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1 Introduction

Bayesian parameter estimation in quantile regression (QReg) is often a
difficult issue because of a standered conjugate prior distribution is not available.
To solve this problem, Alhamzawi and Yu 2011 extended the power prior
distribution of Ibrahim and Chen (2000) for Bayesian quantile regression. This
prior is a conjugate prior distribution for Bayesian quantile regression. In this
paper, we examine the relation between the power prior and the hierarchical
model in (QReg). We investigate the relation between the power parameter
and the gauntile level via the hierarchical model.

(QReg) models have received considerable attention over the years (see,
Koenker 2005; Yu et al. 2003; Cade et al 2003). Since Yu and Moyeed (2001)
Bayesian inference quantile regression (BQReg) has attracted a lot of
attention in literature (see, Hanson and Johnson 2002; Geraci and Bottai
2007; Yu and Stander 2007; Reed and Yu 2009; Lancaster and Jun 2010;
Yuan and Yin 2010; Alhamzawi et al. 2011, Kozumi and Kobayashi 2011,
Alhamzawi and Yu 2012, Alhamzawi and Yu 2013). However, the prior
distribution plays the most important role in Bayesian quantile regression
(BQReg). Since being introduced in Ibrahim and Chen (2000), the power prior
distribution has become a popular technique to incorporate the historical data
into the current data. This power prior distribution has been widely used for a
variety of applications. The relation between the power prior distribution
and hierarchical models in generalized linear models has been discussed by
Chen and Ibrahim (2006). The authors found expressions for the power
parameter to calibrate the power prior distribution to a corresponding
hierarchical model.

Alhamzawi and Yu 2011 extended the power prior distribution of Ibrahim and
Chen (2000) for Bayesian quantile regression.

The rest of this paper is organized as follows. In Section 2, we
introduce the hierarchical model in (QReg) based on the mixture
representation of the asymmetric Laplace distribution. In Section 3, we
define the power prior distribution in (QReg) and we define the power
prior distribution based on the mixture representation. In Section 4, we
explain the behavior of the posterior under the power prior distribution in
(QReg), In Section 5, we present the propriety of the power prior
distribution in (QReg), the relation between the power prior distribution
and the hierarchical model, and the relation between the power parameter
and the quantile. In Section 6, we demonstrate the proposed methodology
for obtaining the guide value for the power parameter with real data.
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2- Hierarchical Model
Consider the regression model,

Vi = I;ﬁ*p + g; (1)
where y; is the outcome variable, x' = (X;,X;5,..., X;; ) represent the k
independent variables, B, is a kx1 vector of regression coefficients and g;,

i=1,...n represent error terms which are identical and independent
distributions. The distribution of the error is assumed unknown and is
restricted to have the p™ quantile equal to zero and 0<p<1.

Following Yu and Moyeed (2001), we consider &i has asymmetric Laplace
distribution (ALD) with density

fi|By ) = (1 = pexp{—p, (v;: — x/B,)} (2)
Where p determines the quantile level and p, (1) = (’p —I(u< D])u.

As provided in Reed and Yu (2009) and Kozumi and Kobayashi (2009) that
any variable has asymmetric Laplace distribution (ALD) with density (2) can be
viewed as a mixture of an exponential and a scaled normal distribution given by

e=2(1-2p)v+.21%¢, (3)

Where v = [p(1— p)] 'z, z is a standard exponential variable, then it
follows that each v7; has exponential distribution, exp(p(1—p), and &; is a
standard normal distribution. Now, the conditional distribution of each y; given
v; is normal with mean x/f8, + (1 — 2p)v; and variance 2v; . Thus, the

posterior density of ,E‘p is given by.

f(ﬁpl}’pﬂi) o ('I?J_?l: exp {—[yf_':i_zi}:f‘xfﬁp} }’

[

(4)

and the complete data density of (y;, ;) is then given by

[yf— (1—2p) vz-—.:c;-' ,Ep}z

1
£ v8,) o o exp (-2 ey p(1 — ). (5)
Let ¥ = (Y. Ys) and v = (V4, ..., 17,), then the joint density of (y, v) is given

by
f.v|B,) = F(|B,. v) ().

