
                        

JEAS,Vol. 31 No. 147 (2025) pp (158-169)                                                                     

P-ISSN 2518-5764 - E-ISSN 2227-703X 

DOI: https://doi.org/10.33095/0ss7v861 

 

Journal of Economics 
and Administrative 

Sciences  

 

Solving Multi-Objective Machine Scheduling Problem Using the 

Meerkat Clan Algorithm 
 
 

Tahani Jabbar Khraibet *  Bayda Atiya Kalaf  Erum Rehman  

Department of Mathematics 

 College of Education for Pure 

Science (Ibn Al Haitham), University 

of Baghdad, Baghdad,  Iraq 

 

Department of Mathematics, 

College of Education for Pure 

Science (Ibn Al Haitham), 

University of Baghdad, Baghdad,  

Iraq. 

 

Department of Mathematics 

 School of social sciences, 

Nazarbayev University, Astana, 

Kazakhstan 

 

*Corresponding author   
    

Received: 29/1/2025               Accepted: 3/3/2025                   Published: 1/6/2025 
  

                            © 2025 The authors(s).  This is an open-access article under the CC BY license 

(https:/creativecommons.org/licenses/by/4.0/).  
 

 
  

Abstract: 

Machine scheduling problems have become increasingly complex and dynamic. The complexity 

and size of the problems require the development of methods and solutions whose efficiency is 

measured by their ability to find acceptable results within a reasonable amount of time. Therefore, 

this paper addresses to propose a new mathematical model for multi objective function based on 

Single-machine scheduling problems  by minimizing  the discounted total weighted completion 

time ∑ 𝑤𝑗(1 − 𝑒
−𝑟𝐶𝑗)𝑛

𝑗=1 , the number of tardy jobs ∑ 𝑈𝑗
𝑛
𝑗=1 , the maximum earliness 𝐸𝑚𝑎𝑥  and 

the maximum weighted tardiness 𝑇max 
𝑤  with release date 𝑟𝑗 denoted  (1 ∕ 𝑟𝑗 ∕ ∑ 𝑤𝑗(1 −

𝑛
𝑗=1

𝑒−𝑟𝐶𝑗) + ∑ 𝑈𝑗
𝑛
𝑗=1 +𝐸𝑚𝑎𝑥+ 𝑇max 

𝑤 ) which are an NP-hard. To achieve efficient solutions, a 

metaheuristic method (Meerkat clan algorithm (MCA)) is used to solve the mathematical model 

and compare it with branch and bound (BAB) method. Computational results show that MCA 

provides efficient solutions in terms of accuracy and calculation speed compared to BAB. In 

addition, the BAB can solve up to 10 problems, while MCA can resolve problems up to 1000 for 

multi objective.  
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1. Introduction: 

Scheduling is one of the well-known problems in operations research and production 

management, involving allocating resources over time to perform a collection of tasks.  The 

complexity of scheduling problems stems from the combinatorial nature of arranging tasks, 

especially as the number of tasks and constraints increases.  The scheduling theory addresses the 

machine scheduling problem (MSP), which applies to various sectors, including production 

facilities. The solution to the MSP, known as the schedule, is the best optimal method to 

minimize the multi-objective function (Hoogeveen, 1996).These objective functions produce 

several optimum solutions instead of just one  (Fasihi et al., 2023)& (Atiya et al., 2016) .There 

are multiple optimal solutions for every objective function, making it impossible to consider one 

as better than others. The optimum solutions here are called non-dominated solutions (Shao et al., 

2021). 

