 0.008597 | 0.007615 | k5
0.99 | 0.047177 | 0.031170 | 0.016443 | 0.010411 | 0.012746 | 0.010840 | 0.011369 | 0.010071 | k5

4. Conclusions:

Table 1, 2 and Table 3 show the values of the mean square error MSE for all estimation
methods studied at a number of variables (p=4,6,8). It can be noted that the values of the mean
square error MSE decrease as the sample size increases, this reflects one of the good
characteristics when the estimator approaches the true value of the parameter by increasing the
sample size and holding two factors (degree of correlation, explanatory variables) constant. As
for the effect of the other factor, which is the degree of correlation, we notice that increasing the
degree of correlation between the explanatory variables leads to an increase in the average value.
The mean square error MSE for all estimation methods, in addition to the application of the
gamma regression method GRR and the combined estimator method RGRR is directly affected
by the increase in the degree of correlation, as we notice that the value of the mean square error
MSE increases with the increase in the degree of correlation, as shown by the simulation results,
We also note that the combined estimator method RGRR with the formula k3 gave the lowest
value for the mean square error MSE when the number of explanatory variables is (p=4)...
whereas when the number of explanatory variables is (p=6.8), the formula is k5 It is the most
appropriate because it gives the lowest value of the mean square error MSE.

Authors Declaration:

Conflicts of Interest: None

-We Hereby Confirm That All The Figures and Tables In The Manuscript Are Mine and Ours.
Besides, The Figures and Images, Which are Not Mine, Have Been Permitted Republication and
Attached to The Manuscript.

- Ethical Clearance: The Research Was Approved By The Local Ethical Committee in The
University.

519




Journal of Economics and Administrative Sciences P-1SSN 2518-5764

2024; 30(143), pp. 510-522 E-ISSN 2227-703X
Reference:
1.Amine M., Qasim M., Yasin A. and Amanullah M. (2020) "Almost unbiased ridge estimator
in the gamma regression model" Communications in Statistics — Simulation and

Computations,51(7),3830-3850.

2.Amin A., Qasim M., Amanullah M. (2020) "Preformance of some ridge estimators for the
gamma regression model "Statistical Papers, 61,997-1026.

3.Asar Y , Arashi M. , Wu J. (2017)" Restricted ridge estimator in the logestic regression
model"Commun Stat Simul Comput ;46(8):6538-6544.

4.Al-Gamal ZY. (2018)"Developing a ridge estimator for the gamma regression model" J
Chemometer;32(10),3054.

5.Al-Gamal ZY & Yasin A. (2020) “Liu-type estimator for the gamma regression model”
Communications in Statistics - Simulation and Computation, 49(8), 2035-2048.

6.Adewale F., Dawoud I, Kibria B. M., Al-Gamal ZY, Aladeitan B.(2021) "A New Ridge-Type
Estimator for the Gamma Regression Model", Scientifica, Vol. 2021, Article ID 5545356, 8
pages.

7.Al-Gamal ZY.(2018) “Shrinkage estimators for gamma regression model” Electronic Journal
of Applied Statistical Analysis,11(1),253-268.

8.Abdeljabbar L.,(2021)”Comparison Between Maximum Likelihood and Bayesian methods for
estimating the Gamma regression with practical application” Journal of Economics and
Administrative Sciences,27(125),477-492.

9.Abdeljabbar Z.,Hussain S.(2020)”Comparison of the performance of some r-(k,d)class
estimator with the (PCTP)estimator that used in estimating the general linear regression model in
the presence of autocorrelation and multicollinearity problems at the same time “Journal of
Economics and Administrative Sciences,26(121),397-414.

10. Harbe H.,Saad H.(2020)”Comparsion Branch and Bound Algorithm with Penalty function
for solving Non-Linear Bi-level programming “Journal of Economics and Administrative
Sciences,26(119),444-457.

11. Hardin and Hilbe, (2007) "Generalized linear models and extensions" stata press .

12. Kazem, A., Muslim B. (2002) "Advanced Economic Measurement Theory and Application™
Donia Al-Amal Library, Al-Sina’ah Street, Baghdad,Iraq.

13. Kamal G.,Khazal S.(2019)”Comparison of some robust methods in the presence of problems
of multicollinearity and high leverage points” Journal of Economics and Administrative
Sciences,25(114),523-538.

14. Kurtoglu F., Ozkale MR. (2017)"Restricted ridge estimator in generalized linear models:
Monte Carlo simulation studies on Poisson and binomial distributed response” Commun Sta
tSimul Comput ;48(4),1191-1218.

