Expectation Parameters in the Poisson Mixture Regression Model for Latent Class by Applying Genetic Algorithm and Maximization Algorithm
DOI:
https://doi.org/10.33095/xammnc51Keywords:
Mixture Poisson Regression, Latent Class, Expectation Maximization (EM), Genetic Algorithm (GA).Abstract
In a Poisson mixture regression model for latent class, observations come from different sub-sources or classes, and the observed data are assumed to be generated by a specific (finite) mixture of unobserved or latent classes. The problem lies in the optimal assignment of observations to their respective classes. This requires sophisticated methods for estimating the parameters in the model. Usually, the model parameters are estimated by the conventional EM algorithm. The research aims to compare the EM algorithm and the genetic algorithm GA. Using simulation, the two algorithms were compared based on the MSE criterion, with different sample sizes (n = 50, 90, 120) and three scenarios (S1, S2, S3) for default values of the parameters. The results showed the superiority of the GA genetic algorithm over the EM algorithm, as the GA genetic algorithm gave the lowest MSE values.
Paper type: Research paper
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Economics and Administrative Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles submitted to the journal should not have been published before in their current or substantially similar form or be under consideration for publication with another journal. Please see JEAS originality guidelines for details. Use this in conjunction with the points below about references, before submission i.e. always attribute clearly using either indented text or quote marks as well as making use of the preferred Harvard style of formatting. Authors submitting articles for publication warrant that the work is not an infringement of any existing copyright and will indemnify the publisher against any breach of such warranty. For ease of dissemination and to ensure proper policing of use, papers and contributions become the legal copyright of the publisher unless otherwise agreed.
The editor may make use of Turnitin software for checking the originality of submissions received.