Multi-objective single-machine scheduling problems are crucial because they reflect real-world 

scenarios where decision-makers must balance various performance metrics to achieve optimal 

outcomes (Neufeld et al., 2023). In addition, they extend the classical problems by incorporating 

multiple, often conflicting, objectives. This helps improve operational efficiency and meets 

diverse stakeholder requirements, making it a vital area of study (Chachan & Hameed, 2019) & 

(Ezugwu, 2024) . Most studies on scheduling theory assume that order processing takes the same 

amount of time over the entire planning horizon. While traditional optimization methods can be 

powerful tools for solving well-defined scheduling problems, their application to multi-objective 

single machine scheduling problems often faces significant challenges due to the complexity of 

handling multiple objectives, computational and scalability issues, and the need for robust and 

diverse solutions. These challenges usually necessitate specialized multi-objective optimization 

techniques, metaheuristic algorithms, or hybrid approaches to effectively address the complexities 

of multi-objective scheduling problems (Yin et al., 2024). 

The Meerkat Clan Algorithm (MCA) employs several specific strategies to be effective. These 

strategies are designed to find near-optimal solutions by leveraging the social behavior of 

meerkats and balancing exploration and exploitation (Srinivasan et al., 2021). Hence, the Meerkat 

Clan Algorithm was used to solve the new multi-objective mathematical model for single 

machine scheduling problem. Therefore, this paper made several contributions that can be 

summarized as follows:  

• Proposed multi-objective model for minimizing the total weighted discounted completion time 

∑ 𝑤ℎ(1 − 𝑒
−𝛼𝐶ℎ)𝑚

ℎ=1 , the number of tardy jobs ∑ 𝑈ℎ
𝑚
ℎ=1 , maximum earliness Emax and the 

maximum weighted tardiness 𝑇𝑚𝑎𝑥
𝑤   for a single machine scheduling problem. 

• For the first time, the Meerkat Clan Algorithm was introduced to solve the multi-objective 

model for the single-machine scheduling problem.  

The remaining sections of this paper are organized as follows:  Section 2 provides the related 

works of the proposed study. Section 3 presents the methodology of our studuy that containt the 

mathematical formulation of the problem, metaheuristic algorithms (Meerkat Clan Algorithm), 

Branch and Bound method. Computational study and results are presented in Section 4. Section 5 

presents the potential challenges and limitations.  Finally, conclusions and suggestions for future 

work are given in Section 6. 
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2. Literature Review: 

Most previous studies on scheduling have focused on a single method of measuring performance 

(T’kindt et al., 2024). Several researchers have extensively studied and (Mahnam et al., 2013)  

used the BAB method to solve the problem  1 𝑟𝑗⁄ 𝐸𝑚𝑎𝑥⁄ + 𝑇𝑚𝑎𝑥 .   (Abdul-Razaq & Akram, 

2018) presented a multi objective function 1// ∑(𝐶𝑗  +  𝑇𝑗)  + 𝑇𝑚𝑎𝑥 + 𝐸𝑚𝑎𝑥 and used branch 

and bound to minimize this problem. (Abbass, 2019) used the BAB method to solve the problem 

1 ∕ ∑ (n
j=1 Uj⁄ + Cj + Tj + Tmax) for 𝑛 ≤ 20.  (Chachan & Jaafar, 2020) considered the problem 

1 𝑟𝑗⁄ ∑ (𝐶𝑗 + 𝑇𝑗 + 𝐸𝑗 +𝑈𝑗
𝑛
𝑗=1⁄ + 𝑉𝑗)  used (BAB) method up to 16 jobs. (Amin & Ramadan, 

2021) showed the problem  1 ∕∕ 𝐸𝑚𝑎𝑥 + 𝑇𝑚𝑎𝑥 to find near optimal solution.  (Yousif & Ali, 

2024) studied the problem 1 ∕∕ 𝐸𝑚𝑎𝑥 + 𝑅𝐿 solved this problem by the branch and bound method. 

(Neamah & Kalaf, 2024b) used the exact method to solve the problem 1 ∕∕ ∑𝐶𝑗, ∑𝑉𝑗 , 𝐸𝑚𝑎𝑥.  

