Nadaraya-Watson Estimation of a Circular Regression Model on Peak Systolic Blood Pressure Data

Authors

  • Rana Sadiq Nazer Department of Statistics, College of Administration and Economics, University of Baghdad, Iraq
  • Omar Abdulmohsin Ali Department of Statistics, College of Administration and Economics, University of Baghdad, Iraq

DOI:

https://doi.org/10.33095/2cbwj529

Abstract

Purpose: The research aims to estimate models representing phenomena that follow the logic of circular (angular) data, accounting for the 24-hour periodicity in measurement.

Theoretical framework: The regression model is developed to account for the periodic nature of the circular scale, considering the periodicity in the dependent variable y, the explanatory variables x, or both.

Design/methodology/approach: Two estimation methods were applied: a parametric model, represented by the Simple Circular Regression (SCR) model, and a nonparametric model, represented by the Nadaraya-Watson Circular Regression (NW) model. The analysis used real data from 50 patients at Al-Kindi Teaching Hospital in Baghdad.

Findings: The Mean Circular Error (MCE) criterion was used to compare the two models, leading to the conclusion that the Nadaraya-Watson (NW) circular model outperformed the parametric model in estimating the parameters of the circular regression model.

Research, Practical & Social Implications: The recommendation emphasized using the Nadaraya-Watson nonparametric smoothing method to capture the nonlinearity in the data.

Originality/value: The results indicated that the Nadaraya-Watson circular model (NW) outperformed the parametric model.     

Paper type Research paper.

Downloads

Download data is not yet available.

References

Abbas, H. H., & Abood, S. N. (2022). Comparison of Robust Circular S and Circular Least Squares Estimators for Circular Regression Model using Simulation. Journal of Economics and Administrative Sciences, 28(134), 168–185.

Abe, T., & Pewsey, A. (2011). Symmetric circular models through duplication and cosine perturbation. Computational Statistics & Data Analysis, 55(12), 3271–3282.

Abuzaid, A. H., & Allahham, N. R. (2015). SIMPLE CIRCULAR REGRESSION MODEL ASSUMING WRAPPED CAUCHY ERROR. Pakistan Journal of Statistics, 31(4).

Abuzaid, A. H., Hussin, A. G., & Mohamed, I. B. (2008). Identifying single outlier in linear circular regression model based on circular distance. Journal of Applied Probability and Statistics, 3(1), 107–117.

Abuzaid, A. H., Hussin, A. G., & Mohamed, I. B. (2013). Detection of outliers in simple circular regression models using the mean circular error statistic. Journal of Statistical Computation and Simulation, 83(2), 269–277.

Abuzaid, A., Mohamed, I., Hussin, A. G., & Rambli, A. (2011). COVRATIO statistic for simple circular regression model. Chiang Mai Journal of Science, 38(3), 321–330.

Ahmed, A. D., Abdulwahhab, B. I., & Abdulah, E. K. (2020). A comparison among Different Methods for Estimating Regression Parameters with Autocorrelation Problem under Exponentially Distributed Error. Baghdad Science Journal, 17(3 (Suppl.)), 980.

Bai, Z. D., Rao, C. R., & Zhao, L. C. (1989). Kernel estimators of density function of directional data. In Multivariate statistics and probability (pp. 24–39). Elsevier.

Choi, K., & Lim, Y. (2000). Inverse monoids of Möbius type. Journal of Algebra, 223(1), 283–294.

Di Marzio, M., Panzera, A., & Taylor, C. C. (2013). Non‐parametric regression for circular responses. Scandinavian Journal of Statistics, 40(2), 238–255.

Downs, T. D., & Mardia, K. V. (2002). Circular regression. Biometrika, 89(3), 683–698.

Fisher, N. I., & Lee, A. J. (1992). Regression models for an angular response. Biometrics, 665–677.

Follmann, D. A., & Proschan, M. A. (1999). A simple permutation-type method for testing circular uniformity with correlated angular measurements. Biometrics, 55(3), 782–791.

Gould, A. L. (1969). A regression technique for angular variates. Biometrics, 683–700.

Hitchman, M. P. (2018). Geometry with An Introduction to Cosmic Topology. Whitman College, USA.

Hornik, K., & Grün, B. (2014). movMF: An R package for fitting mixtures of von Mises-Fisher distributions. Journal of Statistical Software, 58(10), 1–31.

Jupp, P. E., & Mardia, K. V. (1989). A unified view of the theory of directional statistics, 1975-1988. International Statistical Review/Revue Internationale de Statistique, 261–294.

Kato, S., Shimizu, K., & Shieh, G. S. (2008). A circular–circular regression model. Statistica Sinica, 633–645.

Kazem, A. H., & Al-Dulaimi, M. M. (1988). Introduction to Linear Regression Analysis. Dar Al-Kutub for Printing and Publishing, Iraq

Lund, U. (1999). Least circular distance regression for directional data. Journal of Applied Statistics, 26(6), 723–733.

McCullagh, P. (1996). Möbius transformation and Cauchy parameter estimation. The Annals of Statistics, 24(2), 787–808.

Meilán-Vila, A., Crujeiras, R. M., & Francisco-Fernández, M. (2024). Nonparametric estimation for a functional-circular regression model. Statistical Papers, 65(2), 945–974.

Mahmood, E.A., Midi, H., & Hussin, A.G. (2019). The Comparison Between Maximum Weighted and Trimmed Likelihood Estimator of the Simple Circular Regression Model. Journal of Modern Applied Statistical Methods, 18(2), 1-14.

Rasheed, D.H., Hmood, M.Y., & Hamza, S. K. (2012). Nadaraya-Watson Estimator a Smoothing Technique for Estimating Regression Function. Journal of Economics and Administrative Sciences, 18(65), 283–291.

Nazer, R. S. & Ali, O. A. (2024). Some of Parametric and Non parametric Estimations for Circular Regression Model via Simulation. Misan Journal for Academic Studies, 23(49), 331-340.

Published

2024-12-01

Issue

Section

Statistical Researches

How to Cite

Sadiq Nazer, R. and Abdulmohsin Ali , O. (2024) “Nadaraya-Watson Estimation of a Circular Regression Model on Peak Systolic Blood Pressure Data”, Journal of Economics and Administrative Sciences, 30(144), pp. 473–484. doi:10.33095/2cbwj529.