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Abstract: 

This paper introduces a method for measuring the Reliability Function of Carbon Fiber 

Reinforced Polymer (CFRP) under cyclic stress using nonparametric estimators. The study's goal 

is to gain a better understanding of material deterioration by combining microscopic and 

macroscopic approaches while accounting for the uncertainty associated with the data and 

models. Several statistical techniques were used to estimate the reliability function from failure 

data generated under cyclic stress, such as Nadaraya-Watson, spline estimation, kernel density 

estimation, Bayesian estimation, and Gaussian process regression. 

Real data will be simulated as a result of experiments conducted in Stanford  structures and the 

vehicle laboratory (SACL) in partnership with NASA's AMES Research Center for Predictive 

Excellence (PCoE). Thus, developing the method of generating data based on failure rate and the 

number of cycles that allow calculation of possible failure periods, the parametric models will 

accurately predict physical behavior under periodic pressure, as evidenced by data analysis using 

performance measures such as Mean Squared Error (MSE) and the Determination Factor (R 2). 

The study also confirms the need to include uncertainty in forecasts to increase accuracy of 

results-level estimation stresses the use of statistical models that explain uncertainty in particular 

Bayesian Kernel Estimator and Gaussian Process Regression to estimate the reliability function of 

carbon fiber reinforced polymers CFRP maintenance costs that are important in the development 

of vehicle safety methodologies. 

Keywords: Nonparametric Estimation of Reliability Function, Carbon Fiber-Reinforced Polymer 

(CFRP), Cyclic Stress, Kernel Density Estimation (KDE), Gaussian Process Regression (GPR), 

Bayesian Estimation. 
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1. Introduction:  

Reliability functionality is an essential statistical tool used in the study of performance 

assessment and durability of engineering materials and systems (Härdle, 1990), which means that 

the component can remain in operation or functioning without interruption or failure during a 

given period. This function is often used to determine material resistance to repeated loads, 

especially in applications involving dynamic pressures such as space structures and aircraft, 

where the accuracy of prediction of the reliability function is an essential subject for improving 

engineering designs.  

(Taki et al., 2018). Due to its unique properties, CFRP (carbon fibre-reinforced polymer) is one of 

the most essential composite materials used in engineering applications where its properties 

include resistance, lightweight and high strength. Resistance is widely used in space structures 

and aviation due to its high power-to-weight ratio. When polymer material is under repeated 

periodic pressure, it decomposes over time, creating precise cracks at the end. These cracks 

gather, as a result of which the system fails. (Polymer), periodic stress analyses and weakens the 

performance of CFRP by causing cumulative damage to the internal structure, which reduces its 

ability to maintain future loading as a result. The study of the reliability function under periodic 

stress contributes to understanding the behaviour and patterns of failure to give a clear idea of the 

possibility of improving the design of these composite materials to withstand these harsh 

operational conditions. 
Calculating the reliability function of CFRP composite materials is important to ensure long-term 

performance consistent with various conditions of operational modes to predict anticipated failure 

times and identify factors leading to accelerated degradation and damage of composite substances 

under stress, we assess the reliability function and help to make the best decisions regarding 

maintenance based on accurate data, which reduces operational costs and, as a result of improving 

the integrity of the structure of systems that rely on these substances for their work. So, the main 

problem is to build a reliable estimation model for the reliability that should take into account 

data errors and the effects of other factors, such as load differences, temperature fluctuations. 
To focus light on the relationship between stress cycles and failure rates, NASA provided failure 

data for CFRP under periodic stress that included detailed records of failure times for a sample set 

tested in various operational settings, resulting in the creation of statistical models based on real 

data that are concerned with predicting physical behaviour and estimating reliability functions 

with high accuracy, which are an important and reliable source as they represent the results of 

tests obtained from strongly controlled laboratories. This strong control thus leads to accurate 

statistical analysis and the ability to anticipate physical behaviour in cases of actual use. 
For the purpose of providing a model for estimating R(t), the simulation method was used based 

on failure data generated using different methods to distribute non-standard probabilities. This 

approach seeks to consider the subject of the impact of periodic stress on the composite material 

and how failure escalates and develops over time. The reliability function was estimated using 

methods including Nadaraya-Watson, kernel regression, spline estimation, KDE, Bayesian 

estimators, and Gaussian process regression. 
The reason why these models are suitable for data analysis without the need for rigorous 

assumptions about basic data distributions has given them reliability in predicting failure rates. 