Several researchers have extensively studied and documented (Atiya et al., 2016)& (Khraibet & 

Ghafil, 2021) &(Abbas & Ghayyib, 2024) & (Kalaf et al., 2024) &(Fakhruddin Saleh et al., 2024) 

& (Ragheb Abdulrazak Adlia* & Hatim Mahmoud, 2024) & (Atiya Wardil * & Khaleel Ibrahim, 

2024) & (Shaker Salman*, 2024) 

SMSP problems have become increasingly sophisticated and NP-hard during the last few 

decades. Therefore, metaheuristic algorithms are proposed to obtain optimal or near-optimal 

solutions for the problem under consideration.  (Zlobinsky & Cheng, 2018) used Simulated 

Annealing to solve the problem of minimizing  the weighted earliness and tardiness. (Ali & 

Ahmed, 2020) used Bee Algorithm and Particle Swarm Optimization to solve the problem  

(1 ∕∕ ∑𝐶𝑗 + 𝑅𝐿 + 𝑇𝑚𝑎𝑥).  (Moharam et al., 2022) introduced chimp optimization algorithm to 

minimize the Tardy/Lost (TL) penalties. (Costa & Fernandez-Viagas, 2022)studied a single-

machine scheduling problem, where the objective is minimum total tardiness used the Harmony 

search. (Zhang et al., 2019) used the Tabu search to find a near optimum solution for minimizing 

the make span. Moreover, some researchers are interested in metaheuristic algorithms (Srinivasan 

et al., 2021)& (Mohammadi & Moaddabi, 2021). 

 

3. Methodology: 

3.1  Mathematical Model: 

The scheduling problem is a set of 𝑛 jobs on a single machine. Even job 𝑗, 𝑗 ∈  𝑁, where 𝑁 =
{1,2,… , 𝑛} has integer a processing time 𝑝𝑗 and a positive weighted 𝑤ℎ on the machine and 

ideally would be completed at its due date 𝑑𝑗 and  release date 𝑟𝑗. Discounted total weighted 

completion time ∑ 𝑤𝑗(1 − 𝑒
−𝑟𝐶𝑗)𝑛

𝑗=1  where Cj be a completion time for job j, given by the 

relationship: 𝐶𝑗 = ∑ 𝑝𝑗
𝑛
𝑗=1  and 𝐶1 = 𝑟1 + 𝑝1,   𝐶𝑗 = 𝑚𝑎𝑥{𝑟𝑗, 𝐶𝑗−1} + 𝑝𝑗 for  𝑗 = 2,3, … , 𝑛. The 

number of tardy jobs ∑ 𝑈𝑗
𝑛
𝑗=1  is completed after it's due date (𝐶𝑗 > 𝑑𝑗 𝑡ℎ𝑒𝑛 𝑈𝑗 = 1), (𝐶𝑗 ≤

𝑑𝑗 𝑡ℎ𝑒𝑛 𝑈𝑗 = 0). The lateness time of the job 𝑗 is defined by 𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗. The maximum 

earliness Emax of job 𝑗 is defined by  𝐸𝑚𝑎𝑥 = 𝑚𝑎𝑥{0,−𝐿𝑗} = 𝑚𝑎𝑥{𝑑𝑗 − 𝐶𝑗, 0}, tardiness for job 

𝑗, 𝑇𝑗 = 𝑚𝑎𝑥{0, 𝐿𝑗}, slack time for job 𝑗 is defined by  𝑆𝑗 = 𝑑𝑗 − 𝑝𝑗. The maximum weighted 

tardine 𝑇𝑚𝑎𝑥
𝑤 = 𝑚𝑎𝑥{𝑤𝑗𝑇𝑗} = 𝑚𝑎𝑥{𝑤𝑗(𝑐𝑗 − 𝑑𝑗), 0}.   

