Comparison some of methods wavelet estimation for non parametric regression function with missing response variable at random
DOI:
https://doi.org/10.33095/jeas.v22i90.513Keywords:
البيانات المفقودة - الانحدار المويجي - متعدد حدود موضعي – اقرب مجاور., / Missing data- Wavelet regression- Local polynomial- K-Nearest NeighborAbstract
Abstract
The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .
The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation it is not possible to apply these methods because of the miss of one of its conditions which is dyadic sample size .
According to the great impact resulted from the problem , many researchers who devoted their studies to process this problem , by using traditional methods in processing missing data , whereas the current research used imputation methods more efficient and effective to process missing data as a primary stage so that these data will be ready and available to wavelet application , as a result simulation experiment proved that the suggested methods (Nearset Nighbor Polynomial Wavelet) are more efficient and superior to other methods , this paper also includes the auto correction of boundaries problem by using local polynomial models , and using different threshold values in wavelet estimations
Downloads
Published
Issue
Section
License
Articles submitted to the journal should not have been published before in their current or substantially similar form or be under consideration for publication with another journal. Please see JEAS originality guidelines for details. Use this in conjunction with the points below about references, before submission i.e. always attribute clearly using either indented text or quote marks as well as making use of the preferred Harvard style of formatting. Authors submitting articles for publication warrant that the work is not an infringement of any existing copyright and will indemnify the publisher against any breach of such warranty. For ease of dissemination and to ensure proper policing of use, papers and contributions become the legal copyright of the publisher unless otherwise agreed.
The editor may make use of Turnitin software for checking the originality of submissions received.