Right Truncated‏ ‏of mixed Komal-Weibull Distribution with properties

Authors

  • Sairan Hamza Raheem College of Computing and Information Technology, University of Garmian,‎ Iraq
  • Bayda Atiya Kalaf Department of Mathematics, College of Education (Ibn Al–Haitham), University of ‎Baghdad, ‎ Iraq
  • Erum Rehman Department of Mathematics, School of Social Sciences, Nazarbayev University, Astana, Kazakhstan

DOI:

https://doi.org/10.33095/xg2pbe86

Abstract

Purpose: Truncated distributions occur in many practical situations and predict real phenomena.

Theoretical framework: this paper proposed a right-truncated mixed Komal-Weibull distribution on [0,1] with three parameters, and derived some of its properties.

approach: To show the ability and behavior of this distribution, some mathematical properties are given, such as the likelihood distribution function, the cumulative distribution function, the reliability function, the hazard function, the properties of the kth moments, the variance, skewness, and kurtosis coefficients, the moment generating function and the distribution of order statistics. In addition, the maximum likelihood estimate is derived.

Findings: the new distribution is flexible with the three parameters.

Research, Practical & Social Implications: The new distribution has social implications, significant research, and practical. It enhances the ability to model and analyze truncated data accurately.

Originality: The right-truncated mixed Komal-Weibull distribution can be used in various fields such as agriculture, medicine, engineering, and physics.

Downloads

Download data is not yet available.

References

Abbas, S., Farooq, M., Darwish, J. A., Shahbaz, S. H., & Shahbaz, M. Q. (2023a). Truncated Weibull–exponential distribution: methods and applications. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-48288-x

Abbas, S., Farooq, M., Darwish, J. A., Shahbaz, S. H., & Shahbaz, M. Q. (2023b). Truncated Weibull–exponential distribution: methods and applications. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-48288-x

Almalki, S. J., & Yuan, J. (2013). A new modified Weibull distribution. Reliability Engineering and System Safety, 111, 164–170. https://doi.org/10.1016/j.ress.2012.10.018

Al-Marzouki, S. (2019). Truncated Weibull power Lomax distribution: statistical properties and applications. Journal of Nonlinear Sciences and Applications, 12(08), 543–551. https://doi.org/10.22436/jnsa.012.08.05

Almazah, M. M. A., & Ismail, M. (2021). Selection of Efficient Parameter Estimation Method for Two-Parameter Weibull Distribution. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/5806068

Al-Noor, N. H., Khaleel, M. A., & Mohammed, G. J. (2021). Theory and applications of Marshall Olkin Marshall Olkin Weibull distribution. Journal of Physics: Conference Series, 1999(1). https://doi.org/10.1088/1742-6596/1999/1/012101

Altawil, J. (2021). [0,1] truncated lomax – lomax distribution with properties. Journal of Kufa for Mathematics and Computer, 8(1), 1–8. https://doi.org/10.31642/jokmc/2018/080101

Areiby Shamran, M., Abdalhussain, A., Hassan Hussein, I., Shamran, M. A., Mohammed, A. A., & Alkanani, I. H. (2023). Comparison between Modified Weighted Pareto Distribution and Many other Distributions. https://doi.org/10.21123/bsj.2023.816988

Aryal, G. R., & Tsokos, C. P. (2011). Transmuted Weibull Distribution: A Generalization of the Weibull Probability Distribution. European Journal Of Pure And Applied Mathematics, 4(2), 89–102. www.ejpam.com

ARYUYUEN, S., & BODHISUWAN, W. (2019). The truncated power Lomax distribution: Properties and applications. Walailak Journal of Science and Technology (WJST), 16(9), 655-668.

Atiya Kalaf, B., Hamza Raheem, S., & Najim Salman, A. (2021). Estimation of the reliability system in model of stress-strength according to distribution of inverse. Rayleigh. 9(2), 524–533.

Daghestani, A. F., Sultan, K. S., & Al-Moisheer, A. S. (2021). Mixture of lindley and weibull distributions: Properties and estimation. Journal of Statistics Applications and Probability, 10(2), 301–313. https://doi.org/10.18576/jsap/100203

FISHER, R. A. (1934a). The Effect Of Methods Of Ascertainment Upon The Estimation Of Frequencies. Annals of Eugenics, 6(1), 13–25. https://doi.org/10.1111/j.1469-1809.1934.tb02105.x

FISHER, R. A. (1934b). The Effect Of Methods Of Ascertainment Upon The Estimation Of Frequencies. Annals of Eugenics, 6(1), 13–25. https://doi.org/10.1111/j.1469-1809.1934.tb02105.x

Gul, A., Mohsin, M., Adil, M., & Ali, M. (2021). A modified truncated distribution for modeling the heavy tail, engineering and environmental sciences data. PLoS ONE, 16(4 April). https://doi.org/10.1371/journal.pone.0249001

Haddad, E. S. M., & Batah, F. S. M. (2021). On Estimating Reliability of a Stress – Strength Model in Case of Rayleigh Pareto Distribution. Iraqi Journal of Science, 62(12), 4847–4858. https://doi.org/10.24996/ijs.2021.62.12.23