Therefore, non-pivotal methods have been used to analyse CFRP failure data and then compare 

their performance by relying on measures such as MSE and R2 to assess estimation accuracy. 
In addition, to verify the different effects of carbon fibre-reinforced polymer such as frequency, 

stress and load levels, on material reliability. Results revealed that reliance on non-standard 

models gives accurate and flexible estimates of reliability function compared to standard 

methods, especially when we deal with data with uncertain distributions. As a result, the study 

showed that the integration of Bayesian techniques increases the accuracy of the estimate by 

calculating the uncertainty in the evidence and adding new methods of analysis to assess the 

reliability, which will help to improve polymer design and thus reduce the risk of failure. 
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1.1. Literature Review and Hypothesis:  

More than one statistical method has been reviewed and examined to estimate reliability, as 

Nadaraya-Watson is a core-based smoothing statistical method that is a desirable option for non-

standard regression (Ali, 2022). This method is effectively good at capturing basic data trends and 

patterns without assuming a specific parameter format as described in (Adam et al., 2025) which 

uses the Bayesian method to characterize the reliability of fatigue. Similarly, KDE estimates the 

calculation and determination of probability intensity functions that are important for 

characterizing the behaviour of failure distributions. 
Reliability modelling options are many of them, Spline techniques such as supervised Spline and 

cubic B-shaped Spline (Härdle, 1990). The light focused on splinters and their use in predictive 

modelling by demonstrating their efficiency in smoothing longitudinal data and that Bayesian 

assessors improve the estimation of reliability functions by relying on previous information 

before subsequent data analysis, as well as using Bayesian neural networks to identify uncertainty 

in predicting fatigue life and highlighting the value of potential modelling. 
Gaussian Process Regression (GPR) has been used as an effective method of reliability analysis, 

especially in calculating uncertainty for failure predictions and knowing GPR's ability to 

represent complex interactions during random processes in research such as (Norkin & Pichler, 

2025), where adaptive KD learning was used to improve the parametric model that GPR 

conforms to today's practical reality, and recent developments in probable machine learning and 

its use in structural health monitoring make it a reliable and good choice. 
The NASA Ames PCoE Research centre for Predictive Excellence, in collaboration with the 

Stanford Laboratory of SACL Structures and Compounds, collected experimental data on CFRP 

failure under periodic load, which has helped to create a failure data generation system that likely 

allows periodic calculation. Performance measures, including average square error MSE and the 

R2 determination coefficient, were used to verify the accuracy of the model to verify the 

effectiveness of the non-standard method of estimating reliability functionality. 
Assessing reliability to improve predictive models requires the inclusion of uncertainty, in which 

the estimate of the Bayesian nucleus and the regression of the Gaussian process works very 

effectively while estimating the reliability function of the CFRP study subject polymer. These 

methods provide clear insights into the remaining life of composite materials. They help improve 

the safety of polymer and reduce the costs for its maintenance. Future studies should consider the 

approach of mixed modelling using many statistical techniques for refining estimates and 

improving their accuracy in analysing the reliability of composite materials. 
2. Carbon Fiber-Reinforced Polymer under Cyclic Stress : 

A probability that the composite material will remain with a reliable function after a 

certain time has passed: 

R(t) = P(T > t) 
                              = 1 − F(t)    …     (1) 

(Larrosa & Chang, 2012) clarify F (t) is the cumulative distribution function for complex material 

failure times. The failure rate can be described using the PDF function with t failure time as 

follows: 

                        f(t) = −
d

dt
R(t)            …  (2) 

The CFRP carbon fibre reinforced polymer behaviour operates under periodic stress conditions 

and has a significant impact on the reliability and durability of the structure of those composites 

because the periodic stress on the composite substances analyses these substances by scattering 

small and precise cracks resulting in the end exposure of these composites to failure. The failure 

rate of CFRP polymer can therefore be studied using models provided by this study to analyse 

these composite substances. (Taki et al., 2020)  explained that the function of λ failure rate (N) 

grows exponentially with periodic stress: 
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                   φ(N) = φ0e
𝑎w              …     (3) 

Since φ0 represents the initial failure rate and a degradation or corrosion inhibitor and based on 

equation No. 3, CFRP is subject to the law (Nsanzumuhire et al., 2025): 

                    
da

d𝑤
= a(ΔM)K            =       …    (4) 

ΔM represents the periodic stress intensity coefficient. 