If we integrating out the exponential variable, this leads to the likelihood

f|B,) = [ FO | By vIT(v)dv. (6)
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The model (1) with one historical dataset exist can be written as
Y =xB,+&.,i=1,...n and Yy =xp0;, + 5,1 =1,..., 1 (7)

where [, and f,, denote the k regression coefficients for the current and
historical study, respectively, xi,and x,; represent the k known covariates

for the current and historical data, respectively, £; and &,; denote the error

term associated with the subject i for the current and historical study,
respectively.

Then we have the following hierarchical model
Y. = x;,{??, +(1-2p)v, + 1,-"'2_1?!-55 and Y, = xl;iﬁ[}'p + (1 —2p)vy; + 4208,

Bpltte, Bo~Ny (o, By), Bopltto, Bo~Ny (0, Bo),
v;~p(l—plexp{—p(1—plv}, ve~p(1—plexp{—p(1l—plvyl,
1 1 1 1
fi"“ﬁew(—ﬁf)y fm-*JEexp(—;féi), (8)

where g, and B, are known fixed parameters, ; = [p(1—p)] 1 2,; Zo:
is a standard exponential latent variable for the historical data, &,; is a
standard normal variable, and z, and &,; are mutually independent.

3 - Power prior
Alhamzawi and Yu 2012 follow Ibrahim and Chen (2000) and define the
power prior distribution for ﬁp in (QReg) for the current study as

(Alhamzawi and Yu, 2012)
L[ﬁpwu)ﬂnﬂu (ﬁ-pj
I L(B, Do) 5(B,)dB,
_ L[ﬁw|ﬂu)ﬂnﬂu[ﬁr)
glap)
o< L(B,]D5) " mo(B,)
= [H?;ilpﬂn (1—p)°e EXP{_%F‘p [y[ﬁz’ - xéiﬁ'p)}]ﬂﬂ[ﬁ?ﬂ) (9)

H[ﬁrwiﬁ’aﬁ) =
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where D, represents the historical data, 0<a,<l, a, determines by
expert opinion, L(B,|Dy) denotes the likelihood function, T, (f,) denotes
the initial prior for ,‘E‘p. Under the mixture representation (3), the joint

power prior distribution for £, and vy is given by.
(B Vol Doy o) o< (IL [ (B, |Yoirvo )] Imo(B,), (10)
where f(ﬁpl‘ym,ﬁm) is (4 with (Yo, vp;) in place of
(Y, 1), vy = (Vo1 Von,) and v has exponential distribution,

Exp(p(1- p)). The power priors (9) and (10) have several attractive
properties. First, the power prior (9) can be obtained from the power
prior (10) by integrating out the exponential variable. Further, the power
priors (9) and (10) are always proper and have lower and upper bounds
even if no (Bp ) is improper. In addition, the priors (9) and (10) depend on
the quantile. The prior specification is completed by specifying a prior
distribution for f, . Let D denote to the current data and

Vv = (V4,..., 1), then the joint posterior distribution of 8, ,v and vg is
given by (Alhamzawi and Yu, 2012)

D, Dy, ap) © (H[f{ﬁw Y., v, }]ﬂ{f‘z‘}) (n[f{ﬁw [Yoir Vo }]Enﬁffr’m‘}) ﬂu{ﬁp ),

(11)

ﬁ(ﬁfp:"‘” Vi

4. Posterior Behavior under the power prior
To demonstrate the behavior of the marginal posterior distribution of ﬁp

under the power prior with respect to different values for the power
parameter. We simulate two data sets for the current and historical study.
For the current study, 350 observation was generate from the model

Y; = 10— x; + &, where x; was simulated from a uniform distribution on
the interval (0, 10) and &;,~N(0,1).

