تحسين " مقدرات المتغيرات المساعدة بطريقة جاكنايف " باستعمال صنف من أصناف خوارزمية المناعة مع تطبيق عملي
DOI:
https://doi.org/10.33095/jeas.v25i113.1707Keywords:
مقدرات المتغيرات المساعدة بطريقة جاكنايف , نماذج المعادلات الآنية الخطية, خوارزمية المناعة, خوارزمية الانتقاء النسيلي .Abstract
تستند أغلب الطرائق الحصينة على فكرة التنازل عن جانب معين مقابل تقوية جانب آخر من خلال عدة أساليب أما آليات الذكاء الصناعي تحاول عمل موازنة بين الضعف والقوة للوصول إلى أفضل الحلول بأسلوب بحث عشوائي . في هذا البحث تم تقديم فكرة جديدة لتحسين مقدرات معلمات نماذج المعادلات الآنية الخطية الناتجة من طريقة المتغيرات المساعدة حسب طريقة جاكنايف Jackknife Instrumental Variable Estimation(JIVE) وذلك باستعمال صنف من أصناف خوارزمية المناعة Immune Algorithm(IA) والتي تم ترجمتها بخوارزمية الانتقاء النسيلي Clonal Selection Algorithm(CSA) وتم الحصول على مقدرات أفضل باستعمال أحد معايير المفاضلة الحصينة الذي يدعى بمتوسط مطلق الخطأ النسبي Mean Absolut Percentage Error (MAPE) وتم اثبات نجاح آليات خوارزمية الذكاء المستعملة في تحسين مقدرات انموذج معادلات آنية خطية وفق المعيار المستعمل والبيانات الحقيقية بحجم n=48 .
Downloads
Published
Issue
Section
License
Articles submitted to the journal should not have been published before in their current or substantially similar form or be under consideration for publication with another journal. Please see JEAS originality guidelines for details. Use this in conjunction with the points below about references, before submission i.e. always attribute clearly using either indented text or quote marks as well as making use of the preferred Harvard style of formatting. Authors submitting articles for publication warrant that the work is not an infringement of any existing copyright and will indemnify the publisher against any breach of such warranty. For ease of dissemination and to ensure proper policing of use, papers and contributions become the legal copyright of the publisher unless otherwise agreed.
The editor may make use of Turnitin software for checking the originality of submissions received.