 

3. Research Methodology: 

In this study, a nonparametric statistical modeling approach was used to calculate the reliability 

function of carbon fiber-reinforced polymer (CFRP) under cyclic stress. The study is based on 

real NASA data, which includes recorded failure times and cycle counts for a group of samples 

that underwent cyclic stress tests under various operating settings. 

Statistical simulation techniques were utilized to create analytical models that replicated the 

material's behavior using real data from experiments carried out at the Stanford Structures and 

Composites Laboratory (SACL) in partnership with NASA Ames Research Center's Prognostic 

Center of Excellence (PCoE). Several nonparametric approaches, including Nadaraya-Watson 

Kernel Regression, Spline Estimation, Kernel Density Estimation (KDE), Bayesian Estimator, 

and Gaussian Process Regression (GPR), were used to investigate the link between the number of 

cycles and failure time. Furthermore, modern statistical approaches were used to examine the 

effect of different operating circumstances on material performance. This methodology attempts 

to offer reliable reliability function estimates, which will aid in material design optimization and 

failure risk reduction in engineering applications. 

4. Materials and Methods: 

4.1. Nadaraya-Watson Kernel Estimator: 

The Nadaraya-Watson Kernel Estimator is a nonparametric approach for estimating a smooth 

function using observed data, we apply kernel regression to estimate it and get R(t) and The 

failure periods Ti and their empirical cumulative probabilities F(Ti) fulfill the following: 

                         F(Ti) = E[Yi ∣ Ti]                                      
Yi is an indicator of failure occurrence, our goal is to estimate F(t), which is Y's conditional 

expectation given T Using kernel regression,  (Ali, 2022) say the conditional expectation is:  

 

                                                    F̂(t) =
∑ Kh
n
i=1 (Ti−t)F(Ti)

∑ Kh
n
i=1 (Ti−t)

    …         (5) 

Kh(u) =
1

h
K(

u

h
) is a kernel function with bandwidth h, where K(u) is a symmetric probability 

density function (e.g., Gaussian kernel), and h determines the smoothing level Therefore the 

estimated reliability function is : 

                                                     R̂(t) = 1 − F̂(t)  
Common possibilities for K(u) include the Epanechnikov Kernel, the bandwidth h is commonly 

determined via cross-validation. via the kernel-based estimate of F(t) from Equ.5 (Hussein et al., 

2012) refers to the Nadaraya-Watson Kernel Estimator for the reliability function is:  

                                                    R̂(t) = 1 −
∑ Kh
n
i=1 (Ti−t)F(Ti)

∑ Kh
n
i=1 (Ti−t)

  …   (6) 

This yields a smooth, nonparametric estimate of dependability that is tailored to the underlying 

failure time distribution. 
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4.2. Spline-Based Estimation: 

Spline-based estimation is an effective nonparametric technique for estimating smooth functions, 

including the reliability function R(t) Splines approximate functions using piecewise polynomials 

assuring smoothness and continuity at predetermined knots, a spline function is a piecewise 

polynomial function of degree that satisfies smoothness constraints at certain breakpoints called 

knots, a cubic spline (widely used due to its smoothness) F(t) is unknown we estimate it using 

splines and then deduce R(t), The spline function S(t) is a piecewise polynomial function of 

degree k that meets smoothness constraints at specific breakpoints known as knots, a cubic spline 

(often utilized for its smoothness) is defined as n say (Hasan et al., 2018) :  

S(t) =

{
 

 
a1 + b1t + c1t

2 + d1t
3, t ∈ [τ0, τ1]

a2 + b2t + c2t
2 + d2t

3, t ∈ [τ1, τ2]

⋮
am + bmt + cmt

2 + dmt
3, t ∈ [τm−1, τm]

          …     (7) 

 

Each section is a cubic polynomial to estimate the dependability function (Hasan et al., 2018) we 

approximate the F(t) using S(t), where. So, our reliability estimate becomes: 

                                                      R̂(t) = 1 − S(t) 
For a valid spline, we impose continuity and smoothness criteria S(t) should be continuous at : 

                                                S(τi
−) = S(τi

+), i = 1,2, … ,m − 1    …    (8)  
These constraints result in a system of linear equations, which we solve to find the spline 

coefficients to fit the spline, we minimize the residual sum of squares (RSS) over the recorded 

failure times (Ti and Fi):   

                                                min∑ (Fi − S(Ti))
2n

i=1   

where is the empirical cumulative failure probability (Seyala et al.,2024) : 

Fi =
∑ δj
i
j=1

n
 1          …     (9) 

Where  δj = 1. If failure happens, δj = 0 is else, the solution of minimizing the problem produces 

the spline coefficients ((ai, bi, ci, di)), which define S (t) After solving for S(t), the estimated 

reliability function is R̂(t) = 1 − S(t) which is a smooth and flexible approximation of the true 

reliability function. 
 

