أ. كمال علوان خلف المشهداني د.احمد شهاب احمد الباحث زينة ابراهيم حسن قسم الاحصاء رئيس مهندسين وزارة الهيئة العامة للبحوث الزراعية

مستخلص

ان الاهمية الكبيرة التي تميز التجارب العامليه جعلت منها موضوعا مرغوبا للاستخدام والتطبيق في مجالات كثيرة وبخاصة في المجال الزراعي الذي يعتبر الرحم الواسع لتطبيقات التصاميم التجريبية .

وان الحالة الثانية للتجارب العاملية والتي يواجه الباحثون صعوبة كبيرة في التعامل معها حالة عدم الاتزان نعني بذلك أن تكرارات المعالجات العامليه تكون غير متساوية بمعنى (أن يتم تخصيص عدد غير متساوي من القطع أو الوحدات التجريبية لكل معالجة).

لقد تم اعتماد طريقتين في التحليل (الطريقة الأولى التكرارات المتوقعة للخلية والطريقة الثانية الوسط التوافقي) وتم تطبيقها على النباتات التي تمت زراعتها وهي محصول الرز في منطقه المشخاب.

وُقَدُ تَضْمَنْتُ التَجربَّةُ الزَراعيةُ لمُحصولُ الرزُ التي تم زراعتُها كلا النوَّعين من التجارب المتزنة وغير المتزنة ومعرفة المتزنة وسوف يتم اعتماد الطرائق المستخدمه في البحث في تحليل التجارب العامليه غير المتزنة ومعرفة ايهما افضل في التحليل لمعالجة مشكلة عدم الاتزان للتجارب العامليه و بيان كيفية تحليلها .

المصطلحات الرئيسية للبحث: عدم الاتزان، طريقة التكرارات المتوقعة للخلية، طريقة الوسط التوافقي.

مجلة العلوم الاقتصادية والإدارية الجلد ۱۹ العدد ۷۷ الصنمات ۲۲۰-۲۲۲

^{*}ملاحظة: البحث مستل من رسالة ماجستير لم تناقش بعد

1- القدمة:-

ان التجارب العامليه التي تقام او تنفذ في القطاع الزراعي باعتماد حالة الاتزان وهذا هو المنحى الشائع الطبيعي وقد تتولد حالات لعدم الاتزان في التجارب الزراعية عند الزراعة فقدان في البيانات وذلك يكون لأسباب مختلفة منها (حاله المناخ ، متعمد من قبل القائم عليها ، الظروف الخارجية ...الخ) والتي تؤدي الى حدوث عدم الاتزان في البيانات ، لذلك فأن بحثنا يتناول هذه الحالة ويهدف الى بيان كيفية تحليل البيانات غير المتزنة وفق الطرق التي تناسب هذه الحالة.

2**- الهدف** :-

فكره البحث تهدف الى البحث والتعمق بطرائق التحليل التي تناسب حالة التجارب العامليه غير المتزنة ومعالجة مشكلة عدم الاتزان للتجارب العامليه وبيان كيفية تحليلها.

3- الجانب النظرى:

في هذا الجانب سنستعرض نظريا كل ما يتعلق بالتجارب العامليه من حيث تعريفها وطرائق تحليلها في حال كونها غير متزنة وكذلك استعراض مشكلة عدم الاتزان :-

(3-1) تعريف التجارب العامليه [1,2,3,4]:

تهتم بدراسة تأثير عاملين او اكثر في وقت واحد وبتجربة واحدة و بالامكان الحصول على معلومات عن التأثيرات الرئيسية للعوامل وكذلك تجهزنا بمعلومات عن تأثيرات التفاعلات او التأثيرات المشتركة لاتثين او اكثر من المتغيرات التجريبية.

(3-2) تعريف التجارب العامليه المتزنة [1,2,4,6]:

أن تكون تكرارات المعالجات العامليه متساوية بمعنى أن يتم تخصيص عدد متساوي من القطع أو الوحدات التجريبية لكل معالجة عامليه) ، وتكون البيانات متزنة إذا كانت تتضمن (تحتوي) نفس العدد من المشاهدات في الوحدات (المجاميع) التجريبية وتدعى ايضاً بالبيانات ذات الأرقام المتساوية (equal –number data).وهذه الحالة هي الشائعة والمألوفة في التطبيقات حيث يتم تنفيذها باستخدام احد التصاميم المعروفة.

(3-3) تعريف التجارب العامليه غير المتزنة [12,11,5,6]:

نعنى بالتجربة العامليه غير المتزنة أن تكرارات المعالجات العامليه تكون غير متساوية بمعنى (أن يتم تخصيص عدد غير متساوي من القطع أو الوحدات التجريبية لكل معالجة)، وتكون البيانات غير متزنة اذا كانت اعداد او ارقام المشاهدات في الوحدات (المجاميع) التجريبية غير متساوية او ربما لا تحتوي على أي مشاهدة (أي الوحدات التجريبية خالية) ، وتسمى ايضاً بالبيانات غير المتساوية او بالبيانات غير المرتبة (unequal_number data) .

(3-3-1)الحالات التي تسبب عدم الاتزان في بيانات التجارب العاملية [12,6,5]: 1- اذا كانت بعض الخلايا خالية من البيانات (أي تكون بعض الخلايا لا تحتوي بيانات).

- - 2- اذا كان تكرارات المعالجات غير متساوية .
 - 3- اذا كان القطاع لا يحتوى على نفس العدد من القطع التجريبية.
 - 4- اذا كانت تقديرات التباين لمختلف التفاعلات مرتبطة مع بعضها .

(2-3-3) مصادر عدم الاتزان [12,6,5] : المتزان يمكن ان ينشأ لأسباب مختلفة وعند مستويات مختلفة في التجربة ومنها:

1- يمكن أن يكون عدم الاتزان في تصميم التجربة متعمد.

2- بسبب قلة الموارد مما يؤدي الى تحديد مجموعات المعالجات التي يمكن التعامل معها.