Then, the problem can be represented mathematically as:  
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𝑇 = 𝑚𝑖𝑛𝜎∈𝑆{𝑀(𝜎)} = 𝑚𝑖𝑛𝜎∈𝑆 {∑(𝑤𝑗(1 − 𝑒
−𝛼𝑐𝑗) + 𝑈𝑗) + 𝐸𝑚𝑎𝑥 + 𝑇𝑚𝑎𝑥

𝑤

𝑛

𝑗=1

}

𝑠. 𝑡                                                                                                                   
𝐶𝜎(𝑗) ≥ 𝑟𝜎(𝑗) + 𝑝𝜎(𝑗)                         𝑗 = 1,2, … , 𝑛                    

𝐶𝜎(𝑗) ≥ 𝐶𝜎(𝑗−1) + 𝑝𝜎(𝑗)                   𝑗 = 2,3… , 𝑛                    

𝑂 < 𝛼 < 1                                   𝑗 = 1,2, . . . , 𝑛           

  𝑈𝜎(𝑞) = {
1      𝑖𝑓 𝐶𝜎(𝑗) > 𝑑𝜎(𝑗)                 𝑗 = 1,2, … , 𝑛            

    0                 𝑜. 𝑤                                                                     
                  

                   
                     

 𝐸𝜎(𝑗) ≥ 𝑑𝜎(𝑗) − 𝐶𝜎(𝑗)                               𝑗 = 1,2, … , 𝑛                          

 𝐶𝜎(𝑗) > 𝑝𝜎(𝑗)                                             𝑗 = 1,2, … , 𝑛                          
                        

𝑇𝜎(𝑗) ≥ 𝐶𝜎(𝑗)                                         𝑗 = 1,2, … , 𝑛                     

 𝑇𝜎(𝑗) ≥ 0                                                 𝑗 = 1,2, … , 𝑛                        
                      

 𝑟𝜎(𝑗) ≥ 0,𝑊𝜎(𝑗) ≥ 1, 𝑑𝜎(𝑗) > 0,  𝐸𝜎(𝑗) ≥ 0, 𝑝𝜎(𝑗) > 0   𝑗 = 1,2, … , 𝑛                       
  

 

3.2 Meerkat Clan Algorithm: 

The Meerkat Clan Algorithm is an inspirational algorithm derived from the behavior of meerkats 

searching for food in the desert, as proposed in  (Sadiq Al-Obaidi et al., 2018). This algorithm 

utilizes effective methods to address optimization problems and achieve optimal solutions. 

Meerkats are social animals that live in groups ranging from five to thirty individuals, with each 

group occupying a specific territory.As friendly creatures, meerkats exhibit remarkable 

cooperation in performing various tasks such as guarding and parental supervision. Each group is 

characterized by the presence of a dominant alpha female and a leading alpha male, who exert 

significant influence within the group. Groups relocate to different areas when food becomes 

scarce or when another, more dominant group replaces them.This algorithm is based on three key 

components inspired by the social behavior of meerkats. The first component involves assigning 

individuals as guards or lookouts while others hunt or play, with the guards alerting the group in 

case of danger (Srinivasan et al., 2021). Additionally, meerkats employ diverse strategies for 

foraging, taking different paths daily and avoiding revisiting the same area for at least a week to 

allow food supplies to replenish. Moreover, meerkats must balance between caring for the group 

and hunting to achieve the best outcomes (Saleh & Sadiq, 2024). In multi-objective single-

machine scheduling problems, the objectives of minimizing total weighted discounted completion 

time, minimizing the number of tardy jobs, and minimizing maximum weighted tardiness often 

interact in complex ways. The MCA effectively balances these objectives. MCA operates within 

a multi-objective optimization framework aiming to approximate the Pareto front. The Pareto 

front represents a set of non-dominated solutions where no objective can be improved without 

worsening another. MCA searches for diverse solutions along this front, allowing decision-

makers to choose the best trade-offs based on their preferences. In addition,  MCA divides the 

solution space into different clans, each focusing on various regions and aspects of the problem. 