4.3. Kernel Density Estimator : 

The Kernel Density Estimation method is a nonparametric approach to estimating the probability 

density function f(t) (Mraoui et al., 2024) , we can integrate it to estimate the cumulative 

distribution function F(t), and then use Equ2 to create the reliability function R(t) The kernel 

density estimator of the probability density function f(t) is defined as:  

                                                   f̂(t) =
1

nh
∑ Kn
i=1 (

t−Ti

h
)        …    (10) 

K(x) is the kernel function, often the Gaussian kernel, defined as 
1

√2π
e−x

2/2.  The kernel function 

to derive the cumulative distribution function F(t) integrate the estimated density function f̂(t) ∶ 

F̂(t) = ∫ f̂
t

−∞

(u)du 

Substituting f̂(t) from Equ.8, then: 

F̂(t) = ∫
1

nh

t

−∞

∑K

n

i=1

(
u − Ti
h

)du 
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By interchanging the summation and integral F̂(t) =
1

n
∑ ∫

1

h

t

−∞
n
i=1 K(

u−Ti

h
) du as a probability 

density function and the cumulative kernel function is defined as: 

K∗(x) = ∫ K
x

−∞

(u)du 

Thus, we rewrite the estimated CDF is F̂(t) =
1

n
∑ K∗n
i=1 (

t−Ti

h
) For a Gaussian kernel: 

K∗(x) = ∫
1

√2π

x

−∞

e−u
2/2du = Φ(x) 

Where Φ(x) is the standard normal CDF, Thus: 

F̂(t) =
1

n
∑Φ

n

i=1

(
t − Ti
h

)                  …     (11) 

(Sadek et al., 2024), The KDE estimator for R(t) is, where from Equ.9 substituted.  

R̂(t) = 1 −
1

n
∑Φ

n

i=1

(
t − Ti
h

)          …     (12) 

This offers a smoothed nonparametric estimate of the reliability function using kernel methods, 

also refers the bandwidth h is critical in determining the smoothness of f̂(t)and subsequently 

R̂(t) A small h results in an overfitted (noisy) approximation, while a big h oversmoothes the 

function. Silverman's Rule of Thumb is a popular method for determining h: 

h = 1.06σn−1/5                                 …     (13) 
where σ is the sample standard deviation. 

4.4. Bayesian Nonparametric Estimation 

Bayesian nonparametric approaches offer a versatile framework for estimating the reliability 

function R(t) without requiring a specific parametric distribution for failure times instead, we 

apply a Bayesian prior to the reliability function and update it with observed failure data.  In this 

paradigm, we use stochastic processes, specifically the Dirichlet Process (DP) to explain the 

uncertainty in the reliability function. The cumulative distribution function F(t) and the reliability 

function R(t) are connected from Equ.2, with regard F(t) as an unknown function and assign a 

prior distribution over the potential functions, (Adam et al., 2025): 
                                         𝐹(𝑡) ∼ Stochastic Process Prior   …     (14) 
The Dirichlet Process (DP) is widely utilized prior. The Dirichlet Process (DP) is a distribution 

over a distribution that is frequently used as a prior for unknown CDF from Equ.12 We defined: 

                                         𝐹 ∼ DP(𝛼, 𝐹0)                                   …     (15)  
Where 𝛼 is the concentration parameter controlling variability,𝐹0 is the base distribution and 

often taken as a parametric family like an exponential or weibull distribution given failure times, 

where α is the concentration parameter governing variability, and F0 is the basis distribution, 

generally considered as a parametric family like Weibull distribution, for failure times 𝑇 =
{𝑡1, 𝑡2, . . . , 𝑡𝑛}, the posterior estimate of F(t) is as follows: 