3- بسبب المعوقات العملية في التجربة والتي تحد من عدد المشاهدات في الخلايا نفسها دون غيرها. (3-3-3) مخطط التجربة والاستجابات(5-3-3) Experiment Plan :

يين النتائج او الاستجابات للمعالجات للتجربة العامليه (axb) وفق تصميم CRD والموضح في الجدول

الجدول(1) يبين النتانج المعالجات للتجربة العاملية (axb) بالرموز وفق تصميم CRD

B	1	2		j		В
1	Y ₁₁₁ Y ₁₁₂ :	Y ₁₂₁ Y ₁₂₂ :		Y _{1j1} Y _{1j2} :		Y _{1b1} Y _{1b2}
	Y _{11n11}	Y _{12n12}		Y_{1jnij}		Y _{1bnib}
$\begin{array}{c} \Sigma \\ n_{1j} \\ \tilde{y}_{1j.} \\ \vdots \\ \end{array}$	Y _{11.} n ₁₁ Ӯ _{11.} :	Y _{12.} n ₁₂ ӯ _{12.} :	: : : : :	Y _{1j.} n _{1j} Ӯ _{1j.} :		Y _{1b.} n _{1b} Ӯ _{1b.} :
i	Y _{i11} Y _{i12} : . Y _{i1ni1}	Y _{i21} Y _{i22} : . Y _{i2ni2}	: : : :	Y _{ij1} Y _{ij2} : Y _{ijnij}	:::	Y _{ib1} Y _{ib2} : Y _{ibnib}
$\begin{array}{c} \Sigma \\ \mathbf{n}_{ij} \\ \bar{\mathbf{y}}_{ij.} \\ \vdots \end{array}$	Y _{i1.} n _{i1} Ӯ _{i1.}	Y _{i2.} n _{i2} y _{i2.} :		Y _{ij.} n _{ij} Ū _{ij.}		Y _{ib.} n _{ib} y j _{ib.} :
а	Y _{a11} Y _{a12} : . Y _{a1na1}	Y _{a21} Y _{a22} : Y _{a2na2}		Y _{aj1} Y _{aj2} : Y _{ajnaj}		Y _{ab1} Y _{ab2} : Y _{abnab}
$\begin{array}{c} \Sigma \\ n_{aj} \\ \bar{y}_{aj.} \end{array}$	Y _{a1.} n _{a1} Ӯ _{a1.}	Y _{a2.} n _{a2} ȳ _{a2.}		Y _{aj.} n _{aj} Ū _{aj.}		Y _{ab.} n _{ab} Ӯ _{ab.}

(3-3-4)الانموذج الرياضي Mathematical Model

يصف الاستجابة لهذه التجربة ويعبر عنه بالصيغة الاتية:

 $Y_{iik} = \mu + \alpha_i + \beta_i + \alpha \beta_{ii} + e_{iik}$... (1)

حيث ان:

i= 1,2, ...,a

j=1,2, ...,b

K=1,2, ...,ij

وان :

Yiik : تمثل استجابة المفرده k الواقعة تحت تاثير المستوى i في العامل A والمستوى j من العامل B .

μ: تأثير الوسط الحسابي العام .

α¡: تأثير المستوى إ من العامل Δ.

β : تأثير المستوى j من العامل B.

.B من المستوى المستوى أ من العاملِ \mathbf{A} والمستوى أ من العامل \mathbf{B} .

e_{ijk} : = الخطاء العشوائي للقطعة التجريبية التي ترتيبها k والواقعة تحت تأثير المعالجة العاملية المتكونة

من المستوى i من العامل A والمستوى j من العامل B.

(3-3-5)الطرائق المستخدمة في تحليل بيانات التجارب العاملية غير المتزنة: لقد وضحنا في البداية كيفية وضع النتائج او الاستجابات للمعالجات بالرموز ومن ثم سيتم توضيح طرائق التحليل للتجارب العامليه غير المتزنة وكما يلى:

(3-3-1) طريقة التكرارات المتوقعة للخلية [11,13]: وهي احدى طرائق التحليل للبيانات غير المتزنة والتي تستخدم عندما تكون المشاهدات لتكرارات الخلايا متناسبة او شبه متناسبة وخطوات تطبيقها هي:

1- نقوم بحساب SS_{S/AB} من الصيغة التالية:

$$SS_{S/AB} = SS_{Total} - SS_{AB^{-}} = \sum_{k}^{b} \sum_{j}^{a} \sum_{i}^{n_{jk}} Y_{ijk}^{2} - \sum_{k}^{b} \sum_{i}^{a} \frac{y_{,jk}^{2}}{n_{jk}} ...$$
 (2)

اذ ان:

i =1,2, ..., a

j =1,2, ..., b

k = 1, 2, ..., r

 $rac{\mathbf{n}_{j.}}{\mathbf{n}_{j.}}$ هي \mathbf{A}_{j} هي نقوم بحساب تكرارات الخلية المتوقعة بشرط ان تكون القيمة الاحتمالية للمجتمع و بالاضافة الى القيمة الاحتمالية للمجتمع B_K هي $\frac{n_{,k}}{n_{,k}}$ ومن ثم يتم حساب تكرارات الخلية المتوقعة من القانون الاتي:

... (3)
$$E((n_{jk})) = ((\frac{n_{j.}}{n_{..}}))((\frac{n_{.k}}{n_{..}}))((n..)) = \frac{n_{j.}n_{.k}}{n_{..}}$$

n : تمثل عدد المشاهدات في الصفوف . n : تمثل عدد المشاهدات في الاعمدة .

.n.: تمثل عدد المشاهدات الكلي للتجربة.

وسنقوم بتوضيح القانون وطريقة تطبيقه في الجدول (2) الاتي :

جدول (2)

يمثل الجدول طريقة حساب التوقع لتكرارات الخلية لتجربة (2×2) n_{1}, n_{1} $\mathbf{n_{1}},\mathbf{n_{.2}}$ $E(n_{1k})$ $n_{1.}$ n.. $n_{2}, n_{.1}$ \mathbf{n}_{2} , $\mathbf{n}_{.2}$ $E(n_{2k})$ a_2 n_{2} n.. n.. $n_{.k}$ $n_{.1}$ n.. $n_{.2}$

3- بحساب التوقع الكلى للخلية وذلك من خلال ضرب متوسط ناتج الخلية الذي نحصل عليه من البيانات الاصلية بالتوقع الذي حصلنا عليه من الخطوة السابقة وان النتيجة التي نحصل عليها تمثل التقدير لمجموع النتائج التي يجب ان تحتويها كل خلية.