This diversity allows the algorithm to explore different trade-offs through the objective functions. 

After that, each clan is guided by a leader who helps refine the solutions within that clan. This 

process helps balance the trade-offs between objectives by focusing on different aspects of the 

solution space. MCA evaluates solutions based on a combination of objectives.  
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The fitness of a solution is determined by how well it balances the trade-offs between the 

objective functions. Then, MCA employs mechanisms to maintain diversity among the solutions 

in the population. This prevents the algorithm from converging too quickly on a suboptimal 

region of the solution space and ensures that various trade-offs are explored. This helps in finding 

solutions that offer a good balance between the different objectives. 

The following steps of this study show how the MCA solve the single-machine scheduling 

problems 

1. Initialize the population of meerkats, each representing a possible solution (i.e., a sequence of 

jobs), define parameters such 𝑛: Clan count falls between thirty to fifty; 𝑚 : Size for foraging 

when 𝑚 < 𝑛, c: Care size is equal to 𝑛 −𝑚 − 1, 𝐹𝑟: The worst foraging rate, 𝐶𝑟: The lowest 

possible care rate, 𝑘: Finding a neighbor solution. 

2. Calculate the fitness function (𝑚𝑖𝑛𝜎∈𝑆{∑ (𝑤ℎ(1 − 𝑒
−𝛼𝑐𝑗) + 𝑈𝑗) + 𝐸𝑚𝑎𝑥 + 𝑇𝑚𝑎𝑥

𝑤𝑛
𝑗=1 })  

3. Repeat until a stopping criterion  

▪ Exploration: Explore new solutions.  This involves generating new sequences of jobs.  

▪ Exploitation: Exploit the best-known solutions by making small adjustments to improve the 

current best solutions. 

▪ Information Sharing: This can involve updating a shared memory or a set of best-known 

solutions. 

▪ Selection: Select the next generation based on fitness, favoring solutions with better fitness 

values.  

▪ Update: Update the population for the next iteration, including any new solutions generated 

during exploration and exploitation.  

4. When the stopping condition is met, output the best solution found, which represents the 

optimal or near-optimal schedule for the single machine. 
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Figure 1 : Flowchart of the MCA 
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3.3 Branch And Bounded: 

The Branch and Bound (BAB) method developed with the forward sequence branching rule. If 

the jobs are strung together at the first k places in the search tree, the nodes at level k are 

representative of the initial partial order. The derived lower bound (LB) determines the cost of the 

unscheduled orders, and the objective function determines the cost of scheduling the orders at a 

particular node. The BAB technique is dominant if the node has 𝐿𝐵 ≥  𝑈𝐵 at each level. The 

backtracking method is then used to repeat the process until all nodes have been considered. 

Backtracking is the step in the BAB method that leads from the lowest to the highest level. Some 

researchers have worked out a method BAB  (Abdul-Razaq & Akram, 2018)&  (Forget et al., 

2022) & (Neamah & Kalaf, 2024a) 

 The branch and bound method's efficiency largely hinges on the effectiveness of the bounding 

strategies. Calculating upper and lower bounds accurately prunes solution space, leading to faster 

and more efficient optimal solutions in various combinatorial and optimization problems. 

3.3.1 Upper Bound (UB) 

This subsection introduces the three upper bounds, the best one will be chosen as follows: 

𝑈𝐵 = 𝑚𝑖𝑛{𝑈𝐵1, 𝑈𝐵2, 𝑈𝐵3} 
1- 𝑈𝐵1:  Where the n jobs are ordered in (WDSPT) rule, that is sequencing the jobs in non-

decreasing order of   
𝑤1𝑒

−𝛼𝑝1

1 − 𝑒−𝛼𝑝1
≤
𝑤2𝑒

−𝛼𝑝2

1 − 𝑒−𝛼𝑝2
≤ ⋯ ≤

𝑤𝑚𝑒
−𝛼𝑝𝑛

1 − 𝑒−𝛼𝑝𝑛
 

2- 𝑈𝐵2:  Where the n jobs are ordered in EDD rule, that is sequencing the jobs in increasing order 

of due dates 𝑑1 ≤ 𝑑2 ≤ ⋯ ≤ 𝑑𝑛 and then the cost is calculated. 