𝐹(𝑡) ∣ 𝑇 ∼
𝛼

𝛼 + 𝑛
𝐹0(𝑡) +

𝑛

𝛼 + 𝑛
�̂�(𝑡)          

Where �̂�(𝑡) is the empirical CDF, �̂�(𝑡) =
1

𝑛
∑ 𝐼𝑛
𝑖=1 (𝑡𝑖 ≤ 𝑡) , the Bayesian reliability estimator is 

                                        �̂�(𝑡) = 1 − 𝐹(𝑡) = 1 − (
𝛼

𝛼+𝑛
𝐹0(𝑡) +

𝑛

𝛼+𝑛
�̂�(𝑡))       …     (16) 

(Gorgees et al., 2018) Prove that it represents a Bayesian, nonparametric estimate of the R (t). 
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4.5. Gaussian Process Regression Estimation: 

Gaussian Process Regression is an effective nonparametric Bayesian method for function 

estimation, especially when dealing with noisy data. It offers a probabilistic framework for 

estimating a function and quantifying uncertainty, In the framework of reliability analysis we 

intend to estimate the reliability function R(t), we estimate it using Gaussian Process Regression 

(GPR) a Gaussian Process (GP) is a distribution over functions in which any finite set of function 

values follows a multivariate normal distribution A function is modeled as: 

𝑓(𝑡) ∼ 𝐺𝑃(𝜇(𝑡), 𝑘(𝑡, 𝑡′)) 
Where μ(t) is the mean function (commonly assumed to be zero: μ(t)=0 for simplicity), 𝑘(𝑡, 𝑡′) is 

the covariance function that defines smoothness, The Squared Exponential (SE) kernel is a 

commonly used choice for 𝑘(𝑡, 𝑡′) ∶ 

𝑘(𝑡, 𝑡′) = 𝜎𝑓
2exp (−

(𝑡 − 𝑡′)2

2ℓ2
) 

Where controls the variance is the length scale, determining how quickly correlations decay gave 

a set of observed failure times and their corresponding empirical failure probabilities. We aim to 

predict    any new time, we assume the observed values are generated from a noisy process the 

variance is controlled by whereas the length scale (l) determines how rapidly correlations fade, 

given a series of observed failure times and their corresponding empirical failure probabilities, 

suppose the observed values come from a noisy process: 

                                           𝑌𝑖 = 𝐹(𝑡𝑖) + 𝜖, 𝜖 ∼ 𝑁(0, 𝜎𝑛
2)  

Where σn
2 is the noise variance, the joint prior distribution for the observed data and the new test 

point follows a multivariate normal distribution. 

                                           [
𝑌

𝐹(𝑡∗)
] ∼ 𝑁 (0, [

𝐾(𝑇, 𝑇) + 𝜎𝑛
2𝐼 𝐾(𝑇, 𝑡∗)

𝐾(𝑡∗, 𝑇) 𝐾(𝑡∗, 𝑡∗)
]) 

Where 𝐾(𝑇, 𝑇) is the covariance matrix between training points 𝐾(𝑇, 𝑡∗)is the covariance vector 

between training and test points, and 𝐾(𝑡∗, 𝑡∗) is the test point's covariance  according to Bayes' 

theorem, the posterior distribution of 𝐹(𝑡∗) given observations is also Gaussian: 

                                           𝐹(𝑡∗) ∣ 𝑇, 𝑌, 𝑡∗ ∼ 𝑁 (�̂�(𝑡∗), 𝜎
2(𝑡∗))         …     (17) 

�̂�(𝑡∗) = 𝐾(𝑡∗, 𝑇)[𝐾(𝑇, 𝑇) + 𝜎𝑛
2𝐼]−1𝑌 

This calculates the mean estimate  of �̂�(𝑡∗) and the uncertainty 𝜎2(𝑡∗), using R(t), the estimated 

reliability function is �̂�(𝑡) = 1 − �̂�(𝑡∗)  then Expression for Estimation using GPR: 

                                        �̂�(𝑡) = 1 − 𝐾(𝑡, 𝑇)[𝐾(𝑇, 𝑇) + 𝜎𝑛
2𝐼]−1𝑌     …   (18) 

The variance equation is 𝜎2(𝑡) = 𝐾(𝑡, 𝑡) − 𝐾(𝑡, 𝑇)[𝐾(𝑇, 𝑇) + 𝜎𝑛
2𝐼]−1𝐾(𝑇, 𝑡)this provides a 

probabilistic nonparametric estimate of the reliability function. 