15. Mahmoudi A., Arabi R., Mandal S. (2020)" A comparsion of perlimniary test,stein-type and
penalty estimators in gamma regression model" J Stat Comput Simul ;90(17):3051-3079.

16. Qasim M. , Akram M., Amin M., Mansson K. (2021) "A restricted gamma ridge regression
estimator combining the gamma ridge regression and the restricted maximum liklehood methods
of estimation" Journal of Statistical Computation and Simulation,92(8),1696-1713.

17. Qasim M., Amin M., Amanullah M. (2018)"On the performance of some new Liu
parameters for the gamma regression model™ J stat Comput simul;88(16),3065-3080.

18. Qasim M., Kibria B., Mansson K. (2020)" A new Poisson Liu regression estimator: method
and application™ J Appl Stat;47(12),2258-2271.

520



Journal of Economics and Administrative Sciences P-1SSN 2518-5764
2024; 30(143), pp. 510-522 E-ISSN 2227-703X

19. R.Tibshirani (1996)"Regression shrinkage and selection via the lasso" Journal of the Royal
Statistical Sociaty: Series B,58(1),267-288.

20. Sampreet Ch., Price B. (1989) "Regression Analysis with Examples" Higher Education
presses in Mosul, Mousl,Irag.

21. Sarkar N. (1992) "A new estimator combining the ridge regression and the restricted least
squares methods of estimation"Commun Stat Theory Methods; 21(7),1987-2000.

22. Seifollahi S., Bevrani H., Kamary K. (2023) “Inequality Restricted Estimator for Gamma
Regression: Bayesian approach as a solution to the Multicollinearity” Communications in
Statistics - Theory and Methods, 2303-05120.

23. Yasin A. ,Amin M., Qasim M. , Muse A.,Soliman A. (2022) " More on the ridge parameter
estimator for the Gamma ridge regression model ; Simulation and Application"Vol. 2022,Article
ID 6769421.

521



Journal of Economics and Administrative Sciences P-1SSN 2518-5764
2024; 30(143), pp. 510-522 E-ISSN 2227-703X

BlSlacal) aladiuly aBall Cjad) Laly lasd) 3 gad) a3l (e 4 e

198 2 Jag Al ) 58 ¢lisa
slanyl) aud /aLaBY) 55 )oY 4K /alaky daslas clas ) and / SLaiY 55 laY) 4 /olaiy dasls
Glall | alasy Gl | ooz
suhnaj2005@coadec.uobaghdad.edu.iq Mivan.shakur2101m@-coadec.uobaghdad.edu.iq

https://orcid.org/0009-0002-9567-4624

Received: 11/2/2024  Accepted: 17/3/2024  Published Online First: 1 /10/ 2024

4.0 A5 asardl o il - e - i) el (1) gLl A8 il el e Jand) 12 @@@@
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) BY NC SA

Gl paliliun

e Caall Ll ) ey Bish oo aiall Ll ol lasd) g3 sad) alles a5 Caagll 138 8 sl
ale ) eyl Coyall s lasil jaie e 485 s aaall i) (ailiad o Copedl) a2l alac Y1 lSaY)
USia (o Aad by 2l il IS i e 88 oslud alasind &3 3 | K eSSy Jalaal s Bae pladinly | aiidll
sl aae | Ll )Y ds ) oAl 3 dalse b 8 (n=25,50,100,250 ) ddlise alaaly dasldl axedl
oha 28 ) s s g gind Jla 6 adll o) A5 e paliill | b 08 ) Cilaleall g Liad) 5 (A el
4Ll JlneS MSE Uadll ey jo Jaws sie e slaie Y1 ady, il 3k qo )l aladiuls 73 sl allae 505 e g
zosal allae i & Juad1 A5kl 4 gedall Haiall A8y jla () i BUSLaall A ya il SR (e g il 351k G
Al Lls o all jlass

Afiny 43 )4 ; Caall g o

3l alae Y G ¢ (GRR) “iall Lla o) | (RGRR) 2l cijal) lala lasil séiadl Ao 1) clatlaaal)
. MSEWaall ¢ilay ye dass sia ¢« k (3LeS3Y) Jalaa « (RMLE)

iteeala Al (pa Jhsa danll o

522


mailto:suhnaj2005@coadec.uobaghdad.edu.iq
mailto:Mivan.shakur2101m@coadec.uobaghdad.edu.iq
https://orcid.org/0009-0002-9567-4624
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