3- 𝑈𝐵3:  Where the n jobs are ordered in SPT rule,  that is sequencing the jobs in increasing order 

of a processing time 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑛 and then the cost is calculated. 

  3.3.2  Lower Bound (LB) 

The lower bound is one of the most important constraints in determining a satisfactory solution to 

a problem. Obtaining lower bounds for an NP-hard multi-objective problem is clearly difficult. In 

order to determine a lower bound for the problem, it is divided into three lower bounds as 

illustrated in: 

𝐿𝐵1 = 𝑚𝑖𝑛𝜎(𝑗) = {∑𝑤𝑗(1 − 𝑒
−𝛼𝑐𝜎(𝑗))

𝑛

𝑗=1

}

𝑆𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜                                                                              
𝐶𝜎(𝑗) ≥ 𝑟𝜎(𝑗) + 𝑝𝜎(𝑗)                                     𝑗 = 1,2, … , 𝑛      

𝐶𝜎(𝑗) ≥ 𝐶𝜎(𝑗−1) + 𝑝𝜎(𝑗)                               𝑗 = 2,3… , 𝑛       

0 < 𝛼 < 1                                               𝑗 = 1,2, … , 𝑛      
𝑟𝜎(𝑗) ≥ 0,𝑤𝜎(𝑗) ≥ 1, 𝑝𝜎(𝑗) > 0, 𝑑𝜎(𝑗) > 0             𝑗 = 1,2,… , 𝑛                              }

 
 
 
 

 
 
 
 

 

𝐿𝐵2 = 𝑚𝑖𝑛𝜎(𝑗) = {∑𝑈𝜎(𝑗)

𝑛

𝑗=1

}

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                                                    
𝐶𝜎(𝑗) ≥ 𝑟𝜎(𝑗) + 𝑝𝜎(𝑗)                    𝑗 = 1,2,… , 𝑛            

𝐶𝜎(𝑗) ≥ 𝐶𝜎(𝑗−1) + 𝑝𝜎(𝑗)            𝑗 = 2,3, . . , 𝑛            

𝑈𝜎(𝑗) ∈ {0,1}                           𝑗 = 1,2, … , 𝑛           

𝑟𝜎(𝑗) ≥ 0, 𝑝𝜎(𝑗) > 0, 𝑑𝜎(𝑗) > 0         𝑗 = 1,2,… , 𝑛                         }
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𝐿𝐵3 = 𝑚𝑖𝑛𝜎∈𝑆 {𝑚𝑎𝑥{𝐸𝜎(𝑗)}}

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                                              
𝐶𝜎(𝑗) ≥ 𝑟𝜎(𝑗) + 𝑝𝜎(𝑗)                             𝑗 = 1,2,… , 𝑛

𝐶𝜎(𝑗) ≥ 𝐶𝜎(𝑗−1) + 𝑝𝜎(𝑗)                 𝑗 = 2,3, … , 𝑛 

𝐸𝜎(𝑗) ≥ 𝑑𝜎(𝑗) − 𝐶𝜎(𝑗)                    𝑗 = 1,2,… , 𝑛 
  

𝑟𝜎(𝑗) ≥ 0, 𝐸𝜎(𝑗) ≥ 0, 𝑝𝜎(𝑗) > 0, 𝑑𝜎(𝑗) > 0      𝑗 = 1,2, … , 𝑛              }
 
 
 

 
 
 

 

 

 

The following steps of Algorithm:  

Step1. Enter: 𝑛, 𝑟𝑘𝑝𝑘, 𝑑𝑘 & 𝑤𝑘 where h from 1 to k. 