5. Carbon Fiber Reinforced Polymer Reliability Simulation: 

Simulation is an important technique for studying how cyclic stress affects carbon fiber-

reinforced polymer (CFRP). Failure data was created using statistical simulation approaches 

based on cycle count and stress rate allowing for an accurate examination of failure time 

distribution and estimate of the reliability function.  Statistical model was created to provide 

simulated data that depicted the effect of cyclic stress on the material, this model uses 

probabilistic equations to calculate the failure probability for each sample based on cycle count 

and stress level A total of 2,660 failure times were generated using a random distribution within a 

predetermined range, such as 1 to 1,000 cycles and Sample sizes ranged from 50 to 2,500.  These 

sizes cover a wide range of data volumes allowing for an examination of the impact of sample 

size on the accuracy of various estimators (Talreja, & Varna,2023) say, the chance of failure was 

determined using an equation based on the failure and stress level: 
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Probability of Failure = 1 − exp(−Failure Rate× Number of Cycles× Stress Level) 
After computing the failure probability for each sample, the sample was determined to have failed 

using a random distribution. If the estimated probability exceeded a random number between 0,1, 

the sample was judged unsuccessful. The failure times were then recorded and classified for 

cumulative distribution analysis (ECDF). The cumulative distribution function (Empirical 

Cumulative Distribution Function - ECDF) was used to depict the fraction of samples that failed 

before a certain time. This function provides the foundation for comparing the performance of 

various estimators. 

 

 

 

 

 

 

 

 
 

Figure 1: shows the probability of failure over 8651 stress cycles, based on recorded failures  

status. 

Source: researcher's preparation 

The carbon fiber-reinforced polymer was subjected to a total of 8,650 loading stress cycles with 

the severity of cyclic stress changing each time. This variation in stress intensity represents the 

real-world conditions that the material faces in engineering applications, which helps to improve 

the accuracy of the models used to mimic the material's behavior. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 
 

Figure 2: represents the generation of failure rate (2659 observations) for all sample sizes . 

Source: researcher's preparation 
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From fig.2, this simulation model uses probabilistic equations to evaluate each sample's failure 

probability, taking into account both cycle count and stress level. The model creates 2,660 failure 

times based on a random distribution within a preset range, usually between 1 and 1,000 cycles. 

The sample sizes range from 50 to 2,500, allowing for a thorough investigation of failure 

behavior under various settings. This method allows for more accurate representations of 

reliability and durability in real-world applications. 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 3: Represents all the nonparametric estimators curve for the reliability of carbon fiber-

reinforced polymer under cyclic stress with true value . 

   Source: researchers’ preparation 
 

Table (1) : Represents the Comparison Metrics Between Estimators for all Different Samples. 

Sample Size Model MSE RMSE MAE R² EVS 

50 N-W 5.41975E-07 0.000736189 0.000258807 0.999993474 0.999993957 

50 Spline 0.001104387 0.033232313 0.027301471 0.986701344 0.986701344 

50 KDE 1.47579E-06 0.001214822 0.001054512 0.999982229 0.999988754 

50 BKE 3.31021E-07 0.000575344 0.000358246 0.999996014 0.999996014 

50 GPR 3.31021E-07 0.000575344 0.000358246 0.999996014 0.999996014 

100 N-W 0.000116737 0.0108045 0.006337984 0.998613742 0.998629008 

100 Spline 0.000978922 0.031287725 0.026501859 0.988375276 0.988375276 

100 KDE 0.002524899 0.050248371 0.041713663 0.970016753 0.989602516 

100 Bayesian 8.96656E-06 0.002994422 0.001217304 0.999893522 0.999893522 

100 GPR 8.96656E-06 0.002994422 0.001217304 0.999893522 0.999893522 

250 N-W 2.03844E-05 0.004514904 0.003269342 0.999756088 0.999756121 

250 Spline 0.000405231 0.020130345 0.016519436 0.995151161 0.995151161 

250 KDE 0.00182326 0.04269965 0.038132156 0.978183555 0.99547327 

250 Bayesian 1.97637E-05 0.004445637 0.0033073 0.999763515 0.999763515 

250 GPR 1.97637E-05 0.004445637 0.0033073 0.999763515 0.999763515 

500 N-W 1.18962E-05 0.003449087 0.002587792 0.999857494 0.999857497 

500 Spline 0.000120129 0.010960351 0.009051527 0.998560953 0.998560953 

500 KDE 0.003750248 0.061239267 0.057062986 0.955075224 0.9940764 

500 Bayesian 1.00826E-05 0.00317531 0.002338348 0.999879219 0.999879219 

500 GPR 1.00826E-05 0.00317531 0.002338348 0.999879219 0.999879219 

750 N-W 7.71052E-06 0.002776782 0.002034981 0.99990765 0.999907816 
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Sample Size Model MSE RMSE MAE R² EVS 

