Bayesian Tobit Quantile Regression Model Using Double Adaptive elastic net and Adaptive Ridge Regression

Authors

  • محمود مهدي حسن
  • هيثم حسون ماجد

DOI:

https://doi.org/10.33095/jeas.v24i107.1310

Keywords:

نموذج الانحدار المجزئ توبت ،elastic net المكيفة ، انحدار الحرف المكيفة ، خوارزمية Gibbs Sampler ، خوارزمية Metropolis Hasting, Tobit Quantile Regression , Adaptive elastic net , Adaptive Ridge Regression , Gibbs Sampler algorithm, Metropolis Hasting algorithm

Abstract

     Recently Tobit  Quantile Regression(TQR) has emerged as an important tool in statistical analysis . in order to improve the parameter estimation in (TQR) we proposed Bayesian hierarchical model with double adaptive elastic net technique  and Bayesian hierarchical model with adaptive ridge regression technique .

 in double adaptive elastic net technique we assume  different penalization parameters  for penalization different regression coefficients in both parameters λ1and  λ, also in adaptive ridge regression technique we assume different  penalization parameters for penalization different regression coefficients in parameter λ . 

Simulation study  was used for explain the efficiency of the proposed methods .The result illustrated the efficiency  of the proposed methods for dealing with the estimation of parameters model in present of high correlation in explanatory variables    .

       This is the first work that is discussing the parameter  estimation  in TQR model with double adaptive elastic net and adaptive ridge regression.

Downloads

Download data is not yet available.

Published

2018-10-01

Issue

Section

Statistical Researches

How to Cite

حسن م.م. and ماجد ه.ح. (2018) “Bayesian Tobit Quantile Regression Model Using Double Adaptive elastic net and Adaptive Ridge Regression”, Journal of Economics and Administrative Sciences, 24(107), p. 521. doi:10.33095/jeas.v24i107.1310.

Similar Articles

1-10 of 713

You may also start an advanced similarity search for this article.