Hamed, M. S. (2020). The Mixture Weibull-Generalized Gamma Distribution. Advances and Applications in Statistics, 62(2), 139–171. https://doi.org/10.17654/as062020139

Hussein, L. K., Abdullah Rasheed, H., & Hasan Hussein, I. (2023). A Class of Exponential Rayleigh Distribution and New Modified Weighted Exponential Rayleigh Distribution with Statistical Properties. Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(2), 390–406. https://doi.org/10.30526/36.2.3044

Kalaf, B. atiya, Abdul Ameer Jabar, N., & Madaki, U. Y. (2023). Truncated Inverse Generalized Rayleigh Distribution and Some Properties. Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(4), 414–428. https://doi.org/10.30526/36.4.2977

Khaleel, M. A., Abdulwahab, A. M., Gaftan, A. M., & Abdal-Hammed, K. (2022). A new [0, 1] truncated inverse Weibull rayleigh distribution properties with application to COVID-19. Int. J. Nonlinear Anal. Appl, 13, 2008–6822. https://doi.org/10.22075/ijnaa.2022.6026

Khan, F., Ahmad, Z., Khosa, S. K., Alomair, M. A., Alomair, A. M., & Alsharidi, A. khalid. (2023). A new modification of the flexible Weibull distribution based on power transformation: Monte Carlo simulation and applications. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e17238

Kim, H. M., Jang, Y. H., Arnold, B. C., & Zhao, J. (2024). New efficient estimators for the Weibull distribution. Communications in Statistics - Theory and Methods, 53(13), 4576–4601. https://doi.org/10.1080/03610926.2023.2179880

Kumar, D., Kumar, M., Abd El-Bar, A. M. T., & Lima, M. D. C. S. (2021). The weibull marshall-olkin lomax distribution with applications to bladder and head cancer data. Journal of Applied Mathematics and Informatics, 39(5–6), 785–804.

https://doi.org/10.14317/jami.2021.785

Mohammed, A. (2019). Estimation the Shape Parameter of (S-S) Reliability of Kumaraswamy Distribution. Journal Of Mechanics Of Continua And Mathematical SCIENCES, 14(5). https://doi.org/10.26782/jmcms.2019.10.00078

Mohammed, M. J., & Hussein, I. H. (2019). Some estimation methods for new mixture distribution with simulation and application[c]. IOP Conference Series: Materials Science and Engineering, 571(1). https://doi.org/10.1088/1757-899X/571/1/012014

Mohammed, M. J., & Mohammed, A. T. (2021). Parameter estimation of inverse exponential rayleigh distribution based on classical methods. International Journal of Nonlinear Analysis and Applications, 12(1), 935–944. https://doi.org/10.22075/ijnaa.2021.4948

Okorie, I. E., Afuecheta, E., & Bakouch, H. S. (2023). Unit upper truncated Weibull distribution with extension to 0 and 1 inflated model – Theory and applications. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e22260

Raheem, S. H., Kalaf, B. A., & Salman, A. N. (2021). Comparison of Some of Estimation methods of Stress-Strength Model: R = P(Y < X < Z). Baghdad Science Journal, 18, 1103–1111. https://doi.org/10.21123/bsj.2021.18.2(Suppl.).1103

Salman, A. N., Ameen, M. M., & Abdul-Nabi, A. E. (2018). Minimax Shrunken Technique for Estimate Burr X Distribution Shape Parameter. Ibn AL-Haitham Journal For Pure and Applied Sciences, 484–490. https://doi.org/10.30526/2017.ihsciconf.1820

Shanker, R. (2023). Komal distribution with properties and application in survival analysis. Biometrics & Biostatistics International Journal, 12(2), 40–44.

https://doi.org/10.15406/bbij.2023.12.00381

Singh, S. K., Singh, U., & Sharma, V. K. (2014). The Truncated Lindley Distribution: Inference and Application. Journal of Statistics Applications & Probability, 3(2), 219–228. https://doi.org/10.12785/jsap/030212

Taha, T. A., & Salman, A. N. (2022). Comparison Different Estimation Method for Reliability Function of Rayleigh Distribution Based on Fuzzy Lifetime Data. Iraqi Journal of Science, 63(4), 1707–1719. https://doi.org/10.24996/ijs.2022.63.4.28

TARVİRDİZADE, B. (2021). The Lomax-Lindley distribution: properties and applications to lifetime data. Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics, 70(2), 965–983. https://doi.org/10.31801/cfsuasmas.772812

Teamah, A. E. A. M., Elbanna, A. A., & Gemeay, A. M. (2020). Right Truncated Fréchet-Weibull Distribution: Statistical Properties and Application. Delta Journal of Science, 41(1), 20–29. https://doi.org/10.21608/djs.2020.139226

Waloddi Weibull.(1951). A statistical distribution function of wide applicability. Journal of applied mechanics, 18, 290-293.

Published

2024-12-01

Issue

Section

Statistical Researches

How to Cite

Hamza, S., Atiya Kalaf , B. and Rehman, E. (2024) “Right Truncated‏ ‏of mixed Komal-Weibull Distribution with properties”, Journal of Economics and Administrative Sciences, 30(144), pp. 537–548. doi:10.33095/xg2pbe86.