Comparing parameters and Reliability of two-parameters exponential
DOI:
https://doi.org/10.33095/jeas.v21i84.709Keywords:
التوزيع الأسي ذي المعلمتين , معلمة قياس) ), معلمة موقع (µ) , معلمة المعولية (R) , التقدير بطريقة العزوم (MOM) , التقدير بطريقة الإمكان الأعظم (MLE) , الجانب التجريبي متوسط مربعات الخطأ ., Two parameter exponential , scale parameter ( ), location parameter ( ), Reliability function (R) , ( ) Moments estimator of . ( ) Maximum Likelihood estimator . ( , ) parameter of Reliability estimator . Simulation experiment n=10,25,50,75,100Abstract
One of the most important problems in the statistical inference is estimating parameters and Reliability parameter and also interval estimation , and testing hypothesis . estimating two parameters of exponential distribution and also reliability parameter in a stress-strength model.
This parameter deals with estimating the scale parameter and the Location parameter µ , of two exponential distribution ,using moments estimator and maximum likelihood estimator , also we estimate the parameter R=pr(x>y), where x,y are two- parameter independent exponential random variables .
Statistical properties of this distribution and its properties is studied , and simulation procedure is used to find estimators using four set of initial values of parameters were found ) for different sample size (n=10,25,50,75,100) L=500 , and the results are compared using mean square error offer that the parameter R is also estimated and compared using MSE . the results are explained in tables
Downloads
Published
Issue
Section
License
Articles submitted to the journal should not have been published before in their current or substantially similar form or be under consideration for publication with another journal. Please see JEAS originality guidelines for details. Use this in conjunction with the points below about references, before submission i.e. always attribute clearly using either indented text or quote marks as well as making use of the preferred Harvard style of formatting. Authors submitting articles for publication warrant that the work is not an infringement of any existing copyright and will indemnify the publisher against any breach of such warranty. For ease of dissemination and to ensure proper policing of use, papers and contributions become the legal copyright of the publisher unless otherwise agreed.
The editor may make use of Turnitin software for checking the originality of submissions received.