For the historical data, 200 observation was generate from the model
Yos =9 — 1.5xy; + £y;, Where x, was simulated from a uniform

distribution on the interval (0, 10) and &,~N(0,1). We take a

multivariate normal distribution with mean zero and variance covariance
matrix By = 100I as initial prior for [, Figure 1 and 2 compared the

marginal posterior densities for ﬁ(mp and ﬁmp for p=95% and 75%
respectively m for improper prior with the posterior densities of ﬁ{,;.:,p and

’E'::l:]p for the power prior. Clearly, the power prior is more informative than

improper prior, due to the small range of posterior densities.
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Figure 1: plots of posterior densities for f,: where the dotted curve is for
improper uniform prior (a,= 0), the dashed and solid curves are for
power priors with power parameter a;= 0.50 and 0.90 respectively.
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Figure 2: plots of posterior densities for f,-; where the dotted curve is for
improper uniform prior (a;= 0), the dashed and solid curves are for
power priors with power parameter a;= 0.50 and 0.90 respectively.
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5. Main results

The power prior proposed by Ibrahim and Chen (2000) has been
constructed to be a useful class of informative prior in Bayesian analysis. This
prior depend on the availability of the historical data, and in the context of
Bayesian analysis when such data is available the prior would be better proper
because it is well known that any informative Bayesian analysis requires a
proper prior distribution, thus the propriety of the power prior is of critical
importance. In this section we discuss the relation between power priors and
hierarchical models. Thus, we present Lemma 1 and 2 to introduce the marginal

posterior distribution for ﬁp under the power prior, Lemma 3 introduce the

marginal posterior distribution for ,E‘p under the hierarchical model and

Lemma 4 discuss the relation between power priors and hierarchical models.
Lemma 1. The marginal posterior distribution of ,E‘p under the power prior (10)

with multivariate normal distribution as initial prior for ,[?p is given by

ﬁ*p I.}IJX! Vr Yo XCIU Vﬂ! HDNNF: (A_lBJA_lj;

Where
1., ag ., 4
x‘q = EX VX_F?XDVGXD + BD 3
B =§X’Vu+?xg,vﬂuu+351pu, (12)
here’}" = (.yii any -yn}l X= (xii"wxn}f: Yo = {-yl}ii "'Jyﬁnn:}i XD = {xl}ii"'ixﬂnn}ri
V =diag(vy, ..., v,), Vy = diag'[vm,...,vﬂnn}, u=(uy, ), up= {um,...,uunn},

with u; =T, — (1 —-2p)v, and ug =Yg — (1 — 2p)vy;.

The proof of Lemma (1) with the details of the Gibbs sampler is given in
Appendix.

Lemma 2. The marginal posterior distribution of ﬁp under the power prior (10)

with uniform prior distribution as initial prior for ,[?p is given by
ﬁ*p I}’,X, V, Yo, Xﬂ! VDJ aUNNF: (AIIBI,AIIJ,
Where

1 ' Qo .,
Al == EX VX+ ?XDVDXDJ
BlziX’Vu—F?XE,VDuD, (13)

The proof of Lemma (2) is similar to proof of Lemma (1).
Lemma 3. The marginal posterior distribution of ,E‘p for the hierarchical model

(8) in (QReg) is given by
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ﬁ*p I_:].J',X, V, Yo, Xﬂu VD NNF.: (AEIBEJAE 1)’
Where

1 r -1 -1 1 ' - -1
A, = EX VX+EB;,”— (2B; — (B[:- + EXDUI}XD) 73

—1+—1 -
B, = %X’Vu + (25*[, - (B;l +§X{,UDXD) 1) (Bgl +§X{,VDXD) ?th,vuuﬂ.

The proof of Lemma 3 in Appendix.