وسيتم توضيح كيفية حساب التوقع الكلي للخلية من خلال الجدول (3) التالي:

جدول (3) يمثل الجدول طريقة حساب التوقع الكلي للخلية لتجربة (2×2)

	(=··= <i>)</i>	· · · · · · · · · · · · · · · · · · ·	*** ** * * (5) ** * .	
		b ₁	b_2	
a ₁	E(y _{.1K})	(Ӯ _{1К})(Е(n _{1k})	(Ӯ _{1K})(E(n _{1k})	E(y _{.1.})
	_	-	<u> </u>	
a_2	E(y _{.2K})	$(\bar{y}_{2k})(E(n_{2k})$	(ȳ _{2k})(E(n _{2k})	E(y _{.2.})
	E(y _k)	$E(y_{.1K})+E(y_{.2K})$	E(y _{.1K})+E(y _{.2K})	E(y)

4- نقوم بحساب مجاميع المربعات لكل من SSA,SSB,SSAB,SSTotal من القوانين التالية:

$$SS_{Total} = \sum_{i} \sum_{j} \sum_{k} Y_{ijk}^{2} - C \qquad ... \quad (4)$$

$$SS_A = \sum_j \frac{y_{,j,}^2}{n_{i,j}} - C$$
 ... (5)

$$SS_B = \sum_k \frac{y_{.k}^2}{n_{.k}} - C$$
 ... (6)

$$SS_{AB} = \sum_{j} \sum_{k} \frac{y_{,jk}^2}{n_{jk}} - C - SS_A - SS_B$$
 ... (7)

علماً بان قيمة С تحسب كالاتي

$$C = \frac{y..^2}{n_{ij}}$$
 ... (8)

5- بعد ذلك توضع هذه النتائج بجدول تحليل التباين كما في الجدول (4)ادناه:

جدول (4) يمثل جدول تحليل التباين باستخدام طريقة التوقع لتكرارات الخلية

	* 33 C3		O # . O # O O . O	•
S.O.V	d.f	S.S	M.S	F
Α	a-1	SSA	MS _A	MSA
				MS _E
В	b-1	SS _B	MS _B	MS _B
				MS _E
AB	(a-1)(b-1)	SS _{AB}	MS _{AB}	MS _{AB}
				MSE
ERROR	ab(k-1)	SSE	MS _E	
Total	abk-1	SST		

(2-5-3-3) طريقة استخدام الوسط التوافقي [13,7]: حينما تكون اعداد التكرارات للخلايا فيها اختلاف فيتم استخدام قيمة الوسط التوافقي في تصحيح حساب مجاميع المربعات لكل من العامل A وللعامل Bوللتفاعل AB وبعد ذلك نقوم بحساب متوسطات المعالجات الموضحه في الجدول (5):

جدول (5) يمثل متوسطات المعالجات (الناتجة من توافيق مستويات العاملين)

		ر <u>ب</u>		ں برہیں ۔	~ / /		پس سر	
B		1	2		j		b	
1		ў _{11.}	Ў _{12.}		ў _{1j.}		Ў _{1b.}	$\nabla_{\bar{\mathbf{v}}}$
	:	:		:		:		$\sum \bar{\mathbf{y}}_{1j.}$
	•	•		•		•		i
i		$ar{\mathbf{y}}_{i1}$	$\mathbf{\bar{y}_{i2.}}$		$ar{\mathbf{y}}_{ij.}$		$ar{f y}_{\sf ib.}$:
:	:	:		:		:		
	•	•		•		•		$\sum \bar{\mathbf{y}}_{ij.}$
а	ў _{а1.}	Ў _{а2.}		Ў _{ај.}		$ar{m{y}}_{ab.}$		ij.
								j
								:
								∇
								$\sum_{i} \bar{\mathbf{y}}_{aj.}$
			_					J
		$\sum_{\mathbf{i}} \mathbf{ar{y}}_{\mathbf{i}1.}$	$\sum_{\mathbf{i}} \mathbf{ar{y}}$	1 i2.		$\sum_{\mathbf{i}} \bar{\mathbf{y}}_{\mathbf{i}\mathbf{j}.}$	$\sum_{\mathbf{i}} \mathbf{\bar{y}_{ib.}}$	G
			_					

وخطوات تطبيقها هي:

1-يتم حساب قيمة الوسط التوافقي من خلال الصيغة التالية:

$$n_h^- = \frac{ab}{\sum_i \sum_j (\frac{1}{n_{ij}})}$$
 ... (9)

3- يتم حساب حد التصحيح (the correction term)وفق القانون التالى:

$$C = \frac{G^2}{ab}$$
 ... (10)

4- نقوم بحساب مجموع المربعات لكل من SSA, SSB, SSAB وفق القوانين الاتية:

$$\begin{split} &SS_{A} = n^{-}_{h} \left[\frac{(\Sigma_{j} \bar{y}_{1j,})_{2} + ... + (\Sigma_{j} \bar{y}_{aj,})_{2}}{b} - C \right] \qquad ... \qquad \text{(11)} \\ &SS_{B} = n^{-}_{h} \left[\frac{(\Sigma_{j} \bar{y}_{11,})_{2} + ... + (\Sigma_{j} \bar{y}_{1b,})_{2}}{a} - C \right] \qquad ... \qquad \text{(12)} \\ &SS_{AB} = n^{-}_{h} \left[\bar{y}_{11,}^{2} + \bar{y}_{12,}^{2} + ... + \bar{y}_{ab,}^{2} - C \right] - SSA - SSB \qquad ... \qquad \text{(13)} \end{split}$$

5- نقوم بحساب مجموع المربعات لداخل المعالجات (within treatment SS) وفق الصيغ الاتية :

SS within treatment ab₁₁=
$$\left(Y_{111}^2+Y_{112}^2+\cdots+Y_{11n_{11}}^2\right)-\frac{Y_{11.}^2}{n_{11}}$$

SS within treatment ab= $(Y_{ab1}^2 + Y_{ab2}^2 + \dots + Y_{abn_{ab}}^2) - \frac{Y_{ab.}^2}{n_{ab}}$

6- وبعد ذلك يتم وضعها في جدول تحليل التباين كالاتي

يمثل تحليل التباين للتجربة العامليه (axb) وفق طريقة الوسط التوافقي.

	-0 0 0 (· · · ·)	-	- •	
S.O.V	d.f	S.S	M.S	F
Α	a-1	SS_A	MS _A	MS_A
				$\overline{MS_E}$
В	b-1	SS_B	MS _B	MS_B
				$\overline{MS_E}$
AB	(a-1)(b-1)	SS _{AB}	MS _{AB}	MS_{AB}
				MSE
Within treatment Error	$\sum \sum n_{ij} - ab$	SSE	MS _E	

(4-3) المقارنات المتعددة [1,2,3,4,6,13]. _ لقد عرفنا من قبل ان الهدفين الاساسيين في تصميم التجارب هما اولا اختبار فرضيات حول المتوسطات أي اذا كانت هناك فروق بين متوسطات المعالجات ،ثانيا تقدير تلك الفروق اذا كانت معنوية.