750 Spline 0.000156221 0.012498823 0.010003174 0.998128925 0.998128925 

750 KDE 0.008220539 0.090667187 0.081727688 0.901541498 0.981207176 

750 Bayesian 1.26376E-05 0.003554944 0.002641178 0.999848637 0.999848637 

750 GPR 1.26376E-05 0.003554943 0.002641178 0.999848637 0.999848637 

1000 N-W 2.52566E-06 0.001589233 0.001153397 0.99996976 0.999969786 

1000 Spline 5.78279E-05 0.007604466 0.005888106 0.999307612 0.999307612 

1000 KDE 0.006395869 0.07997418 0.074490548 0.923420702 0.989192594 

1000 Bayesian 1.08235E-05 0.003289912 0.002473727 0.999870407 0.999870407 

1000 GPR 1.89349E-05 0.004351426 0.003391352 0.999773288 0.999773288 

1500 N-W 2.05239E-06 0.001432615 0.001072178 0.999975417 0.999975417 

1500 Spline 7.13706E-05 0.008448114 0.006662878 0.999145134 0.999145134 

1500 KDE 0.008029635 0.089608233 0.081881435 0.903822359 0.984121772 

1500 Bayesian 7.96777E-06 0.002822725 0.002141234 0.999904563 0.999904563 

1500 GPR 7.96778E-06 0.002822725 0.002141235 0.999904563 0.999904563 

2000 N-W 2.62349E-07 0.0005122 0.000342496 0.999996856 0.999996856 

2000 Spline 3.30199E-05 0.005746295 0.004545606 0.999604293 0.999604293 

2000 KDE 0.00896663 0.094692294 0.085798951 0.892544793 0.980711852 

2000 Bayesian 8.4446E-06 0.002905959 0.00232522 0.999898801 0.999898801 

2000 GPR 8.4446E-06 0.002905959 0.00232522 0.999898801 0.999898801 

2500 N-W 3.98836E-07 0.000631535 0.000459862 0.999995222 0.999995224 

2500 Spline 4.63816E-05 0.006810402 0.005696769 0.999444343 0.999444343 

2500 KDE 0.011309913 0.106348073 0.095070397 0.864505942 0.972770494 

2500 Bayesian 5.38965E-06 0.002321563 0.001752426 0.999935431 0.999935431 

2500 GPR 5.38966E-06 0.002321564 0.001752427 0.999935431 0.999935431 

Source: researchers’ preparation 

6. Discussion of Results: 

1- The Nadaraya-Watson's estimate shows that, if data are dense Nadaraya-Watson's estimate has 

good accuracy, although he may experience problems in data areas that are unevenly distributed, 

while noting that it is consistent with the form of real value in many regions, with only minor 

variations in the middle and final parts. 

Very low MSE, RMSE, and MAE, indicating high prediction accuracy, high R² and EVS values 

indicate a nearly perfect match MAPE values are low, indicating small percentage error STD E 

values are consistently minimal across sample sizes, indicating stable error dispersion, bandwidth 

varies slightly across sample sizes, which influences smoothing. 

2- The Spline Estimator shows a high smooth curve but at the beginning and end of the period we 

notice it shows a significant deviation, this means it performs well in the regions or middle parts, 

but fails to capture the sharp changes effectively, from figure 1 a spline regression higher MSE, 

RMSE, and MAE than N-W, indicating more substantial prediction mistakes. R² values remain 

high, although lower compared to kernel-based models. MAPE grows with sample size, implying 

greater proportional errors. The Max Error is extremely high, indicating probable outlier 

sensitivity. STD E values are higher, indicating increased error variability. 
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3- The Kernel Density Estimate gives an unstable estimate, this is visibly seen in the last part of 

the time period leading to estimates closer to the overall average rather than disclosing fine 

details, limiting its effectiveness to accurate estimates. The (KDE) has a higher MSE, RMSE, and 

MAE than N-W and Bayesian Kernel Estimator (B-KE). R² and EVS values are still relatively 

high, but lower than other kernel-based models. MAPE values rise dramatically with sample size, 

indicating scalability difficulties. Higher Max Error and STD E values indicate instability in 

forecasts. 