Lemma 4. The posterior distributions of the quantile coefficient ﬁ,p given in
Lemma 2 and 3 are identical distributions if and only if

a,(I+ ByX,VoX,) =1 (14)
Proof: Similar to Chen and Ibrahim (2006), If A; = A, then we have
Lyvxs+ %
2 2
and this lead to 27 a B XgVo Xy =1 — (21 — (I + 271B XV, X,) ™)1 a
little algebra shows @y By X Vo X [BoXo Vo Xy + 11 = By X Vo X,

ag(I+ B XgVoX,) =1 (15)
Similarly, it can be shown that B, = B, if and only if a,[B XV, X, + 1] = I.

Like Chen and Ibrahim (2006), we can use the connection between the power
prior and the hierarchical model to specify a guide value for a; in (QReg). To
achieve this we can write equation (15) as ay[B,X3Z X, + p(1 —p)] = p(1 — p)I,
where Z, = diag [zm, oo s B )

1 1 -
XgVpXg = EX’ VX + Byt —(2By — (Bgl + EXE,VDXD) )

Since Z, is random then the guide value for a; is the posterior expectation of

kp(1—p)
kpii - PJ + tr (Euxéznxuj
That is,
_— kp(1—p)
Ao = E (F:'p(l—*p:]+tT'::E'gX33ng} ) (16)

The posterior expectation is taken with respect to Z, where B is constant .

Equation (16) reflects the relation between the power parameter and the quantile
level.
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6. Wage data

We consider data from the British Household Panel Survey. The data
represent the wage distribution among British workers which was previously
analyzed by Yu et al. (2005) and Alhamzawi and Yu (2012). Similar to
Alhamzawi and Yu (2012), we use the data for the year 2000 as current data and
for year 1994 as historical data. Our model is described as follows

In(Y;) = By + B1S; + B.E; + B3 D,
Where S; is the number of years of schooling, E; is the potential experience

(approximated by the age minus years of schooling minus 6), and D, is equal to 1
for public sector workers and 0 otherwise. We consider (QReg) model to fit the
current and the historical data. We take B, to be a fixed diagonal matrix such

that By = 100/. We use Gibbs sampler to sample 3, and [, from their
respective distribution. We specify @, from equation (16). Table 1 summarizes
the posterior mean for B, and [, under the hierarchical model. The posterior
distribution for ﬁp under the power prior are summarized in Table 2 for different
value for the power parameter including @,. Clearly, the posterior distribution

for the regression parameter under the power prior with @, are fairly close to
those obtained under the hierarchical model.

7. Appendixes
Proof Lemma 1. First, consider equation (4). In vector notation, the
likelihood function for current and historical data are, respectively, given by

F(¥|B,0,v) < o= (T, v;ijexp(—% (u— XB,)'V(u—XB,) (17)

£ (35 |8, 0,95 ) o 0 7 (112, vy )exp(— 2 (s — XoB,) Voluts —%oB,)  (18)
here,v = (T, o, Un)s X = (xg,00,¥0)") vo = (You, ---:'yun:.}: Xo= {xun---:xunn}rJ
V =diag(vy,..,v), Vy=diag(vey, .., von,)s 0=, 0, ttn) g = (Ugy, -, Upy, ),
u; =Y, — (1—2p)v;, and up; = Yp; — (1 — 2p)vy;.

The posterior distribution of £, can then be calculated using the joint posterior
distribution in equation (11). We have

n _% 1
f[ﬁp!v’vﬁ D’Dﬁ’ﬂ‘l}) o (1_[1;]: ‘]exp[—g[u—Xﬁp]“V(u— Xﬁpj
i=1

T

X n exp{—p(1—p)v;}

i=1

g

X [n:ﬂ:nl Vi ]EXP[_? (ug— Xuﬁ,ﬂjflfn[un - Xﬂﬁ-p])
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X l_[ exp{—p(1 —plvy}
i=1
x exp{— (B — o) By * (B — o)} (19)
From (19), the full conditional distribution of f3,, is given by

D,Dg,ay)