حيث يصبح من الضروري اجراء عدة مقارنات بين متوسطات المعالجات في التجربة وتسمى هذه الطريقة بالمقارنات المتعددة (Multiple comparisons).

وهنالك العديد من الطرق التي افترحت في الاحصاء الاستدلالي ولكننا استخدامنا في هذا البحث الطريقة التالية والتي هي:

(LSD) طريقة الفرق المعنوي الاصغر البديلة (LSD)

 $LSD_{j,k} = \sqrt{\left[\frac{1}{r_j} + \frac{1}{r_k}\right](mse)F_{(\alpha,n-1)}}$... (29)

وتستخدم هذة الطريقة لمقارنة العينة J مع العينة K .

أذ ان •

r_i : تمثل عدد المشاهدات في العينة j .

rk: تمثل عدد المشاهدات في العينة k.

n: تمثل العدد الكلى للمشاهدات.

وبما ان عدد المشاهدات مختلف في كل عينة فأن ذلك يعني ان قيمة LSD ستكون مختلفة لكل زوج من الازواج التي يتم مقارنتها.

ويجدر الاشارة الى ان كل من اختبار توكي واختبار الفرق المعنوي الاصغر يتم استخدامه للتصاميم المتزنة، واختبار الفرق المعنوي الاصغر البديل يستخدم للصاميم غير المتزنة.

: [1,2,6,13] **حساب قيم المقارنات للتأثيرات**

وتستخدم هذه الطرق لحساب قيمة التقابل او المقارنة لكل تأثير وهي لا تختلف عن اليه حساب قيم التقابلات المتعامدة.

١- طريقة الصيغة الجبرية:

تستخدم الصيغة الجبرية (حاصل ضرب الاقواس)في التعبير عن المقارنة او التقابل لكل تاثير اساسي او تأثير التفاعل .

٢- طريقة المعامل 1 واشارته لكل معالجة:

لقد تم تقديم قاعدة عامة لكيفية تحديد الاشارة للمعامل 1 في كل خلية من خلايا الجدول ويتم ذلك من خلال الصيغة الاتية وهي:

4- الجانب التطبيقي (العملي) :

سيتم اعتماد بيانات لتجارب واقعيَّة منفذة بالتعاون مع الهيئة العامه للبحوث الزراعية .

(4-1) التطبيق الاول:

تجربة عامليه لدراسة اثر عاملين على صفة عدد حبوب الرز/ دالية حيث العامل الاول (مواعيد الزراعة " تجربة عامليه لدراسة اثر عاملين على صفة عدد حبوب الرز/ دالية حيث العامل الاول (مواعيد الزراعة " 35 , 7\15 , 7\15 , 8\5 ") والعامل الثاني (الاصناف "عنبر 33 ، سلاله، ياسمين") ونفذت في محطة الابحاث في المشخاب ، وكانت نتائجها(بياناتها) كما في الجدول (7) :

جدول (7) يمثل البيانات عدد حبوب الرز \ دالية لتجربة عامليه غير متزنة

انواع	مواعيد	;;;; <u>;;</u>	Penliecati	، مبيدات المكرارات ions	-		
بو,ح الاصناف	مور <u>ت</u> الزراعة		Repliecati	العدرارات 10115		Total	
(A)	(B)					Total	
(A)	(5)	R ₁	R ₂	R ₃	R ₄	y .ik	
	b ₁ =6\25	156	181	175	169	681	
(عنبر33)	b ₂ =7\15	169	160	141	170	640	
a ₁	b ₃ =8\5	95	-	-	78	173	
Σ						1494	
	b ₁ =6\25	175	-	-	138	313	
(سلالة)	b₂=7\15	-	118	141	-	259	
a ₂	b ₃ =8\5	-	-	124	-	124	
Σ						696	
	b ₁ =6\25	-	167	-	162	329	
(ياسمين)	b ₂ =7\15	178	-	132	-	340	
`a ₃ ´	b ₃ =8\5	-	41	-	-	41	
Σ	<u> </u> 					710	

ان هذه التجربة هي تجربة عامليه غير متزنة وتم حساب المتوسط والمجاميع التربيعيه لها ومن ثم نكون جدول التقاطع كما في جدول (8):

جدول (8) بيين التقاطع ذه بعدين بين العامل Δ ه العامل Β

	В	، بين العامل A والعامر	التقاطع دو بعدين	يبين			
المسافات (B)	b₁	b_2	\mathbf{b}_3	Total	Mean _(A)		
الاصناف	6\25	7\15	8\5	Total	WCarr _(A)		
(A)							
a ₁	681	640	173	1494	149.4		
(عنبر 33)							
a ₂ (سلالة)	313	259	124	696	139.2		
(سنلانه)							
a ₃ (یاسمین)	329	340	41	710	142		
(ياسمين)							
Total	1323	1239	338	2692			
Mean _(B)	165.375	154.875	84.5				
(5)		Mean					
170.25	170.25		160		6.5		
156.5	156.5		129.5		124		
164.5	164.5		170		41		

(1-1-4) **التحليل الاحصائي** :

يتم تحليل البيانات للتجربة العامليه غير المتزنة بطريقة التكرارات المتوقعة للخلايا.

(ANOVA): عليل التباين (ANOVA):

بتطبيق طريقة التكرارات المتوقعة للخلية والتي تم ذكرها من قبل في الجانب النظري جرى حساب مجموع المربعات للخطاء من الجدول (8)السابق وفق الصيغة (2) الوارده في الجانب النظري وكذلك جرى حساب مجاميع المربعات من خلال تطبيق الصيغ (4)،(5)،(6)،(6)،(8) الوارده في الجانب النظري وتم وضع النتائج النهائية في الجدول (9):

جدول(9) تحليل التباينANOVA لحالة عدم الاتزان للتجارب العامليه

S.O.V	d.f	S.S	M.S	F	F _{0.05}
Α	2	406.8	203.4	1.056	3.98
В	2	18742.25	9371.125	48.65244837*	3.98
AB	4	5158.2	1289.55	6.695008848*	3.36
Error	11	2118.75	192.6136364		
Total	19				

تبين لنا من نتائج الجدول اعلاه ان الفروق او الاختلافات للعوامل كانت كما يلى:

العامل (A) غير معنوي بالنسبة لمستوى المعنوية (0.05) ، والعامل (B) معنوي بالنسبة لمستوى المعنوية (0.05)، والتفاعل (AB) معنوي بالنسبة لمستوى المعنوية (0.05).

