تحديد افضل نموذج للتنبوء باستهلاك الطاقة الكهربائية في المنطقة الجنوبية

المؤلفون

  • ساهرة حسين زين
  • خلود موسى عمران

DOI:

https://doi.org/10.33095/jeas.v22i90.518

الكلمات المفتاحية:

منظومة الطاقة الكهربائية، اساليب التنبوء، نماذج الاقتصاد القياسي، اسلوب بوكس-جينكنز، نموذج الانحدار الذاتي، نموذج الاوساط المتحركة، نماذج الاريما ، اسلوب الخلية العصبية الاصطناعية.، \ Electric power system, methods of forecasting, econometric models, Box-Jenkins style, self-regression model, Arima models, Artificial neural network ANN, MLP.

الملخص

المستخلص

   لقد ازداد الاهتمام بموضوع التنبوء خلال السنوات الأخيرة وظهرت أساليب حديثة ومنها  نماذج الشبكات العصبية Artificial Neural Networks، اذ إن هذه الأساليب قادرة على التعلم والتكيّف ذاتياً مع أي نموذج، ولا تحتاج إلى افتراضات لطبيعة السلسلة الزمنية. بالمقابل فان طرائق التنبوء الكلاسيكية المستخدمة حالياً مثل طريقة بوكس- جينكنز Box-Jenkins قد يصعب  عليها تشخيص السلسلة ونمذجتها لأنها تفترض شروط صارمة. لذلك ظهرت الحاجة لمقارنة الطرائق التقليدية المستخدمة في التنبوء بالسلاسل الزمنية مع أسلوب الشبكات العصبية لإيجاد الأسلوب الأكثر كفاءة في التنبوء، وهذا  يمثل الغاية من اجراء هذه الدراسة.

يسهم التنبوء المستقبلي بالطلب على الكهرباء في حل مشاكل قطاع الطاقة الكهربائية من خلال التخطيط المستقبلي لتلبية الزيادة الحاصلة في الطلب على الطاقة الكهربائية. ولقد أظهرت التجارب عدم وجود طريقة تنبوء معينة ملائمة لجميع الحالات، بل إن لكل حالة طريقة تنبوء خاصة بها يتعين البحث عنها واستخدامها. إلا أن الأخذ بأكثر من طريقة قد يؤدي إلى رفع درجة دقة التقديرات المستقبلية.

  تهدف الدراسة الحالية الى تسليط الضوء على بعض الاساليب الاحصائية المستخدمة في التنبوء بالطلب المستقبلي على الطاقة الكهربائية للمنطقة الجنوبية، فضلا عن الاشارة الى اكثر الاساليب دقة في التنبوء المستقبلي للطاقة. وتم استخدام عدد من الاساليب للتنبوء مثل أسلوب نماذج الاقتصاد القياسي، اسلوب بوكس-جينكينـز وأسلوب الشبكة العصبية الاصطناعية. وخدمة لهدف الدراسة فان الفرضية التي يرتكز عليها البحث مفادها: ان نماذج الشبكات العصبية اكثر دقة من النماذج التقليدية في التنبوءات طويلة المدى. اذ تعد أكفأ وأكثر دقة من النماذج التقليدية الأخرى في التعامل مع بيانات السلاسل الزمنية غير الخطية.

لقد تم استخدام بيانات استهلاك الطاقة الكهربائية السنوية للمنطقة الجنوبية لإجراء المقارنة من خلال تطبيق البرنامج  SPSSو Minitab و Matlab للتحليل الإحصائي، وتم بناء برنامج بلغة مات لاب Mat lap  للشبكات العصبية ، ومن خلال التطبيق العملي وجِدَ أن الشبكات العصبية. تعطي نتائج افضل واكثر كفاءة من الطريقة الكلاسيكية.

 

التنزيلات

تنزيل البيانات ليس متاحًا بعد.

منشور

2016-07-01

إصدار

القسم

بحوث احصائية

كيفية الاقتباس

زين س.ح. و عمران خ.م. (2016) "تحديد افضل نموذج للتنبوء باستهلاك الطاقة الكهربائية في المنطقة الجنوبية", مجلة العلوم الاقتصادية والادارية, 22(90), ص 437. doi:10.33095/jeas.v22i90.518.

المؤلفات المشابهة

1-10 من 973

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.