1 I I
o< exp = (= XB,) V(w — XB,) =2 (ug — %58, V(g — %o, )}

1 ;
X exp{—i [}9?, — ,u:[,} 351(1% - Ffu)}

We have (u—xB,)V(u—Xg,) and ag(u—XoB,) Volus— XoB,) into sum of
squares
(u—xB,) V(u—X,) = (u—x85) V(u—%B5) + (B, — B5) X' VX (B, — B5),
ao(uo — XoB,) Vo (1o — Xof,)
= au((uu — Xo5) Vo(tto = Xo83) + (B, — ) XgVaXo(B, - ﬁ;})-

We set X'VXB; = X'V, and X,VoXof, = X;Voue. Then the posterior distribution of
B, is given by
B,1y. X, V,yy, X0 Vg, ag~N, (A7'B,A7Y),
Where

1, ay -1
A=SX'VX+—XVoXo + By

B = %vau +%X5Vuuu + By ko,

To complete our MCMC-based computation technique, the full conditional
distribution of v; is given by

ﬂ[”m‘ |J"3pr ag, D )

& (”D:‘j_ﬂnm EXP{

[yl}: xgif, —(1— Epj"’u:‘)z —p(1- P:J”c-f}
P, (Yo: — xueﬁpj‘ (;ﬂp}} +p(1- PD%:}

T 2
- exp {_E[Enx.':lrm :’DLIE :' _|_ (M + zp(]_ — p:]:]i;:ll}:]]

o (”D:‘]_EDH exp {_

Thus, the full conditional distribution of vy is a generalized inverse

Gaussian (GIG) distribution. In the same way we can deduce that the full
conditional distribution of v, is also GIG distribution; that is,

_1/2 1 (Y, — x/B,)* 1
(v |B,) o v, /2 exp{—g[mﬂf_l + [E]vz]}
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11

Proof of Lemma 3.
H(ﬁpfﬁ&p!“l}l}rr}rufval}] o

exp {—;[u —Xﬁp)flf[u — Xﬁp)}exp {—; [’U,D —Xﬁﬁp)fﬁ} [uD —Xﬂﬁp)}
X exp {—%[ﬁp — o) B3 (B, —ﬁu)}exp {—% (B, — 1o) B3 (B, — #D)}-

After Integrating out p0p and rearrange the terms, we can get

1 ' 1 '
ﬁ(&p: Lol¥: Yo, V. vl}} o exp {_E{u - Xﬁ'p} V{‘M - Xﬁ'p} - E {ﬁ‘p - .Iu'l}} B[;l{ﬁp - H‘I}}}
-1

1 } 1 - 1
X exp {—5 [HE:-(BD T (Bu +3 BGXE:-VDXE'B&) ).Mu- — U (f + EXE:.V&XQB&) XE:-VD“D]}-

then, integrating out u; leads to
1 1 1 -1y 71
w8y 0w, o) o{ =2 (G5 Gx'Vx + Byt — (28, - (B3t +2x%ko) ) B,

-1
1 -1 1 -1
—BL X Vu+ (25*[, - (Bgl + EX[’,VDX[,) ) (Bgl + EXE,VDXD) XoVaug)l}.

Then we have
By, X, V, v, X,V ~N, (A7 B, A5,

Where
1 ' -1 -1 1 ¢ - -1
AE = EX VY + BI} — (ZBD - Bl} + EXDUDXD } L

B, ==XV, + (25*[, — (B3 +3XgVoXo) ) (B3t +3XVoXs) = XiVouo.
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Table 1: Posterior estimates of ;) and By, under the hierarchical model.