(4-1-2) المقارنات المتعددة :

فى هذه الفقرة سنوجز نتائج التحليل للأخطاء المعيارية في الجداول(10) و(11) التالية ، وبالاعتماد على تطبيق طريقة اختبار الفرق المعنوي الاصغر البديل (LSD) الواردة في الجانب النظري وكما يلي:

المعرفة معنوية الفرق بين متوسطي
$$b_1, b_2$$
 نحسب:

عبيق طريعة الحبور العرق المعوي المعوية الفرق المعرفة معنوية الفرق بين متوسطي
$$b_1, b_2$$
 نحسب:
$$\sqrt{\left[\frac{1}{8} + \frac{1}{8}\right](192.6136364)(3.98)}$$

٢. لمعرفة معنوية الفرق بين متوسطي b_1, b_2 نحسب:

=
$$16.95511287LSD_{(b_1,b_3)} = \sqrt{\left[\frac{1}{8} + \frac{1}{4}\right](192.6136364)(3.98)}$$

٣. لمعرفة معنوية الفرق بين متوسطي $m{b_1},m{b_2}$ نحسب:

=
$$16.95511287LSD_{(b_2,b_3)} = \sqrt{\left[\frac{1}{8} + \frac{1}{4}\right](192.6136364)(3.98)}$$

$$\frac{(AB)}{(a_1b_1,a_1b_2)}$$
 البديل بالنسبة لل $\frac{(AB)}{(a_1b_1,a_1b_2)}$: نحسب: $\frac{(AB)}{(a_1b_1,a_1b_2)}$: $\frac{(AB)}{(a_1b_1,a_1b_2)}$: $\frac{1}{4}$: $\frac{1}{4}$ (192.6136364)(3.36) : نحسب: $\frac{1}{4}$: $\frac{1}{4}$ (192.6136364)(3.36) : $\frac{1}{4}$: $\frac{1}{4}$ (192.6136364)(3.36) : $\frac{1}{4}$: $\frac{1}{4}$ (192.6136364)(3.36) : $\frac{1}{4}$: $\frac{1}{4}$: $\frac{1}{4}$ (192.6136364)(3.36) : $\frac{1}{4}$: $\frac{1}{4}$: $\frac{1}{4}$: $\frac{1}{4}$ (192.6136364)(3.36)

= 22.03148574
$$LSD_{(a_1b_1,a_1b_3)} = \sqrt{\left[\frac{1}{4} + \frac{1}{2}\right](192.6136364)(3.36)}$$

يلمعرفة معنوية الفرق بين متوسطي
$$a_1b_2$$
, a_1b_3 نحسب:
$$= 22.03148574LSD_{(a_1b_2,a_1b_3)} = \sqrt{\left[\frac{1}{4} + \frac{1}{2}\right](192.6136364)(3.36)}$$

: نمعرفة معنوية الفرق بين متوسطي
$$a_2b_1$$
 , a_2b_2 نحسب a_2b_3 , a_2b_3 معنوية الفرق بين متوسطي a_2b_3 (192.6136364) a_2b_3 = $\sqrt{\left[\frac{1}{2} + \frac{1}{2}\right](192.6136364)(3.36)}$

ه. لمعرفة معنوية الفرق بين متوسطي
$$a_2b_1$$
 , a_2b_3 نحسب : معنوية الفرق بين متوسطي a_2b_1 , a_2b_3 المعرفة معنوية الفرق بين متوسطي $\sqrt{\left[\frac{1}{2} + \frac{1}{1}\right](192.6136364)(3.36)}$

: نصب
$$a_2b_2$$
 , a_2b_3 نصب : a_2b_2 , a_2b_3 نصب : a_2b_3 , a_2b_3 نصب : $\sqrt{\left[\frac{1}{2} + \frac{1}{1}\right](192.6136364)(3.36)}$

ي لمعرفة معنوية الفرق بين متوسطي
$$a_3b_1$$
 , a_3b_2 نحسب ؛ a_3b_1 , a_3b_2 بين متوسطي $\sqrt{\left[\frac{1}{2}+\frac{1}{2}\right](192.6136364)(3.36)}$ = $\sqrt{\left[\frac{1}{2}+\frac{1}{2}\right](192.6136364)(3.36)}$

نحسب:
$$a_3b_1$$
 , a_3b_3 نحسب: a_3b_1 , a_3b_3 بنن متوسطي a_3b_1 , a_3b_3 نحسب. a_3b_1 , a_3b_3 الفرق بين متوسطي a_3b_1 , a_3b_2 , a_3b_1 , a_3b_2 , a_3b_2 , a_3b_3 , $a_3b_$

: نمعرفة معنوية الفرق بين متوسطي
$$a_3b_2$$
 , a_3b_3 نحسب a_3b_2 , a_3b_3 الفرق بين متوسطي a_3b_2 , a_3b_3 = $\sqrt{\left[\frac{1}{2} + \frac{1}{1}\right](192.6136364)(3.36)}$

الفرق المعنوي الاصغر البديل	الفرق بين كل متوسطين بالنسبة (B)
(LSD _(B))	(d _i)
13.84379169	$d_4 = \bar{y}_{.1} - \bar{y}_{.2} = 10.5$
16.95511287	$d_{5}^{*} = \bar{y}_{.1} - \bar{y}_{.3} = 80.875$
16.95511287	$d_{6}^{*} = \bar{y}_{.2}^{-} \bar{y}_{.3} = 70.375$

اذ يتم مقارنة الفرق لقيمة $(S_{(B)})$ اعلاه مع قيمة الفرق بين أي متوسطين (d_i) وفي حالة ان يكون الفرق (d_i) اكبر من قيمة (LSR) فهو معنوي ، من هذا يتبين ان المستوى (d_i) الذي يمثل موعد الزراعة (7/15) قد اعطى فروق (6/25) قد اظهر فروقا معنوية وان المستوى (d_i) الذي يمثل موعد الزراعة (7/15) قد اعطى فروق معنوية.