4- We note that Bayesian Estimator estimates are close to real value and have a stable and 

accurate characteristic, and remain with real values, as these estimates can handle sharp data well, 

although it requires advance information to avoid Bias. 

The Bayesian estimator achieves exceptionally low MSE, RMSE, and MAE, rivaling N-W. R² 

and EVS values are nearly perfect, indicating high predictive power. MAPE remains low, giving 

it a suitable model for percentage-based forecasts. Error readings are near zero, while STD E is 

constantly low compared with others estimates.  

5- Once the estimated curve is observed using the GPR method, its output is accurate and stable, 

and it is characterized by superiority in detecting sharp differences, especially in the first half of 

the schedule, generally performs better than KDE, with less error dispersion. Gaussian process 

regression (GPR) has nearly comparable performance to Bayesian Estimator across all metrics. It 

has extraordinarily low MSE, RMSE, and MAE, showing strong prediction skill. R² and EVS 

stay around ideal levels. MAPE readings are consistently low. 

 

7. Conclusions : 

First, based on the results of the reliability function estimate in Table 1, the Bayesian Kernel 

Estimator models are higher (B-KE) and Gaussian Process Regression (GPR) compared to other 

models tested for accuracy, as these estimates had the lowest mean error boxes (MSE, RMSE, 

MAE, and MAPE metrics) each has the greatest R2 value, which shows the ability to interpret a 

large amount or proportion of differences in data. In addition, the above models have shown 

excellent stability during all different volumes of data giving them a better advantage and choice 

for industrial structures and materials that require special high accuracy in the issue of dynamic 

and complex data. 

Second, an estimated performance or Nadaraya-Watson is competitive compared with the 

accuracy of the estimation of the Bayesian Kernel Estimator Models and Gaussian Process 

Regression (GPR) In addition that the bandwidth coefficient has a significant impact on 

performance, the results show us that suboptimal values of this coefficient affect the accuracy of 

prediction while emphasizing the tuning of this package leads to the highest possible performance 

where such technologies as Grid Search and Bayesian Optimization can be used. 

Third, table (1) shows us that the KDE estimate gives the weakest results compared to the rest of 

the models with a clear increase in the average line during the growth of the sample size 

indicating that KDE is estimated to be an unsatisfactory choice while dealing with large or 

complex data. In addition, it has the largest absolute error values and STD E error differences 

which means it is less stable than the rest of the models and so when we need models that give 

high prediction accuracy, this option is inappropriate. 

Fourth, the performance of the Spline-Based Estimation model is well assessed in special 

circumstances and is influenced by extreme values compared to other models which can be 

observed through Max Error readings and standard deviations STD E which records this 

estimate's instability in some circumstances. 
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8. Recommendations: 

First, We recommend the use of Bayesian Kernel Estimator (B-KE) and Gaussian Process 

Regression in such a study which requires the calculation of polymer reliability with high 

accuracy due to its industrial importance due to the fact that these two models have the lowest 

line rates and thus give the largest explanatory percentage of total variation in R 2 data making its 

performance consistent during different sample sizes. 

Secondly, the possibility of using the KDE estimator should be reviewed especially in 

applications of composite materials used in highly important and vital industrial fields that 

require high efficiency and precision because it possesses the highest error rates and is 

characterized by instability in the size of large samples. 

Third, we recommend paying more attention to the extent of results from applying the Split 

Regression model by addressing extreme values as it is influenced by these values resulting in 

higher error rates as is the case with standard deviations of errors. 

Fourth, the impact of Nadaraya-Watson's package presentation on the accuracy of estimates and 

benchmarks with the rest of the models makes it necessary to recommend for the purpose of 

adjusting the bandwidth parameters of this model. 

Finally, we recommend that a hybrid method combining B-KE and GPR capabilities be applied 

with the aim of improving their performance for the purpose of increasing the stability of 

capabilities in terms of efficiency in prediction accuracy. 
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