P parameter posterior mean parameter posterior mean
0.95 'SU[P:I T.163 .Sﬂﬂ{p} T.188
.3] (p) 0.027 .SUI{;I} 0.040
.32[?:, 0.004 .SU'}{;I} 0.019
.33[?:, -0.103 .SUH{;I} -0.125
0.75 Boce) 6.840 Boo(z) 6.798
.3][13:, 0.015 .SUI{;I} 0.021
.32[?:, 0.009 .SU'E‘{;I} 0.011
.33[?:, -0.031 .SUH{;I} -0.028
0.50 'SU[P:' 6.799 .Sﬂﬂ{p} 6.806
S][pj 0.020 Botp) 0.023
.Sg[p.:, 0.003 .SU?{;I} 0.00%
.33[?:, 0.012 .SUH{;I} 0.063
0.25 'SU[P:' 6.572 .Sﬂﬂ{p} 6.528
S][pj 0.022 Botp) 0.019
.32[13:, 0.006 .SU'}{;I]- 0.006
.33[13:, 0.066 -SU-?{JJ} 0.097
.05 -SU[p:l 6.334 .Sﬂﬂ{p]- 6.313
.3][1;.:, 0.019 .SUI{;I} 0.020
.32[?:, 0.003 .SU'?{;I} (0.004

.33[?:, 0.098 .SUH{;I} 0.114
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Tuble 2 Posteror estimates of ) under the pover prior distribution.

P

g

By (95% i)

ﬁl[?} (Qﬁﬂ (il J

ﬂr_:{p] CQWU Crl )

33[13] [QWL' Crl )

0.93

0.30

0.2

0.03

0
0.731

6.032 (2.933, 6.147)
7170 (7.138, 7.203)
TA03 (7434, T.55)

5.041 (5.853, 6.007 )
6.076 (6.923, 7.028)
7012 (6.953, 7.071)

5,810 (3.665, 5.962)
6.834 (6.702, 6.976)
6.851 (6.693, 6.991)

5,615 (3,535, 5.702)
6,307 (6.515, 6.600)
6.492 (6.457, 6.531)

SATY (3.305, 5.546)
6.337 (6.307, 6.363)
5,800 (2.830, 5.927)

0.170 (0.112, 0.226)
0.027 (0.015, 0.043)
0.031 (0.028, 0.035)

0.071 (0.063, 0.125)

0.021 (0.019, 0.024)
0.028 (0.025, 0.031)

0.030 (0.022, 0.054)

0.021 (0.013, 0.026)
0.022 (0.016, 0.028)

0.003 (0009, 0.019)
0.021 (0.019, 0.023)
0.018 (0.016, 0.019)

0.006 (0.001, 0.013)
0.019 (0.007, 0.021
0.013 (0.012, 0.015)

0.003 (0.010, 0.03)
0.016 (0.002,0.027)
0.011 (0.009, 0.012)

0.011 (0.009, 0.023)

0.010{0.008, 0.011)
0.010 (0.008, 0.011)

0.004 {0,001, 0.013)

0007 (0001,001)
0007 (0.003, 0011)

0.002 (0.001, 0.036)
0.006 (0005, 0.007)
01.006 (0,005, 0.007)

005 (003,006

0.004 (0.003, 0.003)
0.004 (0.003, 0.006)

0347 (-0.834, 0.121)
119 (0,138, -0.008)
169 (0,196, -0.147)

0.027 (0,012, 0.048)

0,004 (-0.035, 0.025)
-.030 (-0.086, -0.006)

0.037 (-0.019, 0.114)

0% (0051, 0116
0% (0050, 0113

0.041 (0,003, 0.117)
0.071 (0,042, 0.104)
0.061 (0,032, 0.082)

0.091 (0,033, 0.153)
(0,104 (0.081,0.127)
0.216 (0.181, 0.48)
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A Note on the Hierarchical Model and Power Prior
Distribution in Bayesian Quantile Regression

Abstract.

In this paper, we investigate the connection between the hierarchical
models and the power prior distribution in quantile regression (QReg).
Under specific quantile, we develop an expression for the power parameter

(a,) to calibrate the power prior distribution for quantile regression to a
corresponding hierarchical model. In addition, we estimate the relation
between the ag and the quantile level via hierarchical model. Our proposed
methodology is illustrated with real data example.

Keywords: Hierarchical model; Posterior distribution; Power prior;
Quantile Regression (QReg).