جدول(11) يمثل الاخطاء المعيارية للعامل (AB)

(***)	
الفرق المعنوي الاصغر البديل	الفرق بين كل متوسطين بالنسبة (AB)
(LSD _(AB))	(d _i)
17.98863278	$d_7 = \bar{y}_{11} - \bar{y}_{12} = 10.25$
22.03148574	$d_8^* = \bar{y}_{11} - \bar{y}_{13} = 83.75$
22.03148574	$d_9*=\bar{y}_{12}-\bar{y}_{13}=73.5$
25.43976844	$d_{10}^* = \bar{y}_{21} - \bar{y}_{22} = 27$
31.15722593	$d_{11}*=\bar{y}_{21}-\bar{y}_{23}=32.5$
31.15722593	$d_{12} = \bar{y}_{22} - \bar{y}_{33} = 5.5$
25.43976844	$d_{13} = \bar{y}_{32} - \bar{y}_{31} = 5.5$
31.15722593	$d_{14}*=\bar{y}_{31}-\bar{y}_{33}=123.5$
31.15722593	$d_{15}^* = \bar{y}_{32} - \bar{y}_{33} = 129$

اذ يتم مقارنة الفرق لقيمة ($LSD_{(AB)}$) اعلاه مع قيمة الفرق بين أي متوسطين (d_i) وفي حالة ان يكون الفرق (d_i) اكبر من قيمة (d_i) فهو معنوي .يتبين من المقارنات اعلاه ان التوليفات (d_i) الذي يمثل صنف (سلالة) وموعد الزراعة (d_i) قد اظهر فروق معنوية اكثر من البقية وكذلك (d_i) الذي يمثل الصنف (ياسمين) وموعد الزراعة (d_i) قد اظهروا فروقا معنوية ، اما التوليفات (d_i) الذي يمثل الصنف (عنبر d_i) وموعد الزراعة (d_i) وكذلك التوليفات (d_i) الذي يمثل الصنف (عنبر d_i) وكذلك التوليفات (d_i) الذي يمثل الصنف (عاراعة (d_i) قد الظهروا فروقا معنوياً.

(4-2) التطبيق الثاني:

تجربة عامليه لدراسة اثر عاملين على عدد الفروع الدالية 10^2 حيث العامل الاول (مواعيد الزراعة " الجربة عامليه أو 10/4 , 25/5 ") والعامل الثاني (الاصناف "عنبر 33 ، سلاله ، ياسمين ") وكان عدد المكررات (4) ونفذت في محطة الابحاث في المشخاب ، وكانت نتائجها (بياناتها) كما في الجدول (12)

جدول(12) يمثل البيانات عدد الفروع \ الدالية م² للتجربة عامليه غير متزنة

انواع	مواعيد		المكرارات Repliecations					
الاصناف	الزراعة					Total		
(A)	(B)	R ₁	R ₂	R ₃	R ₄	y .ik		
	b₁=6\25	356	351	351	344	1402		
(عنبر33)	b ₂ =7\15	370	362	343	290	1365		
a_1	b ₃ =8\5	145	-	-	178	323		
Σ	E E					2999		
	b ₁ =6\25	391	413	390	398	1592		
(سىلالة)	b₂=7\15	373	367	367	369	1476		
a_2	b ₃ =8\5	385	240	250	295	1170		
Σ	E					4238		
	b ₁ =6\25	446	538	523	504	2011		
(یاسمین)	b ₂ =7\15	514	513	510	498	2035		
a_3	b ₃ =8\5	-	97	123	-	220		
Σ						4266		

ان هذه التجربة هي تجربة عامليه غير متزنة وتم حساب المتوسط والمجاميع التربيعيه ونكون جدول التقاطع بين العامل (A) والعامل (B) كما في جدول (13):

جدول (13) يبين التقاطع ذو بعدين بين العامل A والعامل B

			J- (
المسافات (B)	b ₁	b ₂	b ₃	Total	Mean _(A)	
الاصناف	6\25	7\15	8\5	Total	moun(A)	
(A)						
a ₁ (عنبر 33)	1402	1365	323	2999	299.9	
a ₂ (سلالة)	1592	1476	1170	4238	353.1666667	
a ₃ (یاسمین)	2011	2035	220	4266	533.25	
Total	5005	4876	1713	11594		
Mean _(B)	417.0833333	406.3333333	214.125			
		Mean _(AB)	I		l	
350.5		341.25		161.5		
398		369			292.5	
502	502.75		508.75		110	

: 1-2-4) **التحليل الاحصائي** (

يتم تحليل البيانات للتجربة العاملية غير المتزنة بطريقة الوسط التوافقي.

(1-1-2-4) **تعليل التباين** (ANOVA):

بتطبيق طريقة الوسط التوافقي والتي تم ذكرها من قبل في الجانب النظري جرى حساب مجاميع المربعات لمصادر التباين وفق الصيغ (9)،(10)،(11)،(12)،(13)،(14) من الجدول (13) ووضع النتائج النهائية فى الجدول (14):

جدول(14) تحليل التباين ANOVA لحالة عدم الاتزان للتجارب العامليه

S.O.V	d.f	S.S	M.S	F	F _{0.05}
Α	2	43033.13509	21516.56755	21.17885687	3.42*
В	2	328137.3169	164068.6585	161.4935387	3.42*
AB	4	3455267.709	863816.9273	850.2589933	2.80*
Error	23	23366.75	1015.945652		
Total	31				

تبين لنا من نتائج الجدول اعلاه ان الفروق او الاختلافات للعوامل كانت كما يلى:

العامل (A) معنوي بالنسبة لمستوى المعنوية (0.05)، والعامل (B) معنوي بالنسبة لمستوى المعنوية (0.05)، والتفاعل (AB) معنوي بالنسبة لمستوى المعنوية (0.05).

(4-2-2) المقارنات المتعددة:

فِّي هذه الفقرة سنوجز نتائج التحليل للأخطاء المعيارية في الجداول(15) و(16) و(17) التالية ، وبالاعتماد على تطبيق طريقة اختبار الفرق المعنوي الاصغر البديل (LSD) الواردة في الجانب النظري وبالاعتماد على بيانات الجدول (16) وكما يلي:

نجد (A) البديل بالنسبة لل $(BD_{(j,k)}$: نجد المعرفة الفرق بين متوسطين a_1,a_2 نحسب:

= 25.2388178
$$LSD_{(a_1,a_2)} = \sqrt{\left[\frac{1}{10} + \frac{1}{12}\right](1015.945652)(3.42)}$$

٢. لمعرفة الفرق بين متوسطين ${
m a_1,a_3}$ نحسب :

$$= 26.36108545LSD_{(a_1,a_3)} = \sqrt{\left[\frac{1}{10} + \frac{1}{10}\right](1015.945652)(3.42)}$$

". لمعرفة الفرق بين متوسطين $\mathbf{a}_2, \mathbf{a}_3$ نحسب :