Step2. Order the jobs by using (WDSPT)- rule. 

Step3. Calculate the value for each job h that schedules the jobs in non-decreasing order of ratio: 
wh e

−αph  

1−e−α𝑝ℎ
  and compute ∑ 𝑤ℎ(1 − 𝑒

−𝛼𝑐ℎ)(𝑊𝐷𝑆𝑃𝑇) =𝑚
ℎ=1 ∑ 𝑈ℎ(𝑊𝐷𝑆𝑃𝑇)

𝑚
ℎ=1 =

 𝐸𝑚𝑎𝑥(𝑊𝐷𝑆𝑃𝑇) = 𝑇𝑚𝑎𝑥
𝑤 (WDSPT) the WDSPT gives optimal solution. 

    
Step4. Obtaining that  𝐿𝐵1 = 𝑊𝐷𝑆𝑃𝑇. 
Step5. Order the jobs in (EDD)-rule. 

Step6. Calculate the value for each job that schedules the jobs in non-decreasing order of of due 

dates 𝑑ℎ and compute (∑ 𝑤ℎ(1 − 𝑒
−𝛼𝑐ℎ)(𝑀𝐴)) =𝑚

ℎ=1 ∑ 𝑈ℎ(𝑀𝐴)
𝑚
ℎ=1 = 𝐸𝑚𝑎𝑥(𝑀𝐴) = 𝑇𝑚𝑎𝑥

𝑤 = 

(MA) the MA gives optimal solution. 

Step7. Obtaining that  𝐿𝐵2 = 𝑀𝐴.  
Step8. Calculate the value for each job h that schedules the jobs in non-decreasing order of of 

due dates 𝑆ℎ and compute (∑ wh(1 − e
−αch)(𝑀𝑆𝑇)) =m

h=1 ∑ 𝑈ℎ(𝑀𝑆𝑇)
𝑚
ℎ=1 = 𝐸𝑚𝑎𝑥(𝑀𝑆𝑇) =

𝑇𝑚𝑎𝑥
𝑤 = (MST) the MST gives optimal solution.  

Step9. Obtaining that  𝐿𝐵3 = 𝑀𝑆𝑇.  
Step10. 𝐿𝐵 = 𝐿𝐵1 + 𝐿𝐵2 + 𝐿𝐵3. 
  Obtaining  

4. Results And Discussion 

  Simulation used to verify and evaluate the performance of the Meerkat Clan Algorithm 

for solving the multi-objective model based on a single-machine scheduling problem. Various 

problems with medium to large sizes of 3 to 1000 are studied. The results also compare the 

performance of the MCA and BAB methods to evaluate their efficiency in solving these 

problems.  The processing time is uniformly distributed across in  𝑈[1, 10] and weights were 

generated from the set {1,2,… ,10}. It is now a standard method for creating single machine 

scheduling problems with due dates. The due dates are uniformly distributed within the range 

[𝑃(1 − 𝑇𝐹 − 𝑅𝐷𝐷/2), 𝑃(1 − 𝑇𝐹 + 𝑅𝐷𝐷/2)]; where 𝑃 = ∑ 𝑝𝑗
𝑛
𝑗=1 , which is influenced by the 

relative range of due date (𝑅𝐷𝐷) and the average tardiness factor (TF).  The TF value is extracted 

from the set of values 0.1, 0.2, 0.3, 0.4, and 0.5, while the 𝑅𝐷𝐷 value is obtained from the set of 

values 0.8, 1.0, 1.2, 1.4, 1.6, and 1.8. According to an analysis of the algorithms' performances, 

the MATLAB programming language encoded and resolved these examples comparably. As the 

stopping criterion, each algorithm, including MCA and BAB was executed for 1,000 iterations. 