= 25.2388178
$$LSD_{(a_2,a_3)} = \sqrt{\left[\frac{1}{12} + \frac{1}{10}\right](1015.945652)(3.42)}$$

 $\frac{(B)}{1}$ البديل بالنسبة لل (B) : محموفة الفرق بين متوسطين $\mathbf{b_1}, \mathbf{b_2}$ نحسب :

= 24.06426857
$$LSD_{(b_1,b_2)} = \sqrt{\left[\frac{1}{12} + \frac{1}{12}\right](1015.945652)(3.42)}$$

: لمعرفة الفرق بين متوسطين b_1, b_3 نحسب :

= 26.90467017
$$LSD_{(b_1,b_3)} = \sqrt{\left[\frac{1}{12} + \frac{1}{8}\right](1015.945652)(3.42)}$$

". لمعرفة الفرق بين متوسطين $\mathbf{b_1},\mathbf{b_3}$ نحسب $\mathbf{b_1}$

= 26.90467017
$$LSD_{(b_2,b_3)} = \sqrt{\left[\frac{1}{12} + \frac{1}{8}\right](1015.945652)(3.42)}$$

نجد LSD البديل بالنسبة لل (AB): ١. لمعرفة معنوية الفرق بين متوسطي a₁b₁, a₁b₂ نحسب:

= 37.71370988
$$LSD_{(a_1b_1,a_1b_2)} = \sqrt{\left[\frac{1}{4} + \frac{1}{4}\right](1015.945652)(2.80)}$$

: نحسب a_1b_1 , a_1b_3 نحسب عنوية الفرق بين متوسطي a_1b_1 ، معنوية الفرق بين متوسطي

= 46.18967275
$$LSD_{(a_1b_1,a_1b_3)} = \sqrt{\left[\frac{1}{4} + \frac{1}{2}\right](1015.945652)(2.80)}$$

" نحسب a_1b_2 , a_1b_3 نحسب a_1b_2 , المعرفة معنوية الفرق بين متوسطي

= 46.18967275
$$LSD_{(a_1b_2,a_1b_3)} = \sqrt{\left[\frac{1}{4} + \frac{1}{2}\right](1015.945652)(2.80)}$$

: نحسب a_2b_1 , a_2b_2 نحسب ؛ . لمعرفة معنوية الفرق بين متوسطي

= 37.71370988
$$LSD_{(a_2b_1,a_2b_2)} = \sqrt{\left[\frac{1}{4} + \frac{1}{4}\right](1015.945652)(2.80)}$$

ه. لمعرفة معنوية الفرق بين متوسطي a2b1, a2b3 نحسب:

= 37.71370988
$$LSD_{(a_2b_1,a_2b_3)} = \sqrt{\left[\frac{1}{4} + \frac{1}{4}\right](1015.945652)(2.80)}$$

: نصمر a_2b_2 , a_2b_3 بين متوسطي a_2b_2 , a_2b_3 نصسب

= 37.71370988
$$LSD_{(a_2b_2,a_2b_3)} = \sqrt{\left[\frac{1}{4} + \frac{1}{4}\right](1015.945652)(2.80)}$$

: نحسب a_3b_1 , a_3b_2 نحسب . ۷

$$= 37.71370988LSD_{(a_3b_1,a_3b_2)} = \sqrt{\left[\frac{1}{4} + \frac{1}{4}\right](1015.945652)(2.80)}$$

: نحسب a_3b_1 , a_3b_3 بين متوسطي الفرق بين الفرق بين معنوية الفرق بين متوسطي

$$46.18967275 LSD_{(a_3b_1,a_3b_3)} = \sqrt{\left[\frac{1}{4} + \frac{1}{2}\right](1015.945652)(2.80)} =$$

: نحسب a_3b_2 , a_3b_3 نحسب : a_3b_2 , a_3b_3 نحسب

= 46.18967275
$$LSD_{(a_3b_2,a_3b_3)} = \sqrt{\left[\frac{1}{4} + \frac{1}{2}\right](1015.945652)(2.80)}$$

جدول(15) يمثل الاخطاء المعيارية للعامل (A)

الفرق المعنوي الاصغر البديل	الفرق بين كل متوسطين بالنسبة (A)
(LSD _(A))	(d _i)
25.2388178	$d_1 * = \bar{y}_{2.} - \bar{y}_{1.} = 53.2666667$
26.36108545	$d_2^* = \bar{y}_{3.} - \bar{y}_{1.} = 233.35$
25.2388178	$d_3 * = \bar{y}_{3.} - \bar{y}_{2.} = 180.0833333$

اذ يتم مقارنة الفرق لقيمة ($(LSD_{(A)})$) اعلاه مع قيمية الفرق بين أي متوسطين ((d_i)) وفي حالة ان يكون الفرق ((d_i)) اكبر من قيمة ($(LSD_{(A)})$) فهو معنوي. وتبين ان المستوى (a_i) الذي يمثل الصنف ((a_i)) قد اظهر فروقاً معنوية والمستوى ((a_i)) الذي يمثل الصنف (سلالة) قد اظهر فروقاً معنوية اكثر من بقية الاصناف.

جدول (16) يمثل الاخطاء المعيارية للعامل (B)

الفرق المعنوي الاصغر البديل	الفرق بين كل متوسطين بالنسبة (B)
(LSD _(B))	(d _i)
24.06426857	$d_4^* = \bar{y}_{.1.} - \bar{y}_{.2} = 10.75$
26.90467017	$d_5^* = \bar{y}_{.1} - \bar{y}_{.3} = 202.9583333$
26.90467017	$d_6^* = \bar{y}_2 - \bar{y}_3 = 192.2083333$

اذ يتم مقارنة الفرق لقيمة $(S_{(B)})$ اعلاه مع قيمية الفرق بين أي متوسطين (d_i) وفي حالة ان يكون الفرق (d_i) اكبر من قيمة (LSR) فهو معنوي . ان المستوى (d_i) الذي يمثل موعد الزراعة (7/15) اظهر فروقاً معنوياً اكثر من البقية و ان المستوى (d_i) الذي يمثل موعد الزراعة (7/15) اظهر فروقاً معنوية . جدول (17)

يمثل الاخطاء المعيارية للعامل (AB)

الفرق المعنوي الاصغر البديل	الفرق بين كل متوسطين بالنسبة (AB)
(LSD _(AB))	(d _i)
37.71370988	$d_7 = \bar{y}_{11} - \bar{y}_{12} = 9.25$
46.18967275	$d_8^* = \bar{y}_{11} - \bar{y}_{13} = 189$
46.18967275	$d_9*=\bar{y}_{12}-\bar{y}_{13}=179.75$
37.71370988	$d_{10} = \bar{y}_{21} - \bar{y}_{22} = 29$
37.71370988	$d_{11}^* = \bar{y}_{21} - \bar{y}_{23} = 105.5$
37.71370988	$d_{12}^* = \bar{y}_{22} - \bar{y}_{23} = 76.5$
37.71370988	$d_{13} = \bar{y}_{32} - \bar{y}_{31} = 6$
46.18967275	d₁₄*=Ӯ₃₁ –Ӯ₃₃ =392.75
46.18967275	$d_{15}^* = \bar{y}_{32} - \bar{y}_{33} = 398.75$

اذ يتم مقارنة الفرق لقيمة ($(LSD_{(AB)})$ اعلاه مع قيمة الفرق بين أي متوسطين ((d_i)) وفي حالة ان يكون الفرق ((d_i)) اكبر من قيمة ((LSR)) فهو معنوي ويتبين ان التوليفات ((a_1b_1)) الذي يمثل الصنف (عنبر33) وموعد الزراعة ((a_1b_2)) وكذلك التوليفات ((a_1b_2)) الذي يمثل الصنف ((a_1b_2)) وكذلك التوليفات ((a_2b_1)) وكذلك التوليفات ((a_2b_1)) وكذلك التوليفات ((a_2b_2)) الذي يمثل الصنف ((a_1b_2)) وكذلك التوليفات ((a_1b_2)) الذي يمثل الصنف ((a_1b_2)) وكذلك التوليفات ((a_1b_2)

5- الاستنتاجات:

1-ان طريقة التكرارات المتوقعة كما لاحظنا في التجربة الاولى.

وكانت نتائجها كما يلى :-

- i. نلاحظ العامل (B) ظهر غير معنوي عند مستوى معنوية 0.05.
 - ii. نلاحظ العامل (A) ظهر معنوي عند مستوى معنوية 0.05.
- iii. نلاحظ ان التفاعل بين AB قد اظهر المعنوية عند مستوى المعنوية 0.05.
 - 2-ان طريقة استخدام الوسط التوافقي كما لاحظنا في التجربة الثانية. و كانت نتائجها كما يلى:
 - i. نلاحظ ان العامل A قد اظهر المعنوية عند مستوى 0.05.
 - ii. نلاحظ ان العامل B قد اظهر المعنوية عند مستوى 0.05.
- iii. نلاحظ ان التفاعل بين AB قد اظهر المعنوية عند مستوى المعنوية 0.05.

6- التوصيات:

1-توصية باستخدام طريقة الوسط التوافقي في تحليل البيانات عندما تكون غير المتزنة وغير المتناسبة. 2- توصية باستخدام طريقة التكرارات المتوقعة للخلية للبيانات عندما تكون غير المتزنة وشبه المتناسبة. 3- توصية باستخدام طريقة الوسط التوافقي في تحليل البيانات غير المتزنة وذلك لسهولة استخدامها ولنتائجها الدقيقة.

Arabic References

اؤلا: المادر العربية:

- 1- الأمام، محمد محمد طاهر "تصميم وتحليل التجارب"، دار المريخ للنشر،الرياض، المملكة العربية السعودية، (1994).
 - 2- الراوي، خاشع محمود "تصميم وتحليل التجارب الزراعية"، جامعة الموصل، (1980).
- 3- المشهداني، كمال علوان "تصميم وتحليل التجارب- استخدام الحاسوب"، بغداد، الجزيرة للطباعة التقنية والنشر ، (2010).
- 4- شبيب، فاروق " تصميم وتحليل التجارب الزراعية " ،مديرية الكتب والمطبوعات الجامعية، حلب، (1964).
- 5-علي، ماجد هبة الله "التحليل الاحصائي لتجارب القطع المنشقة المتزنة وغير المتزنة"، رسالة ماجستير /كلية الادارة والاقتصاد /جامعة بغداد ، (2001).
- 6-هيكس، شارلس، ترجمة خماس، قيس سبع "المفاهيم الاساسية في تصميم التجارب"، الجامعة المستنصرية، مطابع جامة الموصل، (1984).

Foreign References

ثانياً: المادر الاجنبية:-

- 7- Broota, K.D.''Experimental Design In Behavioural Research'', John Wiely , (1992).
- 8- Hamada, M., and N. Balakrishnan'' Analyzing Unreplicated Factorial Experiments '', statistica sinica, vol. 8, pp.1-41, (1998).
- 9- Herr, D.G"On the history of ANOVA in unbalanced Factorial Design", American Statistician 40, pp. 265-270, (1986).
- 10- Hinkeimann, K,"Notes for statistical methods for analyzing unbalanced data stat 5440 ",(1976).
- 11- Johan ,P.W.M."Statistical Design and Analysis of Experiment", New York ,(1971).
- 12-Montgomery, D.C." Design and Analysis of Experiments " 6th edition, johan willy and sons, Inc, New York, (2005).

www.willy.com/college/montgomery

13- Ruth G. Shaw, Thomas Mitchell-Olds "Anova for Unbalanced Data ",Econgical Society of America ,vol. 74, No. 6, pp. 1638-1645 ,(1993).

http://link.jtor.org/journals/esa.html

14- Speed, F.M., R.R. Hocking ,and O.P. Hackeny,"Methods of analysis of Linear Models with Unbalanced Data"Journal of the American Association, vol. 73, pp. 105-112, (1978).

ANALYSIS UNBALANCED FACTORIAL EXPERIMENTS FOR THE RICE CROP

Abstract:

The great importance that distinguish these factorial experiments made them subject a desirable for use and application in many fields, particularly in the field of agriculture, which is considered the broad area for experimental designs applications.

And the second case for the factorial experiment, which faces researchers have great difficulty in dealing with the case unbalance we mean that frequencies treatments factorial are not equal meaning (that is allocated a number unequal of blocks or units experimental per treatment), and has been adopted two methods of analysis (first Method the expected cell frequencies and the second method harmonic mean)

The application on the data have been done on the experiment has been cultivated a rice crop in the area Mashkhab and included Agricultural Experiment to rice crops that are cultivated both types of balanced and unbalanced experiments of the methods used will be adopted in the research in the analysis of unbalanced factorial experiments and find out which is the best in the analysis to address the situation of unbalance For addressing the problem of unbalance global test and how to analyze the statement.

Keyswords / Unbalance, method of expected cell frequencies, Harmonic mean method.