The Table below showed the results of the BAB method for the problem with different values of 

n (𝑛 =  3 𝑡𝑜 10), the optimal value, the upper bound, the initial lower bound, the computing time 

in seconds (Time) that the BAB is stopped after a fixed period of time, here after 1800 seconds 

(i.e., after 30 minutes). While, using metaheuristic was the Meerkat Clan Algorithm delivered and 

solved up to 1000 jobs.  
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Table 1: comparison results BAB and MCA with (n = 3 to 1000). 

n 
BAB MCA 

Av. of UB Av. of LB Av. of BAB Av. of time Av. of MCA Av. of time 

3 27.40408516 26.56758881 27.40408516 0.0009225 27.40408516 0.2248035 

4 23.74089241 17.13867378 23.74089241 5.2035062 23.74089241 0.095335 

5 28.26225281 27.00437546 28.10505104 8.3713162 23.74089241 0.08825 

6 51.09547424 38.74572754 50.26849365 121.7023699 28.26225281 0.085324 

7 113.8022232 101.7890549 110.1090851 156.5885616 51.09547424 0.088017 

8 145.7970428 79.47692108 135.8821716 180.6513175 84.92289734 0.0997496 

9 173.5439148 90.24220276 151.1593628 750.8574263 97.62181091 0.1113103 

10 1380.373772 760.2249756 1155.07428 1800 146.2519836 0.1216842 

20 ------- ------- ------- ------- 152.1480408 0.1240352 

40 ------- ------- ------- ------- 285.2049866 0.3257853 

80 ------- ------- ------- ------- 420.8836365 0.3950244 

100 ------- ------- ------- ------- 1005.529846 0.6918425 

200 ------- ------- ------- ------- 1651.296631 1.0878116 

300 ------- ------- ------- ------- 1814.060791 2.2276778 

400 ------- ------- ------- ------- 1995.63853 3.0160037 

500 ------- ------- ------- ------- 2344.873291 3.0898451 

600 ------- ------- ------- ------- 2948.749756 5.5196646 

700 ------- ------- ------- ------- 3758.495605 7.1349164 

800 ------- ------- ------- ------- 4510.522461 8.0532439 

900 ------- ------- ------- ------- 5489.3012 9.1349164 

1000 ------- ------- ------- ------- 9518.09375 10.6533901 

 

5. Potential Challenges and Limitations 

Although the Meerkat Clan Algorithm has proven effective in solving multi-objective scheduling 

problems, it faces some potential challenges. Its efficiency depends heavily on parameter tuning, 

which may require multiple trials to select the optimal values significantly as the size of the 

problems increases. Also, the performance of MCA may suffer in some cases when dealing with 

problems with strict constraints or complex variables, whereas other algorithms, such as branch 

and bound, may be more accurate. In addition, MCA does not always guarantee reaching the 

optimal solution, but it does provide a solution close to the ideal with high computational 

efficiency. The performance of MCA could be improved in the future by combining it with 

machine learning techniques or developing automatic parameter tuning strategies. 

6. Conclusion And Future 

This study used a new multi-objective model for a single machine scheduling problem, and 

Meerkat Clan Algorithm as a novel metaheuristic approach for solving the model.  Additionally, 

it enhanced the Branch and Bound method. The results demonstrate that this integration 

significantly improves the performance of the BAB method, achieving outcomes in up to 10. The 

Meerkat Clan Algorithm regarding accuracy and computational efficiency for multi-objective 

single-machine scheduling problems. MCA excels with its diverse solution representation, 

adaptive search strategies, and ability to handle multi-objective optimization effectively and solve 

up to 1000 jobs. In addition, some extensions of the problems can be studied in the future, such as 

1- 1/𝑟𝑗/∑ (wh(1 − e
−α𝐶ℎ), 𝑉𝑚𝑎𝑥), Lmax

w  m
h=1  

2- 1//Lex(∑ wh𝐶𝑗, 𝑇𝑚𝑎𝑥, ∑ 𝑉𝑚
ℎ=1 ℎ

) m
h=1   
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